
Heresy: A Virtual Image-Space 3D Rasterization
Architecture

Tzi-cker Chiueh

Computer Science Department

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

chiueh@cs.sunysb.edu

Abstract

With the advent of virtual reality and other vi-
sual applications that require photo and cinema
realism, 3D graphics hardware has started to en-
ter into the main stream. This paper describes
the design and evaluation of a cost-effective high-
performance 3D graphics system called Heresy
that is based on virtual image-space architec-
ture. Heresy features three novel architectural
mechanisms. First, the lazy shading mechanism
renders the shading computation effort to be pro-
portional to the screen area but independent of
the scene complexity. Second, the speculative
Z-buffer hardware allows one-cycle Z-value com-
parison, as opposed to four cycles in conventional
designs. Third, to avoid the intermediate sort-
ing required by virtual image-space rasterization
architecture, we develop an innovative display
database traversal algorithm that is tailored to
given user projection views. With this technique,
the sorting-induced delay and extra memory re-
quirements associated with image-order rasteri-
zation are completely eliminated. By replicating
the Heresypipeline, it is estimated that the over-
all performance of the system can reach over 1
million Gouraud-shaded and 2D mip-mapped tri-
angles per second at 20 frames/set with 1K x 1K
resolution per frame.
Keywords: image space, object sapce, lazy shad-
ing, speculative z-buffer sorting, 3D scan conver-
sion, inverse projection

I’en~ii~+m IO ~nnke digil;&hard copies ol’all or pat ofthis mn~erinl for
~IXSOII~I or cl,wroom IW k grated W~IIIOIII Ibe provided lhnl 1l1c copies
nrc 1101 mntl~ or distributed I’or prolit or commercinl ndwnntnge, the copy-
right a&e. lhe tille oflhc publicnliolt and its dnk nppenr, and notice is
give lllnt copyright is by pamission of lhe AChl. Inc. To copy ollwwise.
lo rc’publisli, lo post on sL’nus or lo redistribute lo lists, requires specific
permission nndlor fed

199 7 SIGGR4 PH/Ewqrnphics 1l~o1Mop
Copyriglll 1997 ACM O-X9791-96l-0/97/S..!i3.50

1 Introduction

Emerging applications of Virtual Reality technologies re-
quire a significant performance improvement in 3D graphics
rendering for interactive response. The goals for future 3D
graphics rendering are photo realism and cinema realism,
which basically means very-high-speed generation of high-
quality images. It has been estimated that the required
visual reality is at 80 million polygons per picture and at
least 24 pictures per second. To provide this level of image
quality at 10 frames per second, the total rendering per-
formance is 800 million polygons per second. As a refer-
ence point, state-of-the-art high-end graphics workstations
such as SGI’s RealityEngine offers a performance level of 1
million, anti-aliased, Gouraud shaded, and texture-mapped
triangles per second.

Existing graphics architectures typically assume a two-
phase pipeline: geometry manipulation and rasterization.
Because geometry manipulation works on a primitive-by-
primitive basis, it is rather straightforward to exploit the
parallelism among geometric operations performed on the
primitives in a 3D model. On the other hand, during the
rasterization stage, the pixel values contributed by differ-
ent primitives eventually have to be projected and com-
bined onto the same screen space. Therefore, synchroniza-
tion among the rasterization of primitives is required. As a
result, it is comparatively more difficult to scale up rasteri-
zation performance compared to geometry manipulation. In
addition, because rasterization involves low-level pixel han-
dling, the amount of memory access is significantly greater
than geometry manipulation. In fact, it is memory access
rather than CPU processing that is the performance bottle-
neck for rasterization.

In this paper, me propose a new 3D graphics architec-
ture called Heresy that is based on the virtual image-space
raaterization architecture [9]. In image-space architecture,
given an image region, the system rasterizes the subset of 3D
primitives in the model database which contribute to that
region. An image region can be a linear scanline or a rectan-
gular block. This process repeats for every image region in
the screen space. The notion of virtual image-space architec-
ture means that instead of dedicating a rasterization engine
to each and every image region, the same set of rasteriza-

69

- : unshaded 30
I primitives that

I - - - - - - - - - - -’ -1 , ,: a-’ Host Processing

end-points of
active spans

Subsystem

Figure 1: The data Aom in the Heresy architecture.

tion engines are reused, i.e., uirtuoZized, to render the entire
screen space. Because an important design goal of Heresy is
cost-effectiveness, Heresy uses one rasterization engine that
traverses through the screen space on a scanline by scanline
basis. An immediate advantage of this approach is that the
amount of Z buffer memory is significantly reduced.

Compared to previously proposed 3D graphics engines,
Heresy features three innovative architectural mechanisms
that collectively reduce the computation overhead of 3D
rasterization. Fist, lazy shading delays the shading com-
putation for the pixels of the triangles until the responsible
triangle for each image plane pixel is determined. In addi-
tion, to simplify the data path width through the Z buffer, a
computation pointer mechanism is developed to avoid trans-
fer of the shading arguments. An important advantage of
lazy &a&g is that the shading computation complexity is
now only proportional to the screen size, but is independent
of the scene complexity, i.e., the number of triangles. This
performance advantage is especially important to Hereaybe-
cause it also supports texture mapping.

