
~~~~~ __ - ._~~~ . . - ~~ ~~- .--~--~-- -- 

Realizing OpenGL: Tbo Implementations of One Architecture 

Mark J. Kilgard 
Silicon Graphics, Inc. 

Abstract 

The OpcnGL Graphics System provides a well-specified, widely- 
accepted dataflow for 3D graphics and imaging. OpenGL is an UT- 
clrirechaa; nn OpenGL-capable computer is a hardware manifesta- 
tion or ir,~plenrentution of that architecture. The Onyx2 InfiniteRe- 
ality nnd 02 workstations exemplify two very different implemen- 
tntions of OpenGL. The hvo designs respond to different cost, per- 
formance, and capability goals. 

Common practice is to describe a graphics hardware implemen- 
tntion bnscd on how the hardware itself operates. However, this 
pnper discusses hvo OpenGL hardware implementations based on 
how they embody the OpenGL architecture. An important thread 
throughout is how OpenGL implementations can be designed not 
merely based on gmphics price-performance considerations, but 
nlso with considemtion of larger system issues such as memory ar- 
chitecture, compression, and video processing. Just as OpenGL 
is influenced by wider system concerns, OpenGL itself can pro- 
vide a clarifying influence on system capabilities not conventionally 
thought of as graphics-related. 

CR Categories: 1.3.1 [Computer Graphics]: Hardware Architec- 
ture; 1.3.6 [Computer Graphics]: Methodology and Techniques- 
Standards 

Keywords: OpenGL, Graphics Hardware Architecture, Infinite- 
Reality, 02 

1 Introduction 

The OpenGL Graphics System provides a well-specified, widely- 
accepted dntaflow for 3D graphics and imaging. While program- 
mers may think of OpenGL as simply a programming interface [7], 
we take the view that OpenGL defines an architecfure. 

We sny a set of implementations manifest an architecture when 
three conditions are met: 

The implementations must all have an identical interface and 
generate fUnctionally equivalent outputs given the same inputs 
and initial state. 

The determiner of functional equivalence is something other 
than a pnrticulnr implementation. 

The determiner of functional equivalence does not necessi- 
tnte that nil implementations be operationally identical. (There 
must be multiple ways to implement the architecture.) 

Permissions lo make digitnlflwd topics of all or pn~i of lhis mntrrinl for 
pcrsonnl or clnwoom 11~1: is grwlcd widlout fee provided dint tile topics 
nrc ool mndc or dislribuled I’ur prolit or commrrcial ndv~otagc, lbe copy- 
right nolice. the lille oflbc publiwGon and its date appear. and notice is 
given thrill copyrigbl k by pcnnission of the ACM. 11x. To copy olbenvise. 
IO rcp~d~lish. IO post on scrvcrs or to rcdiskbole 10 Iis&, requires specilic 
peniiiasioii nndlor kc 

i 99 7 SIC XX4 I’tl~l~~~~~).~r~plli~~.~ I1~0rksl10p 
CopyrigM I997 AChl 0-R9731-‘)6l-fl/97/8..S3.50 

Implementations that are simply “compatible” do not necessarily 
manifest an architecture. Our definition allows for an implemen- 
tation to belong to an architecture but have additional capabilities 
beyond those defined by the architecture. 

By our definition, OpenGL is clearly an architecture. While the 
determiner of functional equivalenceis not required to be a codified 
specification,’ OpenGL’s architecture is indeed defined by its spec- 
ification [l I]. 

Implementations of an architecture typically accrue significant 
advantagesnot available to adhoc implementations or sets of imple- 
mentations that are compatible yet do not manifest an architecture. 
Architectures gain an advantage from compatibility, but also tend to 
be more adaptable and foster innovative implementations through 
the freedom granted designers in how they realize the architecture. 
Architectures also tend to be easy to extend because an implemen- 
tation’s behavior is typically not specified for situations not defined 
by the architecture’s functional equivalence. 

The intent of this paper is to explore OpenGL’s aduptubility as an 
architecture. What we refer to as the adaptability of an architecture 
is not measured by units sold or market share. Instead, we contend 
that the adaptability ofan architecture should be judged by the archi- 
tecture’s ability to codi well-understood fimctionality, its potential 
to be cleanly extended to support new capabilities, and its ability to 
influence positively issues outside the scope of the architecture it- 
self. 

Our approach is to consider hvo manifestations of the OpenGL 
architecture: the Onyx2 InfiniteReality graphics supercomputerand 
the 02 desktop workstation. Our examples were chosen because 
each is the result ofquite different cost, performance, and capability 
goals, but both concretely demonstrate our primary contention that 
OpenGL is technically successful as an architecture because it is ex- 
tensible to encompass new capabilities within the scope of intemc- 
tive graphics and because OpenGL can positively influence system 
issues not directly graphics-related. Our approach is novel because, 
while we considerconcrete implementations, we are fundamentally 
evaluating OpenGL as a graphics system architecture, not a partic- 
ular hardware implementation. 

Section 2 reviews the OpenGL architecture’s scope, philosophy, 
functionality, and means of extensibility. Section 3 describes how 
OpenGL is instantiated by the Silicon Graphics Onyx2 InfiniteRe- 
ality. Section 4 describes how OpenGL is instantiated by the Silicon 
Graphics 02 workstation. Section 5 conhasts the hvo implementa- 
tions based on how they distinctly manifest the OpenGL architec- 
ture. Section 6 discusses how the OpenGL architecture influenced 
and even clarified several non-OpenGL design considerations in 
both example implementations. Section 7 argues that the OpenGL 
architecture is ‘good” because it provides us a framework for build- 
ing innovative, evolvable, well-integrated graphics systems. 

‘The PC architecture lacks a codified specification but what constitutes 
a PC has evolved beyond the point that a PC can be described operationally 
by a single implementation as was originally the case. 

45 



I 

Uflp& VL?r(BX Polnl. une. 
VWl.3XL-S Ope~llOM and Polygon 

R~erlzallon 

, Figure 1: The dataflow within the OpenGL architecture’s concep- 
tual state machine. 

2 OpenGL is a Visualization Architecture 

glCo!orTableEXl 
glEnabWglDkab!o 

glColorTableEXT 
glEnable/glDiia Post Canva!ullan 

glCofarTab!sExT 
glEmblcdgmoble 

POSf Color Mardx 

1EY.l 
B 

glh4inmaxEXT 
glRessMnmaxEXl 
glEnabl&‘glDisablo 

The OpenGL architecture addresses the task of efficiently convert- 
ing vertex- and pixel-based data representations into images. While 
the “GL” in OpenGL stands for Graphics Library, we consider 
OpenGL’s functionality mandate to be larger than that of a tradi- 
tional 3D graphics library. OpenGL manipulates vertex and pixel 
data with comparable ease. Moreover, texture mapping provides 
a “bridge” to effectively combine the rasterization of vertex- and 
pixel-based data representations. 

We consider SGI’s early IRIS GL implementation to exemplify 
the conventional feature set ofa 3D graphics library. Over time IRIS 
GL added texture mapping and image processing operations to its 
repertoire. These additions served as the motivation for rethinking 
the purpose of a graphics library during the design of OpenGL. Be- 
cause OpenGL is well-suited for manipulating both vertex and pixel 
data, supports texture mapping, and embodies an architecture, we 
refer to OpenGL as a visualization architecture. 

2.1 State Machine Philosophy 

OpenGL is specified as a state machine. OpenGL commands either 
4 set state variables, retrieve state variables, retrieve flamebuffer con- 

, tents, compile or call display lists, or introduce vertex or pixel data 
into the state machine. Vertex and pixel data introduced into the 
state machine are processed based on the current OpenGL state set- 
tings with the results sent to the framebuffer, texture objects, display 
lists, or selection/feedback buffer depending on OpenGL’s current 
settings. Figure 1 showsthe high-level datagow within the OpenGL 
architecture’s conceptual state machine. 

