
Architectural Implications of
Hardware-Accelerated Bucket Rendering on the PC

Michael Cox
MRJ/NASA Ames Research Center

Microcomputer Research Labs, Intel Corporation

Abstract
Wrcket rendering is a technique whereby a scene is sorted into
screen-space tiles and each tile is rendered independently in
turn, We expect hardware-accelerated bucket rendering to
become available on the PC, and in this paper we explore the
effect of such accelerators on main memory bandwidth, bus
bandwidth to the accelerator, and on increased triangle set-up
requirements. The most important impact is due to the fact that
in general primitives overlap multiple buckets, which is a direct
cnuse of overhead. In this paper we evaluate bucket rendering
that uses the most common algorithm for bucket sorting, one
based on screen-aligned primitive bounding boxes. We extend
previous techniques for analytically evaluating bounding box
overlap of buckets, and together with experimental results use
these to evaluate accelerators that may support 32x32 pixel tiles,
and those that may support 128x128 pixel tiles. We expect the
former to be possible with dense SRAM, the latter to be possible
with DRAM embedded in a logic process (embedded DRAM).
Our results suggest that embedded DRAM implementations can
support bucket rendering with bounding box bucket sorting, but
that SRAM implementations will likely be at risk with respect to
overall system performance when bounding box bucket sorting
is employed. These results suggest the requirement for more
precise but still low-overhead bucket sorting algorithms when
bucket rendering hardware is constrained to 32 x 32 tiles.

CR Cntcgorics and Subject Descriptors: 13.1 [Computer Graphics]:
Nardwnre Architecture-raster display devices; 1.33 [Computer
Graphics]: Pictur&nrnge Generation -display algorithms; L3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism -
visible surfnce algorithms.

Additional Key Words and Phrases: bucket rendering, chunk
rendering, tile rendering, overlap.

1 Introduction
Many of the features that users want require significant memory
bandwidth and/or memory capacity. At the high-end of the
market for example [11, oversampling for geometry anti-aliasing
is typically implemented in “brute-force” fashion with large
replicated interleaved memories, On the other hand, the PC
market constrains the growth of both the memory bandwidth and
memory capacity available with graphics acceleration hardware.
Package costs constrain the pin bandwidth to external memory,
cost constrains external memory capacity, and die area
constrains the capacity of on-chip memory.

I’cniiission lo nlnka digilnlllwd copies ofnll or pnrt oftlk mnterisl for
pcrso~~nl or clnsvoont we is gmnled wilhollt fez provided that the copies
nrl: not nlnds or distributed for prolit or comnwcinl adwnlnge, the copy-
righl notice. lhe title of~llr publication nad its date appear, and notice is
giwm Ilull copyrigld ic by permission of Ilie ACM, Inc. To copy olkrwisc,
IO wpublkli, IO post 011 ser~c‘rs or to rcdislribute IO lists, requires specilic
pcniiissioii niid~or fee
ID9 7 SI(iCiR.4 PWEuro~rnphics Worksl~op
Copyriglil 1997 AChf 0-S9791-9(,1-0/97/S..S3.50

Narendra Bhandari
Microcomputer Research Labs, Intel Corporation

Bucker rendering is an approach that can be employed when
there is insufficient memory to hold the intermediate results of
rendering. With this approach, the screen is partitioned into
tiles, and the primitives of the scene are sorted into buckets that
correspond to the screen tiles. Then, in turn, each bucket is
rendered into a tile, and the tiles are collected to form a final
image.

Bucket rendering has been around at least since Pixar’s first
implementation of RenderMan [12], and has been implemented
in hardware by PixelPlanes 5 [5], PixelFlow [7] and by Apple in
a shipping product [S]. It has more recently resurfaced as a
central technique in Microsoft’s Talisman architecture (where a
“bucket” is referred to as a “chunk”) [111.

The advantage of bucket rendering is that it enables algorithms
to store only a tile of intermediate results when the algorithms
would otherwise require a full screen of intermediate results. In
particular, bucket rendering can enable such features as full-
screen oversampling or A-buffering, with significantly less
memory, or z-buffering without the requirement to store an
external full z-buffer. Recent and anticipated advances in
fabrication technology also make bucket rendering of interest
now. Fairly dense on-chip SRAM has become commercially
viable, and the major fabrication houses are actively pursuing
processes to embed DRAM in a logic process (embedded
DRAM). These advances potentially enable on-chip tiles for
greater memory bandwidth, and potentially for decreased
external memory capacity requirements.

We expect accelerators that employ/support bucket rendering
will be designed for the PC platform. The features that become
possible with fast on-chip memory and the potential reduction in
external memory costs are compelling. Since the PC market is
horizontal rather than vertical we should expect that bucket
rendering accelerators will be available from more than one
Independent Hardware Vendor (HIV), and that these vendors
may make different hardware choices. Furthermore, software
must be written (or modified) to use such accelerators and we
should expect multiple Independent Software Vendors (ISVS) to
make different software choices as well.