Because of lazy &ding, the only portion of the rasteriza-
tion process that is dependent on the number of triangles is
depth-value comparison. The second innovation in Heresy is
a speculative Z buffer implementation, which reduces the Z-
value comparison overhead from four cycles in conventional
designs to one cycle. Speculative Z buffering requires more
expensive hardware support per pixel, but is still a feasible
design choice because Heresy adopts a virtual image-space
model, which only requires a small portion of the full-screen
Z buffer memory.

A fundamental problem associated with the virtual image-
space rendering model is that an explicit sorting phase must
be inserted between geometry manipulation and rasteriza-
tion. This sorting phase lengthens the rendering latency as
well as forces the intermediate buffer to be large enough to
hold the entire 3D model database. In Heresy, we propose a
rasterization-oriented order to traverse the display database
in the object coordinate system. Consequently, there is no
need to wait for all the primitives to be geometrically trans-
formed before rasterization could start. An immediate ben-
efit of this approach is the elimination .of processing delay
and buffer memory associated with intermediate sorting.

In addition to the above three features, Heresy also in-
corporates a highly efficient tri-linear interpolation hardware
for 2D and 3D texture mapping. The rest of this paper is
organized as follows. In the second section, we discuss the
design goals and overall architecture of Heresy. In Section

3, 4, and 5, Heresy’s three unique architectural features are
described in more detail. Section 4 includes the discussion
of the detailed design of t&linear interpolation hardware as
well. In Section 6, a preliminary performance evaluation of
Heresy is presented. In Section 7, previous works that influ-
ence the design decisions of Heresy are reviewed, to set the
research contributions of this work in perspective. Section 8
concludes this paper with a summary of main ideas nnd an
outline of the on-going work.

2 Heresy: The Architecture

The three design goals of Heresy are balance, cost-eflectiueneas,
and modularity. To attain very high 3D graphics rendering
performance, it is essential to maintain the balance among
the stages in the rendering pipeline. More concretely, the
processing delay of each pipeline stage must be npproxi-
mately the same to avoid any bottleneck. Heresytargets at a
single-board implementation that could be added to main-
stream PC or workstation machines, As a result, Heresy
chooses the virtual image-space rendering architecture to
minimize the cost of rasterization hardware. Finally, Heresy
also aims to be scalable from personal interactive grnph-
its to large-scale rendering tasks such as distributed simu-
lation/training. So the architecture is designed in such a
modular fashion that higher performance could be achieved
by replicating the hardware.

Figure 1 shows how graphics primitives are transformed
as they flowed through various pipeline stages of Heresy.
Because Heresy renders one scanline &ter another, the set
of 3D graphics primitives in the database that contribute to
one scanline must be traversed before those associated with
the next scanline. In Heresy, it is the host CPU that per-
forms the traversal of the 3D primitive database according
to the above constraint. After relevant primitives are idcn-
tified, they are passed to Heresy and subject to geometric
transformation according to view angles and projection pn-
rameters. The transformations translate polygons into tri-
angles with each vertex labeled with its normalized projcc-
tion coordinate, the RGB color components and an (r value
for compositing. Active polygon/span lister maintains the
set of active triangles for a given scanline and decomposes
each active triangle into spans that run in parallel with the
X axis by walking through the triangle’s edges along the Y
axis. Each span is now characterized by its two end-points
and passed to the depth check module. The depth (Z value)

---- - -

of each pixel on a span is first calculated by interpolating
the end points’ Z values, and compared with the depth value
of that pixel currently in the Z buffer. Only after all the tri-
angles that contribute to the scan line have been processed
will the depth check module pass the color/coordinate infor-
mation associated with the scanline pixels to the Gouraud
Shading or Texture Mapping modules, which produce the
final pixel color values and pass them to the frame buffer for
display.

Although the pipeline structure of Heresy may seem sim-
ilar to other graphics machines, the implementation tech-
niques actually are quite different. In the next three sec-
tions, we will present how each of Heresy’s three architec-
tural mechanisms work in detail.

3 Rasterization-oriented Display Database
‘Fraversal

An important assumption of image-space rasterization ar-
chitectures is that the clipped and shaded 3D primitives
must be pre-sorted before rasterization. Pre-sorting is nec-
essary because image-space architecture must deal with all
the primitives contributing to a given image region (e.g., a
scanline) simultaneously. Previous approaches [S] [s] invari-
ably assume a sorting phase between geometry manipula-
tion and rasterization. This scheme exhibits a fundamental
problem: All 3D primitives in the scene must be traversed
before rasterization could start. In other words, the pro-
cessing in geometry manipulation and rasterization cannot
be effectively pipelined. In addition, an intermediate buffer
memory at least as large as the display database must be
present between the two subsystems. High-end systems such
115 SGI’s RealityEngine [l] avoids sorting through a parallel
approach in which one rasterization engine is dedicated to
every image region and the transformed 3D primitives are
broadcast to these engines via a broadcast bus. Although
this approach does away with the sorting delay, the utiliza-
tion of the rasterization subsystem in general is low. This is
because for each primitive only those rasterization engines
whose asoociated image regions overlap with the primitive
will be active.