Beyond OpenGL’s state machine model, several philosophical 
choices help make OpenGL both extensible and adaptable to unex- 
pected situations. In later discussion, we note how these choices are 
manifested in the two example implementations considered. 

OpenGL’sstatevariablesareor~1rogonul. In general, the enabling 
or reconfiguring of OpenGL features does not interfere with other 
features. For example, lighting calculations can be enabled or dis- 
abled independently from the current depth buffering mode. This 
means programmers can combine features with predictable results. 
An often unforeseen advantage of feature orthogonality is that mul- 
tiple independent features can often be combined in useful but unan- 
ticipated ways. Much of OpenGL’s ease of extensibility is predi- 
cated on feature independence. Without orthogonality, multiple ar- 
chitectural extensions lead to confbsing interdependencies or even 
create feature conflicts. 

The OpenGL architecture is client-server in the abstract sense, 

Figure 2: The extended OpenGL pixel path including the convolu- 
tion, histogram, color matrix, and color table extensions. 

not necessarily in a networked sense. Client-server means thnt the 
interface between an OpenGL npplicntion and an OpenGL implc- 
mentation is strictly defined and all data passing between the nppli- 
cation and implementation is explicit. The client-scrvcr separntion 
defines the boundary between OpenGL implementntion state and 
that of the application. This clear boundary makes possible network 
extensible OpenGL implementations [53 and allows OpcnGL to be 
used as a direct hardware interface. 

The OpenGL architecture is data firmut rich. Immediate 
mode transfer of pixel and vertex data cnn be accomplished using 
OpenGL’s wide variety of data sizes and formats. This nllows np 
plications to easily transfer their vertex and pixel data to OpenGL 
by traversing application-dictated data structures. Applications cnn 
supply pixel data using various strides, offsets, and component 
packings. Application performance typically benefits from nvoid- 
ing data reformatting when transferring data to OpcnGL. Howcvcr, 
OpenGL implementations must be ready to accept OpcnGL’s mul- 
titude of possible data formats. 

The OpenGLarchitecture is configurable, bfrtnolprogrunrrrtub~e. 
The OpenGL state machine can be thought of as n pipeline with a 
fixed topology (though various stages may be switched in or out). 
This mimics the layout of high-performance graphics subsystems 
where rendering steps are decomposed and instantiated by spccinl- 
ized hardware. The OpenGL architecture clearly encoumgcs this 
style of implementation. This does create situations where fcnturcs 
such as programmable shaders [S] or generalized image processing 
chains [12] are difficult to express as extensions to the OpenGL nr- 
chitecture. 

2.2 Functional Decomposition 

Sections 3 and 4 discuss how OpenGL (as specified in version I, 1) 
is instantiated by our example implementations. Therefore, this SCC- 

tion briefly reviews OpenGL’s functionality from an nrchitectuml 
standpoint. The operations are explained “bottom up” starting with 
the lowest level operations that update the framebuffer and moving 
to the highest level operations that accept commands. 



2.2.1 Per-Fragment Processing and Rasterization 

A fragment in OpenGL is the bundle of state required to update 
a specific pixel in the fnmebuffer. Fragments are generated dur- 
ing msterization. The per-fragment operations are pixel ownership, 
scissoring, alpha testing, stencil testing, depth testing, blending, 
dithering, and logicop. The operations are performed in the order 
listed though what operations are enabled depends on OpenGL’s 
per-fragment state variables. 

Rasterization is the process of breaking a primitive up into f?ag- 
ments that are passedto the per-fragmentprocessingstage. OpenGL 
supports five types of primitives: points, lines, polygons, pixel rect- 
angles, and bitmaps. The first step in rasterization is determining if 
a fmmebuffer pixel is updated by the primitive. Depending on the 
primitive being msterized, the current raster position, face culling, 
point size, line width, line stipple, polygon stipple, and antialiasing 
state affect which pixels are updated. The next rasterization step de- 
termines the fragment depth and color of affected pixels. The alpha 
color component is altered based on the antialiasing state ofgeomet- 
ric primitives. The depth ofgeometric primitives can be altered de- 
pending on the polygon offset state. When enabled, texture mapping 
and fog mod@ the color of both geometric and pixel primitives. 

2.2.2 Texture Mapping and Mangement 

Texturing maps a portion of a specified image onto each primitive 
for which texturing is enabled. Texture coordinates determine what 
portion of the image is mapped to the primitive. OpenGL supports 
both ID and 2D textures in a wide variety of formats. Texture pa- 
mmeters and the texture environment determine the method of fil- 
tering texels and how texels are combined with fragments generated 
during msterization. 

Texture objects provide the capability to switch between multiple 
texture images without the overhead of respecifying the texture im- 
age each time. Rectangular regions of textures can be incrementally 
updnted using subtexture loads. When a texture image is specified, 
the constituent pixels are passedthrough the OpenGLpixel pipeline 
so the same opemtions discussedbelow that apply to drawing, copy- 
ing, or reading pixel rectangles also transform texture images when 
they are specified. 

2.2.3 Both Vertex and Pixel Processing 

OpenGL transforms application-supplied vertex coordinates to win- 
dow coordinates, clipping the primitives as necessary. Per-vertex 
lighting is performed if enabled. Texture coordinates are either ex- 
plicitly supplied by the application or generated based on the vertex 
coordinates. 

OpenGLdefinesaphelpalll to process pixels. The pixel path can 
be configured to perform component scaling, biasing, and remap- 
ping via table lookups. Pixels are transformed by the pixel path 
when pixels are dmwn to the framebuffer, read back from the frame- 
buffer, copied within the framebuffer, or downloaded into texture 
memory. Each pixel transfer case shares the identical pixel process- 
ing machinery. 

2.2.4 Other Capabilities 

Display lists provide a way to cache repeated command sequences 
for potentially faster execution. Evaluators provide a means to effi- 
ciently specify B6zier curves and surfaces. Feedback and selection 
redirect the results of vertex processing back to the application in- 
stend of on to msterization. 

2.3 Extensibility 

One key to an architecture’s adaptability is its extensibility. 
OpenGL can be incrementally enhanced through its proven API 
extension mechanisms. OpenGL’s rendering finctionality can 
be extended by adding extensions to OpenGL.‘s core rendering 
model. Extensions also can be made to OpenGL’s window system 
dependent interface to address issues outside OpenGL’s rendering 
model. 

Various OpenGL vendors have already implemented dozens of 
extensions, and the OpenGL 1.1 update was the result of the 
OpenGL Architectural Review Board’s efforts to fold success- 
ful, proven extensions back into the core OpenGL architecture. 
OpenGL 1 .I addedvertex arrays, polygon offset, RGBA logic oper- 
ations, texture objects, and i%rther texture finctionality enabled by 
texture objects. 

The following extensions are important for later discussion. 

2.3.1 Imaging Extensions 

A key set of OpenGL extensions’ are the imaging extensions [IO]: 
color table, convolution, color matrix, histogram, and new per- 
fragment blending modes. Figure 2 shows the extended pixel path. 

2.3.2 Hardware Accelerated Off-screen Rendering 

Hardware accelerated offscreen rendering is critical for a multitude 
of techniques that must reliably readback or reuse rendering results. 
A window system dependent extension for pixel buffers (commonly 
calledpbufirs) enables hardware accelerated offscreen rendering. 

3 OpenGL as Instantiated by 
InfiniteReality 

Onyx2 InfiniteReality implements the bulk of OpenGL’s dataflow 
within the InfiniteReality graphics subsystem. InfiniteReality is de- 
signed to be a “real time” graphics machine meaning that sustained 
30 hertz and higher frame rates are achievable even for demanding 
applications. InfiniteReality’s intended application domains are vi- 
sual simulation, film & video production, real-time image process- 
ing, volume rendering, and large-scale CAD. 

InfiniteReality is a hardware-intensive design consisting of 13 
distinct Application Specific Integrated Circuits (ASICs)? Infinite- 
Reality is a multiple-board graphics subsystem with the same board- 
level architecture as the RealityEngine [I], InfiniteReality’s prede- 
cessor. A single Transform Manager board connects to 1, 2, or 
4 Raster Manager boards and a single Display Generator board. 
Figure 3 shows an ASIC-level block diagram of InfiniteReality. 