A critical choice that the HIV must make is the bucket size. An
important decision that must be made by the ISV is the bucket
sorting algorithm Together, these have potentially significant
impact on the PC architecture. In this paper we examine two
bucket sizes in particular that the H-IV may implement, one
corresponding to an implementation using dense SRAM, the
other to an implementation using embedded DRAM. We also
examine the interaction of bucket size with the most common
bucket sorting algorithm, bounding box bucket sorting.

This paper is organized as follows. First, we present an
overview of the PC architecture that we assume. Next, we

25

A average
At?UX
r average
EL2

IK
N tris.
Resolution

e
I4 I5 20 22 2.5 39 41 42 ,
192.2 121.5 3162.0 2989.0 1125.6 1590.9 139.2 52.7
370.5 710.7 52788.0 74198.8 72256.9 20144.8 12909.2 35587.5

2.3 4.2 10.0 28.4 10.9 34.8 10.9 2.4
34.0 44.5 630.5 5212.1 525.0 857.2 154.9 33.0
0.00 0.00 0.48 0.35 0.17 0.33 0.03 0.00
844 645 1760 671 2683 346 5209 6085

440x402 440x402 632x484 632x484 632x484 632x434 632x434 632x434

Table 1. Scene statistics. A = bounding box area. r = aspect ratio. Frac > IK = fraction of bounding boxes larger
than 1K in area. N = number of triangles in the scene. Resolution - - resolution at which the scene was traced.

discuss bucket sorting and the provenance of the most common
algorithm. Following this, we discuss the issue of primitive
overlap, and our experimental methodology in evaluating it.
Then we extend previous analytical results to calculate overlap,
and finally use these and gathered statistics to evaluate the effect
of 32 x 32 and 128 x 128 tiles on the PC architecture when the
software algorithm employs bounding box bucket sorting.

2 Architecture
We assume the PC architecture shown in Figure 1. In this
architecture, the CPU (or host) communicates with both main
memory and the Graphics Accelerator (GA) via Core Logic
(CL). The path from the CL to the GA is via the Accelerated
Graphics Port (AGP) which provides up to 512 Mbytes/set of
bandwidth dedicated to graphics. Typically associated with the
GA is external memory employed for frame buffer, z-buffer, and
(depending on the accelerator architecture) texture memory.

We assume that the buckets into which primitives are sorted are
stored in main memory, and that the processor maintains
buckets. Putting the buckets in the external graphics memory
would drive that memory to significantly larger size, and would
meet resistance from many of the potential customers of a GA.
In any event, placing the buckets in external graphics memory
would not provide graceful failure for large scenes.

0 CPU

Processor bus
I

Figure 1. PC Architecture.

values (and perhaps Z), and that when the GA is done rendering,
it filters these intermediate results and writes final pixel values
to the frame buffer (which is probably but need not be external
graphics memory). After doing so, the GA is ready to render the
next bucket.

3 Bucket Sorting
We assume that bucket sorting is done by the host, and that
buckets are constructed and maintained in main memory by the
application and/or graphics library. The issues in bucket sorting
are non-trivial,’ and we do not in this paper address more than
the type of sorting that may be employed.

Probably the simplest algorithm that makes sense is bowdh~g
box bucket sorting. In this algorithm, the screen-aligned
bounding box for each primitive is constructed (hy ntirr(x),
mu&), min(y), and mar(y)) and with simple comparisons each
bounding box is placed in each bucket that the bounding box
overlaps. This algorithm has the advantage that it is extremely
cheap, easy to implement, and is robust. It has the disadvantage
that it may place a bounding box in buckets that the inscribed
primitive does not actually overlap. However, it has been
employed in both software [2,3, 121 and hardware [5,7]
renderers.

Alternatively, the application may calculate exactly the buckets
that a primitive overlaps (exact bucket sorting). In general, exact
sorting requires scan conversion of the primitive (a bucket is just
a large pixel), and primitive set-up for such scan conversion
done on the host is a duplication of the work done by triangle
set-up on the accelerator. The adv‘antage of exact bucket sorting
is that it potentially reduces the number of buckets into which
each primitive is placed. Its disadvantage is cost, complexity,
and duplication of work. We are not aware of implementations
that do exact bucket sorting, and we do not in this paper
examine its cost or the extent to which it may reduce overlap,

There are other potential techniques intermediate bctwecn
bounding box bucket sorting and exact bucket sorting in both
cost and benefit. In particular, standard techniques such as
trivial accept/reject culling (cf. [4]) may be modified for bucket
culling. Primitives may be clipped to bucket boundaries,
completely eliminating overlap (implicitly utilized in “patch
renderers” such as [12]). Or primitives may be partitioned into

We assume that each bucket is written to the GA (or DMA’d)
when the GA is ready to render that bucket. We assume on-chip
memory in the GA for intermediate sample or fragment color

’ Consider, for example, the semantics required to interleave 2D
bitblt’s with 3D primitives when the 3D primitives arc.
oversampled. Consider also, for example, what is required to
sort a triangle strip into buckets.

26

those sufiiciently small that the cost of overlap is small, and
those sufficiently large that their overlap cost is high; larger
primitives may be clipped or exactly sorted. Except for the use
of “splitting” in “patch renderers” such as RenderMan [12], we
are unaware of implementations that employ these potential
techniques.