In this section, we present a novel technique used in
Heresy that attempts to eliminate the sorting delay between
geometry and rasterization subsystems in a virtual image-
space rasterlzation architecture. Intuitively, this technique
attempts to traverse the 3D display database in an order
that is demanded by the rasterization process. In other
words, suppose the outputs from the geometry subsystem
follows an order consistent with the rasterization order, then
there is no need to have an explicit sorting phase in between!
To the author’s knowledge, existing 3D graphics rendering
machines never attempt to exploit the extra degree of free-
dom in display database traversal to avoid the sorting over-
head in virtual image-space rasterization architectures.

To determine the set of 3D primitives that contribute to
a given scanline, Heresy fist inverse-projects that scanline
back to the original world coordinate system, and then iden-
tifies the set of 3D primitives in the display database that
interact with the inverse-projected image of the scanline.
To put this technique in perspective, previous approaches
require the sorting of 3D primitives, after they are trans-
formed to the normalized projection coordinate system, to
fit the user-specified 2D view. In contrast, our technique
projects the image regions of the given user view back to
the original object coordinate system, and identifies related
3D primitives. An important advantage of our approach is

71

Original
Objec&yzgidinate

Primitives

Inverse-Porjected
Plane

Figure 2: Each scanline of the screen space is back projected
into the original object coordinate system. All the 30 prim-
itives that intersect with the inverse-projected plane asso-
ciated with the scanline are the primitives that eventually
contribute to the scan&e.

that 3D primitives can be pre-sorted according to the object
coordinate system, and at run time no additional sorting is
necessary. Because the sorting is performed with respect to
a coordinate system that is independent of projection pa-
rameters, sorting of 3D primitives only needs to be done
once!

The concrete steps in the new display database traversal
algorithm are as follows.

At

At

Pre-processing Time:
Bucket-sort the 3D primitives in the object

coordinate system;
Compute the back-projection matrix that

inverses model and vien transformations;
Run Time:
Current-Scanline = 0;
Projection-Plane = Inverse-project(Current-Scanline);
While (Current-Scanline < Screen-Length)

Bucket-Set = Intersect(Projection-Plane);
Send the 3D primitives associated nith the buckets

in Bucket-Set to the Geometry subsystem;
Current-Scanline ++;
Projection-Plane = Inverse-project(Current-Scanline);

endWhile

The bucket sort attaches each primitive to the buckets with
which it intersects and is performed only once statically, i.e.,
not at run time. The Screen-Length represents the number
of scanlines in the screen, and the Intersect function fmds
all the buckets in the 3D display database that intersects
with the projection plane of a given scanline. In practice,
the Intersect function is implemented as a 3D scan conver-
sion procedure [2] of the back-projection plane with respect
to a 3D space whose basic unit is the bucket. The set of
primitives contributing to a scanline are those in the buck-
ets that constitute the scan-coverted version of the scanline’s
back-projected plane, as shown in Figure 2. Of course, prim-
itives that contribute to multiple scanlines are sent to the
geometric transformation module only once.

/ /
I

i

I

I

/

1

I

I

I

, I_--

The additional run-time processing overhead associated
with the new display database traversal algorithm is due to
the scan conversion of the back-projected planes of the scan-
lines. For parallel projection, all scanlines are parallel to one
another; the inverse projection of a scanline, except the first
one, is just a simple translation of the previous scanline and
thus can be easily calculated. Therefore the additional run-
time performance cost of our approach seems rather mini-
mal. On the other hand, the benefit of eliminating the sort-
ing between geometry and rasterization subsystems greatly
improves the overall system pipeline efficiency, as well as sig-
nificantly reduces the intermediate buffer memory require-
ments between geometry and rasterization subsystems.

4 Shading Computation

4.1 Lazy Shading
The goal of lazy shadingis to ensure that the total amount of
shading computation is proportional to the 2D screen space
but is independent of the scene complexity, i.e., number of
3D triangles. The basic idea is to delay the computation of
a pixel’s color until the 3D primitive that is the dominant
contributor to that pixel is determined. In other words, the
classical Z-buffer algorithm says

Compute the Z-value and color of a 3D primitive
P at (i, j): Z(P, i, j) and Col.or(P, i, j);

If Z(P, i, j) < Z(i. j) C
Colodi, j) = Color(P, i, j);
Z(i, j> = Z(P, i, j>;

3
where Z(i, j) and CoZor(i,j) are the current Z-value and

color of the pixel (i, j). The lazy shading version of the
Z-buffer algorithm does the following instead.