Figure 4 shows how OpenGL’s conceptual state machine (origi- 
nally shown in Figure 1) roughly maps to InfiniteReality’s render- 
ing ASICs. Starting at the host interface and working towards the 
framebuffer and display back-end, the following discussion shows 
how the OpenGL architecture is instantiated by InfiniteReality. 

*Under consideration for inclusion in OpenGL 1.2. 
30ther sources of information about InfiniteReality are likely to refer to 

the boardsand ASICs that constituteI&niteReality by “workiignames”that 
grew out of historical SGI jargon and tradition. In a few cases, the work- 
ing names inadequately describe the ASIC or board’s true fimction in the 
context of OpenGL. For example, the Geometry Engine ASIC handles borh 
vertex and pixel data so we refer to it here as a Transform Engine lo bet- 
ter suit our purpose of describing how InfiniteReality manifests the OpenGL 
architecture. 

47 



Tmsfo(m~.Iya “,’ board 
L 

A sin 
‘1 

,e Ra-Aer Manager bad a 
1,2or4RMsp3rplpe) 

aspby (leneromr bond 
(opllon lor 8 channels) 

Figure 3: ASIC-level diagram showing the InfiniteReality graphics subsystem architecture. 

3.1 Host Interface 

The client-server structure of OpenGL makes it possible for essen- 
tially the entire OpenGL feature setto be implementedwithin the In- 
finiteRealitygraphicssubsystem. The host-basedOpenGLlibrary is 
largely used to setup efficient datatransfers to and from the graphics 
subsystem. For example, an immediate mode glVertex3 f call 
returns in 7 instructions. This consists of jumping through a redi- 
rection table, writing the Vertex3f token followed by the three 
floating point coordinates to the graphics FIFO address, and retum- 
ing. 

OpenGL commands and data enter InfiniteReality via a high- 
bandwidth proprietary IO bus where they are received by the Host 
Interface Processor (HIP) that decodes and dispatches OpenGL 
command streams. Commands can be sent either by programmed 
IO or via Direct Memory Access (DMA). 

The HIP’s Input Control and Mapping (ICU) logic arbitrates the 
OpenGL command stream from one of three sources: the host-filled 
graphics FIFO, the host-activated input DMA stream, or a local 
DMA stream used for calling locally cached display lists. The ICU 
performs basic OpenGL command stream error checking and di- 
rects commands for subsequent processing. Pixel and vertex com- 
mands and some mode changes are simply passed along for further 
processing. To process OpenGL command streams with data rates 
over 300 MBs/second, the ICU must be very fast. More complex 
OpenGL commands involving display lists, more complicated state 
management, DMA setup, or non-rendering tasks can be redirected 
to a microcoded 32-bit RISC core. Most of the RISC core’s mi- 
crocode is written in C. 

Display lists are cached in 15 of the 16 megabytes of external 
memory managed by the RISC core (one megabyte is used for state 
and microcode). The HIP’s local DMA facility allows cached dis- 
play lists to be passed through the ICU just as if the command se- 
quence was generated by the host. Most immediate mode OpenGL 
calls result in IO writes to the hardware’s graphics FIFO address. 
The graphics FIFO is mapped into the address space of direct ren- 
dering OpenGL applications [6]. OpenGL command streams can 
also be “pulled into” the HIP via input DMA. Large textures, pixel 
arrays, vertex arrays, and host-resident display lists can all be trans- 
ferred this way. Because DMA transfers involve fixing host physical 
memory mappings, DMA is initiated with operating system support 

The HIP is also responsible for returning OpenGL data back 

48 

Figure 4: How the conceptual OpenGL state machine roughly maps 
to InfiniteReality’s rendering ASICs. 

to the host. The results of glGet*, feedback, selection, nnd 
glReadPixels are all returned via DMA. The HIP is rcsponsi- 
ble for any data reassembly required before returning the dntn to the 
host. 

3.2 Vertex and Pixel Transform Subsystem 

The HIP sends the partially decoded OpenGL command stream to 
the Transform Engine Distributor (TED). The TED front end is 
responsible for converting OpenGL’s data format rich commnnd 
stream into a canonical format in prepamtion for handing the dnta to 
the Transform Engines (TEs) for processing. For example, double 
precision floating point or integer coordinates are forced to single 
precision floating point. Pixel data is also reformatted as necessary. 
Commands to change OpenGL state are mostly passed through un- 
altered. Given the high data bandwidths involved and the flexibility 
that OpenGL allows, the TED front end must be very fast, 

The TED backend distributes bundles of work to 2 or 4 TEs 
that perform the actual vertex and pixel transformations required, 
ManagingOpenGL’sglBegin/glEnd and per-vertex state is done 
through a microcoded state machine. The TED also must ensure 
that OpenGL transformation state is synchronized among the mul- 
tiple TEs to guarantee proper OpenGL commnnd serialization se- 



mnntics despite multiple active TEs. The TED performs a mapping 
of OpenGL command tokens to TE microcode addresses so that the 
TE can immediately begin command execution. Work is typically 
assigned to the least busy TE. 

The TE ASK is a custom microcoded floating point processor. 
Each TE has a peak performance of 540 megaflops achieved using 
three SIMD floating point cores. The TEs use custom support logic 
to accelerate graphics-specific operations such as clipping. A care- 
fully tuned memory system is essential to keep the floating point 
units continually busy. To minimize the amount of microcode re- 
quired given the variety of geometry and pixel transformations po- 
tentially enabled, microcode modules are “stitched” together based 
on tlrc cutrent OpenGL geometry or pixel transformation state. For 
example, the lighting microcode module would only be added to the 
TE’s geometry microcode sequence if lighting is currently enabled. 

The TEs implement the pixel path fimctionality including the ex- 
tended pixel path functionality described in Section 2.3.1. Special 
care is taken in the TED and TEs to manage pixel distribution when 
pixel convolution is enabled. Another pixel path challenge is mem- 
ory management for the various lookup tables, convolution kernels, 
histogram bins, and other pixel path state that must be maintained 
within each TE. Both pixel rectangles and texture downloads flow 
through the TEs and so the identical microcode transforms both 
types of pixel data identically as required by OpenGL. 

The complete Transform Manager subsystem can sustain geom- 
etry transformation rates of over 11 million polygons/second. 

3.3 Transformation to Rasterization Crossbar 

The tmnsfonned vertices and pixels from the TEs Sow out in pack- 
ets that must be reordered by the Back End FIFO (BEF). The BEF 
is a 4 megabyte FIFO intended to minimize stalling the TEs dur- 
ing framebuffer clears or the msterization of very large polygons or 
pixel rectangles. 

The BEF broadcasts the contents of its FIFO across the Trans- 
form/Rnsterization Crossbarconnectingthe BEF to 1,2, or4 Raster 
Manager boards. Two main types of requests are sent over the 
crossbar: texture (or loud) requests and rendering (or draw) re- 
quests, The crossbar also feeds back to the HIP to implement se- 
!cction/feedback, state retrieval, and context switching. 

Tire BEF actually maintains hvo distinct FIFOs: the draw FIFO 
for rendering and the load FIFO for texture download. The draw 
FIFO takes priority over the load FIFO, but the load FIFO drains 
whenever the dmw path is stalled. The draw path can stall because 
it lens gotten backed up with msterization work or because it is wait- 
ing on a texture to download. Waiting for a texture to fully down- 
load provides an interlock that ensures textures are always properly 
landed before use. The advantage of this scheme is that textures 
can be downloaded concurrently with rendering to increase overall 
throughput, 

3.4 Primitive Rasterization 

Geometric and image primitives, texture data, and mode changes 
nre a!! broadcast over the TmnsformRasterization Crossbar to the 
Raster Managerboards. The crossbarcan sustain a maximum band- 
widtlr of 400 MBs/second. The Pixel Generator (PG) and Texe! 