Compute the Z-value of a 3D primitive P
at (i, j>, Z(P, i, j>;

If Z(P, i, j> < Z(i, j) C
Z(i. j> = Z(P. i, j>;
Color-Input(i, j> = ColorJnput(P, i, j>;

3

Traverse all the primitives that cover (i, j)
have been traversed;

Color(i, j> = Compute(Color-Input(i, j>);

where the ColorJnput(P, i, j) is the set of arguments needed
to compute the color value contributed by P to (i, j), and
the Compute(.) function takes these arguments and calcu-
lates the color value. The difference between the above two
schemes is that lazy shading delays the computation of a
pixel’s color until the responsible 3D primitive is determined.
As a result, the color-value computation associated with the
hidden parts of the 3D primitives is completely eliminated.
Suppose each 2D pixel has, say four primitives covering it,
this approach represents a factor of four reduction in shad-
ing computation. Because shading calculation accounts for
a major portion of the computational efforts of the rasteriza-
tion process, Iazy shading provides a significant performance
improvement at the system level. This effect is particularly
drastic when more complex shading computation models are
used, such as Phong shading or complicated texture map-
ping.

Although lazy shading decreases the amount of shad-
ing computation required, the volume of color-related data

Resolution level D”

Nl, N2, N3, N4 : four neighbors
Sample Position at
Resolution level D

D’ > D > D”

(a, 4 d

Figure 4: The multi-resolution prefIIter for texture onti-
ahing.

that needs to go through the Z buffer actually increases,
because ColorJnput(P, i, j) contains the color information
of the span’s two end points and therefore is at least twice
the size of Color(P,i,j). Larger data volume implies more
pins (and thus expensive packaging) as well as wider and
more complicated data paths inside the Z-buffering chip.
Therefore, an important performance optimization to the

*lazy shading scheme is the adoption of computation pointers,
place-holders that contain the pointers to the color compu-
tation’s arguments rather than the arguments themselves.
In Heresy, the computation pointer contains a span ID and
the pixel’s X coordinate. For Gouraud shading, the com-
putation pointer is used to retrieve the color values at the
end points of the specified span, and a linear interpolation is
performed to derive the fInal color value on the designated
pixel. Because computation pointers take smaller storage
space than the color attributes, the amount of color-related
data that have to pass into and out of the Z-buffer chip
is significantly reduced, even compared to the non-lazy Z-
buffering algorithm.

Figure 3 shows the detailed data flow of the hardware
implementation of lazy shading and computation pointers.
The span processor maintains the list of active triangles and
spans in the active span memory by performing edge walk-
ing. In addition, the span processor manages the name space
of span ID’s so that unused span ID’s get recycled. The
group linear interpolator performs Z-value interpolation for
pixels on a span and is able to emit one Z-value per cycle
after initial startup. Note that only the X and Z coordi-
nate and the span ID of a pixel actually passes through the
Z buffer logic. To compute the final color value of a pixel,
the shader requests from the active span memory the de-
tailed color information, ColorJnput(P,i,j) (i.e., X, R, G,
B, and a) with the pixel’s associated span ID. Because only
Z values are needed for depth check, the span processor can
execute the color-related part of edge walking in parallel
with Z-value comparison, further reducing the rasterization
latency without full-scale parallel implementations. In sum-
mary, while the shader renders the pixels of the i-th scanline,
the Z-buffer module performs visibility computation for the
(i + 1)-th scanline. The width of span ID in Heresy is 16
bits. That is, there are at most 64K triangles that can cover
a given scanline. The high-level triangulation procedure will
ensure that the applications don’t violate these constraints,
In the highly unlikely event that there are more than 64K
spans covering a scanline, the rasterization for that scanline
is split into multiple phases, each of which is responsible for
a segment of the scanline so that the number of covering
triangles is smaller than 64K.

72

X. R. G. B. atld a

x nrrd z
oJ- a s/m, ‘S

two end points
orid ifs SPAN ID

’ pixels on the
‘span and its
SPAN ID

Figure 3: The detailed data flow in the implementation of lazy shading.

4.2 Texture Mapping
Heresy supports Williams’ mip-mapping scheme [ll] to min-
imize the r&sing artifacts due to 2D texture mapping. In
this scheme, different resolutions of a 2D texture map are
organized into a 3D database. Given a screen space pixel,
the corresponding sample point in the texture domain is
first identified. Then the four neighbors of the sample po-
sition and an additional parameter D, called the resolution
level, is computed, As shown in Figure 4, the color value
of the pixel in question is determined by performing a 3D
interpolation of the eight texels that encompass the sample
point in the 3D texture database. Interestingly enough, the
same 3D interpolation mechanism can also be used to sup-
port 3D texture mapping. Therefore, in this subsection we
will focus on a high-performance hardware implementation
of tri-linear interpolation used in Heresy.

Suppose the relative 3-D coordinate of a sample point
within a cube with respect to the corner voxel closest to the
origin is < u, b, c >, and the data values associated with
the corner voxels of the cube, Pijk, where i, j, k = 0 or 1,
then the interpolated data value associated with the sample
point, PobC, is computed through a t&linear interpolation
as follows:

P nbc = POOO * (1 - a)(1 - b)(l - c) + Pm5 * a(1 - b)(l -c)
-t-Polo * (1 - a)b(l - c) + Pool * (1 - a)(1 - b)c
i-l310 * ab(l - c) + PIOI * a(1 - b)c +
Pm * a(1 - b)c + PO,, * (1 - a)bc (1)

A brute-force implementation of this formula requires 13
multiplications and 20 additions.

The fist key idea for the fast 3-D interpolation unit de-
sign is to replace time-consuming arithmetic operations with
table look-up. From Equation (l), it is clear that the only
part that permits pre-computation is the intermediate values
involving a, b, and c. Assume that a, b and c are represented
with a seven-bit resolution, the number of possible combi-
notions for < a, b, c > triples becomes 2’ * 2’ * 2’ = 221. For
each triple, they are eight intermediate values, each being
g-bit wide. Thus the total size of the look-up table is 16
MBytes. Simply because of the required memory size, this
design is clearly too expensive and potentially slow. We
solve the above problem by making the observation that
a t&linear interpolation is actually equivalent to a linear
interpolation following two bi-linear interpolations. A bi-
lineor interpolation assumes the following form:

P ,,b = Poo*(l-a)(l-b)+Plo *a(l-b)+Pol +(l-a)b+& mb
(2)

By substituting two bi-linear interpolations and a linear in-
terpolation for a t&linear interpolation, the look-up table
size is now shrank to 64 KBytes. The price we pay for
this design decision is that two more multiplication5 are
needed than the straightforward t&linear interpolation de-
sign. More specifically, each N-linear interpolation need5 2N
multiplications and 2N - 1 additions, where linear, bi-linear,
and t&linear correspond5 to an N value of 1, 2, and 3, re-
spectively. Therefore, two bi-linear interpolations and one
linear interpolation take ten multiplications and seven ad-
ditions. Fortunately, the performance overhead associated
with these additional multiplication5 can be minimized by
exploiting parallelism and pipelining.

NOW that the intermediate values involving relative co-
ordinates are available by table lookup, the actual compu-
tation of 3-D interpolation is reduced to those operations
involving sample data values. The second key idea of the
fast 3-D interpolation unit design is to exploit the internal
structure of a parallel multiplier. To a first approximation,
a parallel multiplier is nothing more than a two-dimensional
array of single-bit carry-save adders. Therefore, it is pos-
sible to integrate a multiplication and an addition opera-
tion by inserting an extra row of carry-lookahead adders.
Moreover, one can pipeline multiple multiply-add operations
through such an augmented parallel multiplier to reduce the
hardware cost. Consequently, it becomes feasible to imple-
ment the entire 3D-interpolation function in one chip with-
out resorting to exotic technologies like multi-chip modules
or wafer scale-integration.

The system architecture of the fast 3D-interpolation unit
is shown in Figure 5. Two parallel multipliers are used to
execute two bi-linear interpolations in parallel. At the end
of bi-linear interpolation, the results are fed to the third par-
allel multiplier to execute the finishing linear interpolation.
The third multiplier is included to allow pipelining among
multiple t&linear interpolation operations. In this design
multiple multiply operation5 can occupy different section5 of
a parallel multiplier, and the interface between the operand
register file and the array multiplier is tightly integrated.

Assume that the result ffom table look-up is g-bit wide.
With a modified a-bit Booth encoding, a multiplication with
a 8bit multiplier involves four partial products, or three ad-
ditions to complete. The detailed architecture for the aug-
mented parallel multiplier is shown in Figure 6, where each
CSA stands for a c&-save adder for accumulating inter-
mediate partial products, and the Rk’s are shif’t register5
that form the partial products. For explanation purposes,
we wilI focus on the bi-linear interpolation of the following
form:

P1+4 +p2 * c2 + P3 + c3 SP4 *c4 (3)

73

P c P’ C’

bi-linear

interpolation

linear

interpolation

/

Figure 5: The system architecture for the SD-Interpolation unit.

where Pi’s pre-stored sample data values and Ci’s the g-bit
interpolation coefficients from table look-up. The partial
product shifter control subsystem takes C;‘s as multipliers
and controls the shift registers Ri’s to generate multiples of
corresponding Pi’s as partial products. In Heresy the look-
up table actually stores the Booth encoding of Ci’s rather
than the actual values of Ci’s. So there is no run-time over-

/ head for Booth encoding, saving both hardware complexity
/ and time.

1
To start a bi-linear interpolation computation, only PI

/ and Cl need to be on the chip. The rest can be fetched
sequentially as the computation unfolds. In the following,
we will use PPij to denote the j-th partial product from
the multiplicand Pi, j = 1, 2, 3, or 4. Also assume each
multiplier Ci contains four a-bit patterns, each of which is

denoted by Cij, where j = 1, 2, 3, or 4. Therefore,

Pi * Ci = 2 PPij (4
k.=l

PPij = (Pi << 2 * j) * Cij (5)
In the beginning, PPu and PPn occupy Rl and R2,

respectively. At the end of the first cycle, PPn + PPl2 is
available from the output of the first CSA, and at the same
time PPzl, PP22, and PPXJ &re stored in Rl, R2, and R3,
respectively. At the end of the second cycle, PPH + PAZ +
PPl3 and PPz!I + PPn are available from the second and
fist CSA, respectively, and now PP31, PPxt, PPzs, and
PPl4 occupy Rl, R2, R3, and R4, respectively. At the end
of the third cycle, PI * Cl is available from the third CSA
and is fed into the accumulation carry-lookahead adder. The