Gcnemtor (TG) ASICs on each Raster Manager listen for the data 
flowing from the BEF. Both the PG and TG rasterize image and ge- 
ometry primitives sent over the crossbar. The PG almost completely 
msterizes primitives. Depending upon the current OpenGL rasteri- 
zation state, the highly pipelined PG scan converts geometric prim- 
itives, pixel zooms images, scissors, interpolates color and depth 
behvcen vertices, calculates coverage alpha values for antialiasing, 
and applies the polygon stipple. The only rasterization steps not 

done in the PG are texture and fog application. The PG can sustain 
the rasterization of over 12 million polygons a second. 

3.5 Texturing 

InfiniteReality is balanced to renderjust as fast with its highest qual- 
ity (linear mipmap linear) texturing enabled as when rendering with 
texturing disabled. This requires a very fast and sophisticated tex- 
ture subsystem. 

Using data received over the Transform&sterization Crossbar 
and rasterization results passed to it from the PG, the TG needs to 
initiate texel fetches for textured primitives in parallel with the ms- 
terization work done by the PG. The TG needs to msterize only tex- 
tured primitives to the point that the TG can generate the necessary 
per-fragment texture coordinates interpolated across the primitive. 

Texture coordinate information is broadcast to 8 Texture Memory 
(TM) ASICs. Each Raster Manager board is configured with either 
16 or 64 megabytes of texture memory split evenly among the TMs. 
Texture accesses tend be highly redundant as nearby texels are often 
neededmultiple times in the course offiltering the texels for a given 
textured primitive. The TMs act as specializedmemory controllers 
that are optimiied for texe! access patterns. 

InfiniteReality includes numerous texture extensions introduced 
by RealityEngine including sharpen texture, detail texture, 3D tex- 
ture for volume rendering, and post-filtering texture lookup tables. 
InfiniteReality also includes new texture features such as clipmap- 
ping for rendering continuous terrain and various modes for better 
video texture mapping. 

3.6 Fragment Processing 

Texels from the TMs and texture coordinate information from the 
TG are combined in one of 4 Texture Fragment (TF) ASICs. The 
TFs also receive the actual fragments generated by the PG. The in- 
formation from the TMs and TG are used to perform OpenGL’s tex- 
ture filtering modes such as linear mipmap linear filtering. A post- 
filtering stage can optionally scale, bias, and perform a table look 
up on the filtered texels. These extra steps are OpenGL extensions 
that are useful for image processing and volume rendering effects. 
Fully filtered texels are then combined with the fragments from the 
PG based on the current OpenGL texture environment. If enabled, 
fog is applied. The last operation done by the TF is the per-fragment 
alpha test. 

Each TF is connected to 5 Image Memory Processor (IMP) 
ASICs. Each IMP ASIC contains4 instances of the IMP core. Each 
IMP core manages I megabyte of external memory containing the 
framebuffer. The IMPS manage 80 megabytes total per Raster Man- 
ager. Each IMP core manages a scattered distribution of pixels and 
receives fragments from its TF. The IMP core performs a!! OpenGL 
per-fragment operations except alpha testing which is done in the 
TF and scissoring which is done in the PG. 

The IMPS maintain multiple depth and color samples per pixel 
to realize order-independent antialiasing. The IMPS also perform 
OpenGL’s accumulation buffer [4] operations. 

AsingleRasterManagerboardcansustaintexturedpixelfillmtes 
of 200 megapixels per second. The combined textured fill rate with 
four Raster Managers is therefore 800 megapixels per second. 

3.7 Display Generator Subsystem 

The Display Generator board is responsible for generating analog 
video streams based on the current contents of the framebuffer main- 
tained by the IMPS in the Raster Manager. InfiniteReality supports 
2 or 8 analog video output channels. Each Video Output Channel 
(VOC) ASIC generates video requests sent over a serial interface to 
the IMPS. The IMPS respond with the requested framebuffer color 

-..-~-. - -. I --- -~ -_-- _--___--_ I_- .-. 

49 



Figure 5: Block diagram showing the 02 system-level architecture. 

information on the Video Bus. The core OpenGL architecture does 
not directly concern itself with video issues so firther details about 
the Display Generator are put off until Section 6. 

3.8 Reading and Copying Pixel Data 

The OpenGL pixel path dmws pixels and downloads textures, but 
must also transform pixels that are copied (glcopypixels) or 
read back to the host (glReadPixels). When a framebuffer read 
or copy is initiated, the IMPS send framebuffer pixels to the TFs that 
transfer on the data over the Readback Bus to the TED. The TED 
feeds the fiamebuffer pixel data through the TEs much as if it were 
pixel data originated from the host. 

Thefetchedpixel data is transformed by the TEs andthen is either 
rendered back into the framebuffer in the case of glcopypixels 
Gust like the glDrawPixels case) or is transferred back to the 
host in the case of glReadPixels. When reading pixels, the 
BEF directs the pixels across the TmnsformRasterization Crossbar 
where the HIP reassembles the pixel data before DMAing the pixels 
back to the host. 

OpenGL’s requirement that texture memory must be retrievable 
necessitates a pathway for texels to be returned to the host. The TMs 
can pass texture contents to the TF where data passes over the Read- 
backBusand eventually back to the host. Unlike glReadPixels, 
retrieved texture contents are not transformed by the pixel path. 

3.9 Off screen Rendering 

Excess framebuffer memory can be allocated to pbuffers for off- 
screen rendering as described in Section 2.3.2. The amount of 
renderable offscreen memory is limited and depends on the res- 
olution of the framebuffer. While pbuffers allow full speed off- 
screen rendering, becausepbuffers are carved from “excess”fiame- 
buffer space, pbuffers on InfiniteReality can suffer from thrashing 
or volatility when pbuffer resources come into contention with other 
pbuffers or the “deep”anci1lat-y buffers belonging to windows. Win- 
dow framebuffer state always takes priority over pbuffers. 

3.10 Context Switching 

OpenGL permits multiple concurrent contexts. InfiniteReality 
context switches as necessary to support multiple processes each 
using OpenGL. Context switches can be synchronous such as 
when a process changes to a different rendering context with 

50 

Figure 6: How the conceptual OpenGL state machine roughly maps 
to 02’s various ASICs. 

glXMakeCurrent or completely asynchronous due to the oper- 
ating system’s scheduling of multiple concurrently rendering pro- 
cesses [13]. Both cases are handled basically the same way from 
the hardware’s point of view. 

A special context switch token is genemted by the opemting 
system when a context switch is required. The token “pushes” 
HIP, TED, TE, and BEF state out over the Tmnsform/Rastcrization 
Crossbarwhere it is DMAed back to the host, Commands prcccding 
the context switch token simply execute to completion. No OpenGL 
context state is read back from the Raster Manager. Instend, the BEF 
“snoops”al! Raster Manager ASIC register writes and thcrcby shnd- 
ows the current Raster Manager state. After the context switch to- 
ken pushes out the current state, the opemting system initiates in- 
put DMA to load the next context’s state. The output DMA to snvc 
the previous context executes simultaneously with the input DMA 
to load the new context. The old context streams out while the new 
context streams in. Raster Manager register values thnt had been 
shadowed in the BEF are replayed to restore the complete Rnster 
Managerstate. Special care must be taken to context switch texture 
objects in the TMs’ texture memory and display lists mnintnincd in 
the HIP’s external memory. Since there is oflen enough memory to 
keep al! the current texture objects and display lists rcsidcnt at once, 
swapping of texture objects and display lists occurs only in ovcrcx- 
tended situations. 

4 OpenGL as Instantiated by 02 

02 delivers integrated 3D graphics, image processing, audio, com- 
pression and video processing capabilities in a cost-cffcctive, smnll 
form factor. Figure 5 shows a chip-level block diagram of the 02 
system architecture. Notice that the Memory & Rcndcring Engine 
(MRE) is implemented by a single ASIC. Gmphics is inscpnmblc 
from the system. 