74

P4
P3
P2
PI

Carry-Save Adder Pnrlinl

I

Shift

Control

Figure 6: Detailed hardware structure to perform bi-linear
interpolation. The partial products PPij in RI ‘S are formed
by appropriately shifting/complementing Pi’s controlled by
Cij ‘Se

_ ._ ..~..~_ _ __._ I---_----------- ..- --. ~-

Cycle Rl
PA1 P?,

R3 R4 CSA 1 CSA 2 CSA 3 Final CLA
1
2 PP2, PP22 PA3 PA1 + PPS2

3 PP31 PP32 PP23 PPl4 PP2l -I- PP22 2 PAi

i=l

4 Pp41 pp42 p&3 pp24 PSI f-pp32 2 p&i Pl *cl

i=l

5 PP43 PP34 pP41 +pp42 2 pp3i P2 +c2 Pl *a

6 PP44

i=l

2

2

PP4i P3 + C3
c Pk*ck

id kc1
3

7

8

P4*C4
c

pk*ck

kc1
4

c
w*crt

kc1

Table 1: The contents of each module in the bi-linear interpolation unit at the beginning of each cycle.

detailed timing for bi-linear interpolation on the augmented
parallel multiplier is shown in Table 1.

As can be seen, it takes seven internal cycles to com-
plete a bi-linear interpolation. Similarly, the finishing linear
interpolation will take 5 cycles. Therefore totally 12 in-
ternal cycles are needed for the 3-D interpolation function.
For the total delay to be under 100 ns, the internal cycle
time needs to be under 8 ns, which is relatively straight-
forward to achieve, considering that each carry-save adder
only involves less than five gate delays. The multiplicands,
i.e., Pi’s, are assumed to be 50-bit wide to accommodate
R, G, B, and a simultaneously. As for the silicon cost, the
parallel multiplier array accounts for the major portions of
the 3DGnterpolation unit. We estimate that each single-
bit full adder takes under 100 transistors (including routing
areas), then the parallel multiplier and the accumulating
adder takes 20,000 transistors. Assume that the operand
register file and the control logic takes the same amount
of transistors. Then the total transistor count for the 3D-
interpolation unit is roughly 3 * 2 * 20,000, or 120K, a rather
conservative design point even based on the 1.2 micron MO-
SIS service.

6 Speculative Z-buffering

In the previous sections, we show how Heresy eliminates in-
termediate sorting and unnecessary rendering computation
due to invisible primitives. Because depth comparison needs
to be done for every pixel on every primitive, the remain-
ing system bottleneck most likely lies in the Z buffer logic.
Since Heresy is based on a virtual image-space rasteriza-
tion architecture, the amount of Z-buffer memory is smaller
than its object-space counterpart. Other than the obvious
cost benefit, there are two fundamental performance advan-
tages associated with this approach. First, smaller Z-buffer
memory requirement encourages direct integration of depth
comparison logic with Z-buffers on the same chip, which
significantly increases the speed of Z-buffer access. Second,
smaller Z-buffer memory requirement also allows a higher-
performance though more expensive implementation of each
Z-buffer element. In this section, we will present a Z-buffer

New Color 1 ’
t

New Z

Figure 7: The hardware design of a speculative Z buffer cell

cell design that performs each Z-value comparison in one
cycle, rather than at least four cycles in traditional designs.

As explained in the last section, the vanilla Z-but&r al-
gorithm requires at least four instructions: a memory ac-
cess to fetch the current Z value, a subtraction between the
computed Z value and the current Z value, a conditional
branch, and if success another memory access to store the
new Z and possibly color values. Because there are condi-
tional branches as well as multiple memory access instruc-
tions that pound at the same resource, pipelining techniques
can not be easily applied to improve the system throughput.
Since Z-value comparison is performed for every pixel on ev-
ery 3D primitive, the computational efforts are proportional
to the scene complexity. Therefore, fast Z-buffer hardware
implementation plays a critical role in improving the overall
performance of 3D graphics rendering.

The proposed Z buffering hardware implementation in
Heresy is shown in Figure 7, which represents an individual
cell. The key idea of the proposal is to shadow the Z b&l&s

75

(

/

I
,

,

/
I
/
/

/

I

I

/
f

1

!

I

VI II

k-e T.... A i p . ..f
&?m0:ting New

conlrol Color & Z

Figure 8: The alternating partitions of the Z buffer logic
module, which contains only one scanline.

so that newly computed Z and color values’ can be stored
specuIatiuely. In other words, each logical Z buffer cell is
physically represented in two memory cells. To distinguish
the most up-to-date version of a particular pixel’s Z and
color values, a valid bit is used, which is computed as a
result of comparing new Z values and current Z values. As
a result, the conditional branch in the generic Z buffering
algorithm is turned into a manipulation of the valid bit.

Given a pixel coordinate, the corresponding valid bit is
first fetched to determine the shadow version, into which the
newly computed Z and color values are stored. At the same
time, the current version of the pixel’s Z value is fetched
and compared with the new Z value. Through a customized
fast comparator, the pixel’s uolidbit is modified based on the
result of the comparison. The valid bit not only distinguishes
between the current and shadow versions of the pixel’s Z
value, but also controls the read/write modes of the two
memory cells: The shadow version performs a write while
the current performs a read.