Traditional PC and workstation designs treat gmphics as a dis- 
tinct resource with its own dedicated framebuffer and rendering 
hardware. 02 has no dedicated flamebuffer memory; any memory 
in the system can be scanned out by the 02’s Display Engine ASIC, 
Moreover, any memory in the system can be used ns texture mcm- 
ory or as a destination for rendering. 02 also contains a specialized 
Imaging & CompressionEngine (ICE) ASICwith acccssto the 02’s 
main memory through DMA transfers, The shared system bus hns a 
peak bandwidth of 2.1 GBs/second in order to satisfy the combined 
demands of the Display Engine, the Imaging & Compression En- 
gine, the MIPS CPU, and the IO Engine for memory bandwidth. 

The MIPS CPU, Imaging & Compression Engine, and Mcm- 



ory 6r Rendering Engine are all used in combination to implement 
OpenGL rendering. The simplified decomposition is that: the CPU 
does vertex processing, msterization setup, and state management; 
the ICE performs most pixel path transformations; and the MRE 
performs msterization, texture mapping, and pixel update. Figure 6 
shows lrow OpenGL’s conceptual state machine (originally shown 
in Figure 1) roughly maps to 02’s hardware. 

4.1 Host-based Vertex Processing 

Tire 02 CPU is either an R5000 or RlOOOO MIPS processor. The 
CPU performs a!! vertex processing including lighting, transforma- 
tion, face culling, and clipping. The CPU also calculates primitive 
plnne equation pammeters for the MRE’s Rendering Engine. The 
CPU sends commands to the MRE using direct register writes. The 
CPU also is responsible for OpenGL state management. This in- 
volves selecting the appropriate code pathway for OpenGL’s cur- 
rent mode settings. Unlike InfiniteReality where OpenGL API calls 
largely serve to transfer OpenGL commands directly to the hard- 
ware, 02’s OpcnGL library has a substantial amount of CPU-based 
code, While most of the 02 OpenGL library is written in C, the 
rendering paths for geometric primitives with common rendering 
modes enabled are completely written in highly tuned MIPS assem- 
bly code. 

The R5000 is a low-cost 64-bit dual-issue superscalarmicropro- 
cessorwell-optimized forsingle-precisionfloatingpointopemtions. 
Tire RIOOOO is a higher performance 64-bit 5-way superscalar mi- 
croprocessor featuring out-of-order instruction execution. Either 
processor is well-suited for OpenGL’s vertex transformations that 
nre lnrgcly single precision floating point short vector operations. 

4.2 Imaging Engine for Pixel Operations 

The ICE is a specialized processor for imaging, video processing, 
nnd compression tasks. The ICE has hvo programmable execution 
units relevant for implementing OpenGL’s pixel path. A pipelined 
RISC processor based on a subset of the MIPS R3000 microproces- 
sor serves as a scalar unit. A vector unit acts as a coprocessorto the 
scalar unit. The vector unit performs the same computation in par- 
allel on 8 or I6 element vectors in a single cycle where each element 
is eitlrer a !6-bit or S-bit data item respectively. The hvo execution 
units are tightly coupled and the vector unit executes instructions in 
pnmllel with the scalar unit. The ICE supplies itself with data us- 
ing a DMA unit that can send and receive rectangles of image data 
to nnd horn main memory. The processor has only a very limited 
nmount of internal memory. It has 6 kilobytes of internal data mem- 
ory nnd 4 kilobytes of internal instruction memory. 

Device dependent libmries such as OpenGL set up image pro- 
cessing tasks for the ICE. The opemting system schedules access 
to the ICE. SGI-supplied devicedependent libraries seeking to ex- 
ecute algorithms using the ICE must first setup an ICE execution 
template. The template contains ICE microcode, physical memory 
mappings for the ICE DMA unit, and initial data parameters. Once 
an ICE execution template is set up, the library requests the opemt- 
ing system to instantiate the template. This means that the opemting 
system DMAs the requested ICE microcode and initial data into the 
ICE internal memories, sets up the DMA mappings for the ICE, sets 
the ICE progmm counter, and starts the ICE executing (normally 
the ICE idles if it has nothing assigned to it). A typical ICE task 
is to convolve or otherwise transform a block of pixels. The actual 
pixel data to transform is read into the ICE via DMA, quickly trans- 
formed, then written back out again with DMA. The microcode as- 
sumes that its execution template has been properly initialized. This 
means that its data memory is appropriately set up and that the ICE 
DMA mapping is likewise appropriately set up so that pixel data 
will be DMAed from and to the right places. When the task com- 

51 

Memory Data Bus f lW133MHz 

Figure 7: Block diagram of 02’s Memory & Rendering Engine. 

pletes, the ICE notifies the CPU with an interrupt. The operating 
system then notifies the process initiating the ICE operation of the 
operation’s completion. The ICE cannot be preemptively context 
switched, Use ofthe ICE relies on ICE requests completing in some 
small amount of time. 

The 02 OpenGL library uses the ICE wheneverpossible to speed 
pixel path operations. AlIthe OpenGLimaging extensionsnamed in 
Section 2.3.1 are accelemtable through ICE microcode. Numerous 
pieces of ICE microcode are available to implement various config- 
urations of the OpenGL pixel path. The CPU must carefully decide 
if a particular pixel path configuration can be successfUlly acceler- 
ated by the ICE. This determination dependsnot simply on whether 
a given ICE microcode module exists for the current pixel path con- 
figuration, but also whether the pixel path has a small enough set of 
associated pixel path parameters that the current pixel path config- 
uration can be implemented within the limited data space available 
to the ICE. This means some extremely complex pixel path configu- 
rations might not be executable using the ICE. In practice however, 
the ICE accelerates most typical pixel path configumtions. The ICE 
also accelerates OpenGL’s accumulation buffer functionality. 

Even when the ICE is suitable for accelerated processing, the 
OpenGL library makes a dynamic check before attempting to use 
the ICE to make sure it is not already in use. If the ICE is found in 
use or if the pixel path configuration is too complex or otherwise not 
supported by the ICE, OpenGL falls back to a genera! CPU-based 
pixel path implementation. 

4.3 Integrated Rendering and Texturing 

The MRE ASIC serves as both 02’s memory controller and 
OpenGL rendering processor. Because the rendering unit is so 
tightly coupled with the memory subsystem, the complete mem- 
ory read/write requirements for OpenGL texture fetching, ancil- 
lary buffer operations, clip ID based window ownership testing, 
and color buffer update are all serviced via main memory accesses; 
02 has no graphics-specific memories. The rendering unit imple- 
ments almost a!! of OpenGL’s texture, per-fragment, and msteriza- 
tion functionality. 

The !vlRE plays the central role of arbitrating memory accesses 
by the CPU, the ICE, the Display Engine, the IO Engine, and the 
MRE’s internal Rendering Engine. Figure 7 shows the internal 
structure of the MRE. The MRE’s Rendering Engine contains three 



, 

RenderlnQ comMndS 

‘mm\theCPU 

.-.t Em2 Address for Cabr 

~esponssbra:p ID 

D&naDo” C&r 

iTi%“” 
Memory 

Figure 8: Block diagram of the rasterization pipeline and memory 
request/response logic for the MRE’s rendering engine. 

high-level functional blocks: the Pixel Pipeline that performs all of 
OpenGL’s msterization, texturing, and per-fragment operations; the 
Memory Request Unit that queues color, depth/stencil, clip ID, and 
texture memory fetches; and the Memory Transfer Engine that per- 
forms fast clears and copies. The Rendering Engine’s performance 
relies heavily on hiding memory latency by prefetching framebuffer 
and texel data in advance of the various pipeline stages that require 
the data. 

Figure 8 shows the dataflow within the Rendering Engine’s Pixel 
Engine block. Commands to rasterize OpenGL primitives arrive 
from the host interface. Stepping commands from the Rasterizer 
generate fragment information fed into four parallel pipelines: the 
Color Pipeline, theTexture Pipeline, the StenciVDepthPipeline, and 
the Address Pipeline. The Color Pipeline calculates the color of 
fragments. The Texture Pipeline fetches texels from main memory 
and filters them into a single texel that is passed on to the Color 
Pipeline if texturing is enabled. The Stencil/Depth Pipeline discards 
fragments based on depth and/or stencil testing if enabled. The Ad- 
dress Pipeline clips fragments as necessary and determines the ad- 
dress for writing the final fragment color into the fmmebuffer. 

The various pipeline stages have the option to “fail” the fragment 
at various points. For example, if a fragment fails the depth or sten- 
cil tests, the Address and Color pipelines will not update the actual 
pixel in memory. Stippling, alpha testing, window clipping, and 
scissoring can also fail a fragment. 

For reasonable performance, the Rendering Engine is heav- 
ily pipelined so that multiple fragments are processed in differ- 
ent pipeline stages at the same time to increase throughput. The 
Pixel Engine’s most critical task in pipelining OpenGL’s rasteriza- 
tion, texturing, and per-fragment processing sequences is hiding the 
memory latency introduced by operations requiring main memory 
accesses. These operations are texturing, stencil/depth testing and 
update, window clipping, retrieving the destination color for blend- 
ing, and final pixel update. 

The straightforward way to hide memory access latency in a 
pipeline is to add prefetch delay stages, but a more effective ap- 
proach is to reorder the pipeline stages to move work not depen- 
dent on a particular memory access into stages that would other- 
wise serve only as delay stages. By carefilly decomposing the se- 
quence of operations defined by OpenGL, 02’s Pixel Engine fills 
idle pipeline stages with work that is logically “after” an OpenGL 
operation requiring a completed memory read when the work does 
not depend on the read result. 

For example, the OpenGL pipeline dictates that fog must be ap- 

52 

plied after texture. Texture application is done in the Color Pipclinc 
but cannot proceed until the Texture Pipeline gencmtes the fmg- 
merit’s filtered texel. Producing a filtered texel involves fetching 
texels from main memory and introduces a delay due to the latency 
of reading data from main memory. Applying fog requires no main 
memory fetches but does involve genemting the fog blend factor. 
During the memory access delay required by the Texture Pipclinc to 
generate a filtered texel, the Color Pipeline calculates the fog blend 
factor. This means that the pammeters to apply fog arc all avail- 
able immediately after the texture application pipeline stage com- 
pletes. There are several other places in OpenGL’s ordering of ms- 
terization, texturing, and per-fragment opemtions whcrc computa- 
tions performed logically “after” an OpenGL operation requiring 
a memory read can be partially computed during pipeline dclnys 
needed to wait for memory reads to complete. 02’s Pixel Engine 
takes advantage of these opportunities to control ovcmll fragment 
latency even while using pipelining to increase throughput. 

02 can render at over 60 megapixels per second and can render 
using linear mipmap linear texturing at over 30 mcgapixcls per SCC- 
ond. A 180 Mhz R5000 can render over 450,000 smooth shaded, 
depth tested, non-textured 50-pixel triangles per second. 

4.4 Flexible Framebuffer Management 

As mentioned earlier, 02 doesnot have a dedicated fmmcbuffer; the 
Rendering Engine is fully capable of rendering into WI-Y nrcn of the 
02’s main memory. In addition, any area of memory can be used to 
store texture, depth/stencil, overlay, and window clipping informn- 
tion. All Rendering Engine memory accesses use a special Rendcr- 
ing TmnslationLookaside B@er (RTLB) in the Rendering Engine’s 
Memory Request Unit. RTLB entries must point to actual physical 
memory; there is no allowance for CPU-like page faults during ren- 
dering. The RTLB is for rendering only and is completely distinct 
from the TLB used by the CPU; RTLB entries have no relationship 
to user process address spaces. 

The extra cost of RTLB lookups when reading or writing memory 
during rendering motivated the decision to locate the Rendering En- 
gine within what would otherwise simply be the memory controller 
in a more traditional system architecture. Marginally higher mcm- 
ory latencies to framebuffer and texture memory due to using the 
RTLB just@ the Rendering Engine’s clever pipelining of OpcnGL 
rendering to hide as much of the memory latency as possible. 

Each RTLB entry points to a 64 kilobyte tile of physically con- 
tiguous memory. Tiles may be scattered throughout physical mcm- 
ory. A standard color buffer tile can represent a 128x128 rectangle 
of 32-bit RGBA pixels. Other types of tiles contain overlay, sten- 
cil/depth, texture, or window clipping state. 

In normal system operation, the opcmting system allocates a set 
oftiles for use as the displayable fnmebuffer and configures the Dis- 
play Engine to continuously convert the framebuffcr region into nn 
analog video stream. The Display Engine fetches fmmcbuffcr color 
data directly from main memory. Since video scan-out is a contin- 
uous real-time demand, the MRE assigns the Display Engine the 
highest memory access priority. The bandwidth rcquircd for video 
scan-out uses up about one half of the available 2.1 GBs/sccond of 
total system memory bandwidth. 

Tiling helps reduce the amount of system memory that must be 
dedicated to graphics. For example, 02 supports 32-bit RGBA dou- 
ble buffered windows, but the tiles to maintain the second 32-bit 
color buffer are only allocated where 32-bit RGBA double buffcrcd 
windows are renderable. Likewise, the framebuffer tilts for depth 
and stencil buffers are only allocated where windows with depth and 
stencil buffers are renderable. System memory not used for depth, 
stencil, or 32-bit back buffers can be used by the system as gencrnl 
purpose memory. Figure 9 shows an example of how 02’s tiling 
scheme for allocating framebuffer memory can use less total mcm- 



Figure 9: Example demonstrating how 02’s fi-amebuffer tiling 
scheme can reduce the memory requirements for gmphicscompared 
to a dedicated fnmebuffer scheme. 

ory than a dedicated framebuffer capable of comparable resolution. 
02’s ability to render into arbitrary system memory means that 

the pbuffer capability described in Section 2.3.2 is straightfonvard 
to support with 02. When an OpenGL application switches to a 
pbuffer, the pbuffer’s physical tile addresses are loaded into the 
RTLB. 

The X server and opemting system coordinate with the OpenGL 
libmry to setup the Rendering Engine, ICE, and Display Engine ap- 
propriately. User applications have no means to manipulate directly 
02’s rendering, imaging, or display hardware. OpenGL, X window 
system requests, and SGI-supplied device-dependent libraries for 
digital media are the only mechanismsavailable for controlling 02’s 
graphics and display hardware. 

5 Contrasting the Implementations 

InfiniteReality and 02 are quite distinct implementations of the 
same nrchitecture; contrasting the two implementations of OpenGL 
offers a number of insights into the adaptability of OpenGL as an 
nrchitecture. 

5.1 Hardware Specialization and Replication 

Comparing Figures 4 and 6 shows the degree to which InfiniteReal- 
ity and 02 distribute OpenGL’s functionality across hardware. 

InfinitcRealityclearlydedicatesconsidemblehard~vareresources 
to the implementation of OpenGL’s functionality. InfiniteReality’s 
approach to implementing OpenGL almost gets to the point of de- 
voting a specialized ASK to each functional block in the OpenGL 
state machine. While 02 does utilize specialized hardware to im- 
plement OpenGL, 02’s approach is considerably less hardware in- 
tensive. 02 does not multiply instance any of its ASK-level com- 
ponents, but InfiniteReality relies heavily on replicating ASICs to 
boost pamllelism, particularly in the texturing, mstetization, and 
per-fragment subsystems. This difference in approach reflects very 
different cost and performance goals. Replicating ASKS to the ex- 
tent done in InfiniteReality is also probably only viable for systems 
driven more by performance than cost. 

What InfiniteReality demonstrates is that the OpenGL architec- 
ture can scale its performance considerably through hardware spe- 
cialization and replication. We observe that there are certain areas 
in InfiniteReality’s design where ASK replication is not exploited. 