The 2x2 bidirectional switch establishes the connection
between the Z memory banks and the fast comparator and
the new Z register. The fast comparator is a customized
circuit that toggles the valid bit if and only if when the new
Z value is less than the current Z value.

The critical path of the proposed Z-buffer hardware is
the following: fetch the valid bit, load the current Z value,
perform Z-value comparison, and modify the valid bit. Note
that the pre-charging and decoding delay of the three mem-
ory accesses, Z, color value, and valid bit, are completely
overlapped. At the target clock rate of 100 MHz, these four
operations can be safely performed within two cycles.

To further reduce the Z-value comparison latency, Heresy
exploits the fact that a span consists of a contiguous se-
quence of pixels by decomposing the Z buffer for a scanline
into two partitions: one for even-numbered pixels and the
other for odd-numbered pixels, as shown in Figure 8. Be-
cause span processing tends to touch pixels consecutively,
the two partitions service the Z-buffer accesses alternately.
At any given cycle the even partition may be at the first
stage of the Z-value comparison pipeline, and the odd par-
tition is at the second stage; at the next cycle, the pipeline
stages of these two partitions switch. Consequently, the sys-
tem’s overall throughput is at one Z-but&red comparison per
clock cycle, a factor of four improvement over conventional
designs.

‘Because of lazy shading, they are actually computation pointers.
Without loss of generality, let’s assume they are color values.

76

6 Preliminary Performance Analysis

The performance goal of a full-scale Heresy implemcntotion
is 1 million Gouraud shaded, texture-mapped, and nnti-
aliased triangles per second. In this section, we analyze the
performance of each pipeline stage of Heresy, and investi-
gate how additional hardware parallelism can be introduced
to achieve the performance goal.

In Heresy, the geometric transformation module is imple-
mented by a high-speed DSP processor such as TI’s MVP
[7], which has an estimated performance of 5OOK triangles
per second. The active span processor is implemented by a
special ASIC that performs edge walking and the maintc-
nance of SPAN ID name space and active span memory. An
ASIC implementation is chosen because forward diserenc-
ing is used to compute the interpolated X, Y, Z, R, G, B,
and a values along the triangle edges. This requires large
on-chip memory to maintain the intermediate state of each
active triangle and multiple adders to emit the coordinates
and colors of the end points of a span. Assume that the
start-up delay for an interpolation operation is 5 cycles and
one cycle per interpolation thereafter, and a triangle in av-
erage consists of 15 spans. Then the average edge walking
delay per triangle is

7*2*5+15*1
15

= 5.67(cyclea)

where 7 denotes the seven interpolations and 2 the two end
points of each span. With a 50 MHz clock rate, the span
processor can complete 588K triangles per second.

The group linear interpolator in Fiyre 3 computes the
Z values of the pixels on each span. This module is again
implemented by an ASIC, which can perform four linear in-
terpolations per cycle under a 50 MHz clock. Given the snme
interpolation delay assumption, then this ASIC can perform

5084
(5.+10*1)*15 = 889K triangles per second. where we assume
there are in average 10 pixels per span. The speculative Z-
buffer module is another ASIC that implements depth com-
parison. As mentioned in Section 5, this chip runs at 100
MHz and is capable of performing one Z-value comparison
per cycle with a a-cycle start-up overhead. So the spccula-
tive Z-buffer module perform la+ly.T l 16 = 556K triangles
per second. The Gouraud shader computes the final R, G,
B, and a values and can perform four linear interpolations
in parallel in five cycles. At 50 MHz, the number of pixels
that this shader can compute is 10 million, or 10 frames/set
at 1K x 1K resolution per frame. As mentioned in Section
4.2, the texture mapping module can perform one 3D in-
terpolation per 100 ns, or 10 million 2D mip-mapped or 3D
texture mapped pixels per second. In terms of bandwidth
requirements, the path that gets stressed most is between
the group linear interpolator and the scanline Z-buffer mod-
ule. Due to the use of computation pointers, the input data
rate to a Z-buffer module is reduced by a factor of four to
556Ktrianglesfsec * 150pixels/triangles * lbytea/pixel =
417Mbytes/sec, because for each pixel only its X and Z co-
ordinate needs to be passed into the Z-buffer. With the ad-
vance of semiconductor process technology, we expect that
the group linear interpolator and the scanline Z-buffer mod-
ule will eventually be integrated in one chip, thus eliminating
this bandwidth problem altogether.

The architecture of Heresyis inherently scalable by rcpli-
eating the hardware modules. To double the performance,
one simply replicates another liereay pipeline, and make8
sure that the host distributes the 3D primitives evenly bc-
tween the two pipelines. The reason for this scalability is

~-----~ - ~~.

that the rasterization-oriented display database traversal al-
gorithm pushes synchronization to the very beginning of the
pipeline, and therefore maximizes the extent of hardware
parallelism.