The HIP, TED, TG, PG, and Tmnsfofisterization Crossbar are 
all areas of the design where OpenGL’s dataflow is effectively se- 
rialized. These serialized points in InfiniteReality’s design are ad- 
dressed by heavily pipelining the ASICs and by building a very 

high-bandwidth, but expensive interconnect in the caseofthe Tmns- 
form/Rasterization Crossbar. These serializations are likely to re- 
sult in future scalability issues when designing even higher perfor- 
mance, hardware-intensive OpenGL implementations. 

5.2 Delivering the Necessary Memory Bandwidth 

Both 02 and InfiniteReality demonstrate that OpenGL implemen- 
tations must find ways to sustain the memory bandwidths necessary 
for fast graphics. Again, InfiniteReality’s approach is driven by per- 
formance more than cost. InfiniteReality uses dedicated memories 
extensively to deliver the memory bandwidth required by Infinite- 
Reality’s performance goals. For example, the TMs and IMPS can 
be thought of as very specialized memory controllers optimized for 
the particular access patterns of texture memory and per-tiagment 
operations respectively. The chief disadvantage of adding special- 
ized, dedicated memories is that the total memory in the system is 
not generally available. For example, InfiniteReality precludes ex- 
cess texture memory bandwidth or capacity in the TMs from being 
made available to the IMPS as framebuffer memory bandwidth or 
capacity. The HIP’s external RAM, per-TE RAMS, and the BEF ex- 
ternal FIFO RAM are other examples of dedicated memories in In- 
finiteReality that cannot be made genemlly available. Moreover, all 
memory in the InfiniteReality graphics subsystem is totally unavail- 
able for use by the system except via graphics opemtions. 

02 has no dedicated memory. Not only is texture and frame- 
buffer memory interchangeable, but unused texture or framebuffer 
memory can be used by the CPU as general system memory. In- 
deed, there is not any such thing as “texture memory” or “frame- 
buffer memory” perse in 02. This flexibility comes at a cost; 02 has 
nowhere near the memory bandwidth available in InfiniteReality. It 
also means that the MRE’s Rendering Engine has to be particularly 
clever about hiding memory latencies that result from the RTLB’s 
ability to access graphics data anywhere in main memory. There 
are definitely cost and expandability advantages to 02’s approach. 
Not dedicating graphics memory lets the 02 workstation generally 
run with less total main memory. This reduces ovemll system costs 
because memory costs are an important factor in total system cost. 
Also, if graphics intensive use of an 02 demands more memory and 
is forcing the system’s general memory to page to disk, the user has 
the option to expand the 02’smemoty. In addition to the RTLB, the 
other key feature that makes 02’s unified memory approach viable 
is having 2.1 GBs/second of system bus bandwidth to sustain video 
scan-out u&the other system memory bandwidth demands. 

Another approach to improving the memory bandwidth for 
OpenGL is to replicate texture memory. Replicating texture mem- 
ory is attractive because fast texturing demands high texture mem- 
ory bandwidths. InfiniteReality does not replicate texture memory 
within a Raster Manager board, but texture memory is replicated 
among multiple Raster Managers. To avoid replication within a 
Raster Manager, the 8 TMs must be fully connected with the 4 TFs 
so that any TF can fetch texels from any TM. The cost of this in- 
terconnect had to be weighed against the cost of replicating texture 
memory within the Raster Manager while still being able to achieve 
InfiniteReality’s texture fill rate design goal. 

To reduce costs, 02 does not replicate texture memory at all. 
This draws out two points about the OpenGL architecture. First, 

fast implementations of the OpenGL architecture demand large 
amounts of memory bandwidth. Specialized, dedicated memories 
can meet this demand. In some cases,memory replication may even 
be needed. But second, 02 demonstrates that OpenGL can be im- 
plemented in such a way that memory can be considered a unified re- 
source. The OpenGL architecture does not force on the implemen- 
tor a particular approach towards managing graphics memory. 

53 



/ 

/ 
, 

/ 

/ 
I 
! 
, 

1 
/ 

1 

I 
I 

I 

I 

\ 

! 

, 

L_ 

5.3 Pipelining for Throughput 

An implementation technique extensively used by both InfiniteRe- 
ality and 02 is pipelining. Every chip in both InfiniteReality and 02 
benefit to some extent from pipelining. The very explicit description 
of the OpenGL dataflow and its static topology make it straightfor- 
ward to apply hardware pipelining techniques when implementing 
OpenGL. If the OpenGL architecture allowed its operations to be re- 
ordered, the architecture would likely be less amenable to hardware 
pipelining. 

5.4 OpenGL as a Direct Hardware Interface 

InfiniteReality demonstrates that OpenGL can serve as an actual 
“hardware interface” instead of being simply a Hardware Abstrac- 
tion Layer (HAL). InfiniteReality’s OpenGL library largely serves 
to transfer OpenGL commands and their parameters to the In- 
finiteReality graphics subsystem. This allows for extremely high- 
performance OpenGL implementations becausethe entire burden of 
executing OpenGL commands can be off-loaded onto specialized 
hardware. 

The ability to use OpenGL as IIze hardware interface is possible 
because of OpenGL’s client-server model, its immediate mode inter- 
face, and its lack of features that are not readily amenable to hard- 
ware acceleration. 

02 implements OpenGL as a HAL, not as a true hardware in- 
terface. 02 performs a substantial amount of OpenGL’s functional- 
ity on its CPU. Treating OpenGL as a true hardware interface is in- 
volved and expensive becauseit requires the hardware to implement 
the entire OpenGL state machine because OpenGL implementations 
must be complete. Being able to implement OpenGL as either a 
HAL or as the true hardware interface makes OpenGL adaptable to 
a wide variety of hardware/software divisions when implementing 
OpenGL up to and including the hardware almost fblly manifesting 
OpenGL’s client-server interface as undertaken by InfiniteReality. 
In the other extreme, OpenGL is also implementable entirely in soft- 
ware [9]. 

5.5 Distinct or Reused Data Paths 

Substantial cost savings can be realized by reusing hardware data 
paths; likewise, implementing distinct data paths may offer worth- 
while performance gains due to hardware specialization. OpenGL 
has a number of abstract data paths, and OpenGL implementors 
can decide whether combinations of OpenGL’s various data paths 
should be mapped to a single hardware data path or if the data paths 
are better implemented as distinct specialized hardware data paths. 

Notice in Figure 1 how the geometry and pixel data paths are 
largely distinct except that they share the same set of per-fragment 
operations. 02 uses the CPU to transform geometric primitives, but 
uses the ICE to transform pixel data. Using distinct hardware makes 
sense because 02’s CPU is good at the floating point calculations re- 
quired for transforming geometry and the ICE’s integer vector pro- 
cessing capabilities are well suited to implementing OpenGL’s ex- 
tended pixel path. The 02’s distinct hardware data paths for geom- 
etry and pixel transformation are in contrast to InfiniteReality’s ap- 
proach of using the same TEs for both geometry and pixel transfor- 
mation. 

6 Wider System Influences of OpenGL 

The available technology and graphics price-performance goals 
cited in the previous section certainly drive the focus of an OpenGL 
implementation, but the OpenGL architecture can also contribute to 
important design decisions based on wider system considerations. 
We believe this to be a very important contribution of the OpenGL 

54 

architecture. In our view, OpenGL provides an abstract model for 
graphics hardware design, but also supplies an architcctuml fmmc- 
work that can be adapted to serve system-wide design goals. Con- 
sider the various ways that the InfiniteReality and 02 OpcnGL im- 
plementations influence and cleanly co-exist with other system dc- 
sign considerations. 

6.1 Memory Organization 

Sections 4.4 and 5.2 have already discussed 02’s lack of dcdicntcd 
framebuffer and texture memory. The ability of the MRE’s Rcndcr- 
ing Engine to render directly into system memory is a mdical dcpar- 
ture from traditional workstation and PC architectures. 

The Stellar GSIOOO [2] and GS2000 had a similar capability to 
render into system virtual memory with a specialized Rcndcring 
Processor, but the 02 approach is substantially different and more 
sophisticated. The Stellar implementation did not have a Display 
Engine like what 02 has so an image rendered into mnin memory 
still had to be block copied into a dedicated framcbuffcr to be dis- 
played. The Stellar machine lacked the technology to incorpomtc 
a bus sufficiently fast to scan-out video from main system memory. 
Also, the Stellar approach uses the same TLB as the main processor 
instead of a special RTLB as used by 02’s Rendering Engine. 

The VIEWS [3] design has a distinct TLB for gmphics and di- 
rectly scans out its tiled framebuffer as video, but the framcbuffcr 
memory is dedicated graphics memory unlike 02. Also, VIEWS 
manages only the main color buffer in a tiled fashion. This is in con- 
trast to 02 that manages the main color buffer, overlays, textures, 
depth/stencil buffers, and pixel buffers all via tiles of unified system 
memory. The VIEWS design tries to keep each window on unique 
tiles both to retain the window’s contents to avoid the cxpcnsc of 
window damage repair and to avoid the expense of arbitmry win- 
dow clipping. 02 does not attempt to retain window contents and 
has multiple clip rectangles and clip ID testing for clipping to ar- 
bitrary windows. Retaining complete windows was considered for 
02, but dropped because of the unbounded memory rcquiremcnts, 
the relative speed of window repair on a fast machine such as 02, 
the ease of arbitrary window clipping with inexpensive hardware, 
and the increased software complexity. 

While the ability to render into main memory is not complctcly 
novel nor is it something specifically enabled by OpcnGL, the abil- 
ity to easily adapt the OpenGL architecture to this mdically diffcr- 
ent framebuffer arrangement is a testament to the adaptability of the 
OpenGL architecture. 

6.2 Scalable Graphics Multiprocessing 

Onyd’s system architecture is that of a Scalable Shared-memory 
MultiProcessor (S2MP). This means RIO000 processor nodes arc 
connected to each other by a scalable network, not via a single 
fixed-bandwidth shared bus. Combining multiple RIO000 CPUs 
and multiple InfiniteReality graphics subsystems within a single 
system would easily consume all of the available bandwidth of a 
system designed around a single shared bus. However, Onyx2’s 
scalable system architecture supports a “RealityMonstcr” configu- 
ration where 16 CPUs can drive 8 InfiniteReality pipes in n single 
system. In theory, the architecture could scale even further. 

OpenGL’s architecture presents no barriers to multiple indc- 
pendent processors simultaneously making OpenGL calls to dis- 
tinct OpenGL graphics subsystems. By combining rcndcring re- 
sults from different InfiniteReality pipes, multiprocessor multi-pipe 
OpenGL applications can achieve rendering mtes that surpass the 
limits of a single InfiniteReality subsystem. Effectively combining 
rendering results is straightforward for tasks whcrc the rcndcring 
work is easily divided in screen space, but such easy divisions arc 
not always the case. While the complexity depends on the nature of 



the rendering task, balancing the work done in distinct pipes and ef- 
fectively cornpositing the results for display generally requires care- 
ful programming. 

6.3 Video Display Capabilities 

InfiniteReality has a very sophisticated video display subsystem. It 
allows for multiple video channels to each show a potentially diffcr- 
cnt subrcctangle of the tiamebuffcr. Each video channel also can be 
separately rcsized on a per-frame basis. This can be used to dynam- 
ically adjust the fill rate requirements to maintain real-time fi-ame 
mtcs. Because of the low latency required to update the video resiz- 
ing hardware, dynamic video rcsizing is made available through a 
window system dependent OpenGL extension. 

Other video related issues such as the synchronization of buffer 
swaps arc likewise handled through window system dependent 
OpenGL extensions. Window system dependent OpenGL exten- 
sions arc providing effective ways to expose real-time video dis- 
plny capabilities. Another video capability clarified by OpenGL is 
stereo. Basic left/right buffer rendering support for stcrcoscopicdis- 
plays is built into the core of OpenGL. Stereo rendering and display 
is built into both InfiniteReality and 02. 

6.4 Video Input and Video Texturing 

02 supports a special data type called a Digital Media buffer (com- 
monly called a DMbuffer) that permits sharing and exchangingtime 
sensitive visual data between compression devices and algorithms, 
video input/output, gmphics rendering and texturing, and the CPU. 

Q2’s unique digital media architecture allows a DMbuffer to 
be associated with a pbuffer. Among the possible applications, 
a pbuffcr associated with a DMbuffcr can be used to texture 
with video images. Through the combination of DMbuffem and 
OpenGL, 02 can accomplish low-overhead video texture mapping 
from 02’s standard digital video camera. This is an example of 
how the 3D rendering and imaging functionality available through 
OpenGL can be combined with digital media capabilities such as 
live video. 

6.5 Compression 

The 02 Imaging & Compression Engine that is used to implement 
the OpenGL imaging pipeline is also designed to quickly perform 
common compression algorithms and a variety of color space con- 
versions. With the inclusion of a bitstream entropy decoder, 02’s 
ICE also enables JPEG and MPEG compressionand decompression 
since the vector processor and scalar core can be reprogrammed to 
calculate the discrete cosine transformation required for JPEG and 
MPEG compression. 

This is an excellent example of how computational elements for 
implementing OpenGL functionality can be reused for purposes not 
specifically pertaining to OpenGL. 

7 Conclusions 

OpenGL is a visualization architecture. By contrasting how the 
OpenGL architecture is manifested in the Onyx2 InfiniteReality and 
02 computers, we observe that OpenGL is adaptable to very differ- 
ent cost, performance, and capability goals. Moreover, we can see 
in areas such as memory architecture, video processing, and com- 
prcssion how OpenGL can play an important role in clarifying the 
way in which these capabilities fit into the system as a whole. 

WC believe that the adaptability of the OpenGL architecture rep- 
resents an important development in graphics hardware architecture 

because different OpenGL implementations can benefit from com- 
patibility but still have substantial opportunities to adapt to specific 
system-wide requirements. 

References 

[I] Kurt Akelcy, “RealityEngine Graphics,” SIGGRAPH 93 Pro- 
ceedings, August 1993. 

[2] Brian Apgard, Brct Bersack, Abraham Mammen, “A Dis- 
play System for the Stellar Graphics Supercomputer Model 
GSIOOO,” SIGGRAPH88 Proceedings, August 1988. 

[3] Anthony Barkans, “Virtual Memory System Organization 
for Bit-Mapped Graphics Displays,” Advances in Cornpurer 
Graphics HardwareZV, Springer-Verlag, 1989. 

[4] Paul Haeberli, Kurt Akeley, “The Accumulation Buffer: 
Hardware Support for High-Quality Rendering,“SIGGRAPH 
90 Proceedings, August 1990. 

[S] Phil Karhon, Paula Womack, OpenGL Graphics with the X 
Wkdow System (the GLX specification), Version 1.2, 1996. 

[6] Mark Kilgard, David Blythe, Deanna Hohn, “System Support 
for OpenGL Direct Rendering,” Graphics Znrerface 95, 1995. 

[7] RcnateKempf, Chris Frazier, OpenGL Referenceh4unrral, 2nd 
edition, Addison-Wesley, 1992. 

[S] Ansehno Lastra, Steven Molnar, Marc Olano, Yulan Wang, 
“Real-Tiie Programmable Shading,” ACM 1994 Symposium 
on Interacfive 30 Graphics, April 1995. 

[9] Chandmsekhar Namyanawami, et.al., “Software OpenGL: 
Architecture and Implementation,” IBM RISC Sysreml6000 
Technology: Vol. II, 1993. 

[lo] Randi Rest, “Using OpenGL for Imaging,” SPIE Medical 
Imaging ‘96 Image Display Conference, February 1996. 

[I I] Mark Segal, Kurt Akelcy, The OpenGLT” Graphics System: 
A Specification, Ver. 1.1, Silicon Graphics, April 30, 1993. 

[12] Silicon Graphics, Zmugetiion Library Progrummerk Guide, 
Document number 007-1387-040,1996. 

[13] Doug Voorhies, David Kirk, Olin Lathrop, “Virtual Graphics,” 
SIGGRAPH 88 Proceedings, August 1988. 

55 