7 Related Works

There are several graphics machines that are based on image-
space architecture. The most powerful commercial offering
is SGI’s RealityEngine [l], which dedicates one rasterization
engine to each image region and thus bypasses the interme-
diate sorting delay problem. UNC’s Pixel-Planes 5 [5] is
also based on parallel image-space architecture. Therefore
bucket sorting of transformed primitives must be completed
before parallel rasterization can start. In some sense UNC’s
Pixel-Flow [lo] is the antithesis of Heresy in that PiieIFlom
delays synchronization to the end of the rendering pipeline
via a compositing network, whereas Heresy forces syncbro-
nizotion at the beginning of the pipeline. PixeIFlom also
supports the notion of lazy shading. [6] described a vir-
tual image-space architecture called SAGE that is based on
the systolic computing paradigm. Again, it requires inter-
mediate bucket sorting. [8] described a prototype based on
the scanline Z buffer architecture, which is essentially the
8nme a8 Heresy’s architecture. However, this system stih
needs a sorting phase between rasterization and geometry
8Ub8y8kIU8. [3] discussed a system built at SUN called Leo,
which adopted a parallel image-space architecture. As a
result, the Z-buffer cannot be integrated with the raster-i- .
z&ion engine one one chip as Heresy does. Eventually the
outhor reported that the system performance bottleneck is
imposed by VRAM access speed. [4] proposed a new mem-
ory architecture called FBRAM that attempts to address
this problem.

8 Conclusion

This paper describes Heresy, a high-performance 3D graph-
ics rendering system currently under development at our in-
stitution, Heresy supports lazy shading in hardware, imple-
ments a one-cycle speculative Z-buffer comparison logic, in-
corporates a highly efficient table-lookup-based 2D/3D tex-
ture mapping mechanism, and finally features an hmova-
tive display database traversal algorithm that completely
eliminates the intermediate sorting associated with virtual
image-space rendering architecture. We estimate that by
replicating the Heresy pipeline, the overah performance of
the system can reach over 1 million Gouraud-shaded and 2D
mip-mapped triangles per second at 20 frames/set with 1K
x 1K resolution per frame.

Currently we are working on a function-level simulator
of Heresy for architectural performance evaluation. The on-
going efforts of our group will continue with two directions.
One is to perform a more comprehensive workload character-
ization of 3D graphics programs, especially in the domain of
interactive games and distributed simulation/training. The
other is to complete the VLSI circuit design of each of the
five ASIC chips described in this paper.

Acknowledgement

This research is supported by an NSF Career Award MIP9502067
and a contract 95F138600000 from Community Manage-
ment Staff’s Massive Digital Data System Program.

9 References

[l] K. AkeIey, “RealityEngine Graphics,” Proceedings of
the 20th SIGGRAPH Conference, pp. 109-116, Ana-
heim, California, August 1993.

[2] D. Cohen, 30 Scan Conversion of Geometric Objects,
PhD Thesis at the Computer Science Department of
SUNY at Stony Brook, December 1991.

[3] M. Deering, S. NeIson,“Leo: A System for Cost Ef-
fective 3D Shaded Graphics,” Proceedings of the 20th
SIGGRAPH Conference, pp. 101-108, Anaheim, Cal-
ifornia, August 1993.

[4] M. Deering, S. SchIapp, M. LaveIIe, “FBRAM: A New
Form of Memory Optimized for 3D Graphics,” Pro-
ceedings of the 21th SIGGRAPH Conference, pp. 167-
174, Orlando, Florida, July, 1994.

[5] H. Fuchs, et al., “Pixel-Planes 5: A Heterogeneous MuI-
tiprocessor Graphics System Using Processor-Enhanced
Memories,” Proceedings of the 16th SIGGRAPH Con-
ference, pp. 79-88.

[S] N. Gharachorloo, et al., “Subnanosecond Pixel Render-

[71

ing with MiIIion- Transistor Chips,” Proceedings of the
15th SIGGRAPH Conference, pp. 41-49.
K. Guttag, rt al., “A Single-Chip Multiprocessor for
Multimedia: the MVP.” IEEE COMPUTER GRAPH-
ICS AND APPLICATIONS (Nov. 1992) ~01.12, no.6,
pp. 53-64.

[81

PI

M. KeIIy, S. Winner, K. Gould, “A Scalable Hardware
Render Accelerator using a Modified Scanline AIgo-
rithm,” Proceedings of the 19th SIGGRAPH Confer-
ence, pp. 241-248, Chicago, Ihinois, July 1992.

S. Mohmr, H. Fuchs, “Advanced Raster Graphics Ar-
chitecture,” Chapter 18 of Computer Graphics: Prin-
ciples and Practice by J. Foley, A. van Dam, S. Fe&r,
and J. Hughs, 1990.

[lo] S. Mohmr, J. Eyles, J. PO&on, “PixeIFlow: High-
Speed Rendering Using Image Composition,” Proceed-
ings of the 19th SIGGRAPH Conference, pp. 231-240,
Chicago, IIIinois, July 1992.

[ll] L. Wiiams, “Pyramidal Parametrics,” Proceedings of
the 10th SIGGRAPH Conference, pp. l-11.

77