In this paper, our point of view is from the hardware
architecture, In particular, our concern is with the hardware
implications of the worst reasonable bucket sorting algorith
that an ISV may employ. Thus, we consider in this paper the
effect on the PC architecture when bucket sorting is by bounding
box.

4 Overlap and Overhead
There is system overhead incurred by bucket rendering. When a
primitive falls into multiple buckets (overlaps them), its
processing requires additional
. main memory bandwidth,
l AGP bandwidth, and
l primitive set-up cycles from the accelerator.

If a primitive overlaps Eo buckets, it must be written Eo times
to memory, read l?o times from memory across AGP, and set up
for rasterization ,Yo times by the accelerator. Therefore overlap
is a key statistic in the evaluation of the effect of bucket
rendering on the components of the PC. Consequently, the tile
size supported by the accelerator is a key metric: the smaller the
tile the larger the overlap. Tile size is one area where the WV’s
choices impact the potential performance of the overall system
(involving memory and AGP bandwidth).

Below we describe the experimental methodology we have
employed to examine expected overlap from bucket rendering,
and the effect of tile size on overhead.

5 Experimental Methodology
We have instrumented internal research software at Intel in
order to gather statistics from existing synthetic databases. The
Intel Scene Management (ISM) software is a scene management
and rendering software package [lo]. We have instrumented
ISM to trace upon command every polygon rendered during a
“fly through”. For each polygon, we calculate the bounding
box, the bounding box aspect ratio, into which buckets the
primitive would be placed by bounding box sorting, and we
mark those buckets. During rendering, we perform the bucket
calculation for bucket sizes 16x16,32x32,64x64,128x128, and
256x256. Statistics are then written to a file and analyzed off-
line. We have assumed that the accelerator has fixed bucket
sizes, and that it can be configured to apply bucket rendering to
arbitrary window resolutions. For resolutions that are not a
multiple of the bucket size, we have assumed that the first
bucket is window-aligned in both x and y, but that the last
bucket in x or y may partially overlap the window (i.e. that not
all pixels in the bucket may be valid).

We have traced and evaluated multiple frames from several
databases, and have chosen the frames with the greatest polygon
count as our samples. The test scenes for which results we
include in this paper are:

Scene
I4

15
20

22
25
39

41

42

Description
Sphere. Traced to generate statistics from
curved surfaces at arbitrary orientation.
Teapot.
Scene of a house from the ‘Village”
database, an advanced environment for PC
rendering (courtesy of Evans and
Sutherland).
Another scene from the ‘Village”.
More intricate scene from the “Village”.
Computer-generated terrain, courtesy of
Turner Whitted and Numerical Design
Limited (NDL). The NDL package that
generated this supports Level-of-Detail
(LOD). This scene generated with LOD
enabled.
Computer generated terrain from NDL
package, LOD disabled.
Animated character leaving a box -
modeled with bezier patches and tessellated
into polygons.

The statistics we have gathered from these scenes are shown in
Table 1. We report the average and maximum bounding box
area A, the average and maximum aspect ratio of bounding
boxes r, as well as the number N of triangles, and the resolution
at which the trace was made. Aspect ratio is calculated as
follows: divide the longer side of the bounding box by the
shorter. The fraction of primitives with bounding boxes larger
than 1K pixels is discussed later. Pictures of these scenes can
be found following the references at the end of this paper.

6 Analytical Tools to Calculate Overlap
Overlap has previously been considered primarily in the context
of parallel rendering and parallel graphics hardware
architectures (cf. [2,3,9]). Molnar reports (and credits to Eyles)
an expected-case closed form for overlap when bounding box
bucket sorting is employed [9]. However, the Molnar/Eyles
equation is in terms of the width w and height h of the bounding
box, and offers no substantial guidance concerning an
appropriate relationship behveen the hvo (i.e. an expected aspect
ratio). Some researchers have assumed a rectangular bounding
box such that w = rh for some r [3], and some graphics
hardware architects have reluctantly assumed square bounding
boxes for lack of better data. We begin with the Molnar/Eyles
equation, briefly deriving it for completeness, and then consider
aspect ratio. We require the following definitions:

The Molnar/Eyles equation for expected-case overlap of square
buckets is:

27

,

* ,

/

I

/

/

I

I

I
1

1

I

1

!
i

,

I
I

,
,

I

/

I

i

E -l+‘Y+h+wh 0- ---
s s 3

It can be derived briefly as follows. First, note that a bounding
box of size wh must cover at least (Lw/sJ+ I)*(,&sJ+ I)
buckets? It may cover an extra column ([w&f+ 2)*(,!ws~+ 1)
or row (Lw/sf+ I)*(Lh/sf+ 2), or an extra column and row
(Lw/sf + 2)*(,!ldSf + 2). These cases depend on the chance
alignment of w and h with respect to tbe bucket. Let us define
the random variables X and Y to be the number of buckets hit by
the bounding box in screen-coordinate x and y, respectively, and
also assume that these random variables are independently
distributed. Then

Pr[w does not cover extra column]
=Pr[X= Lw/Sf+I]
= I - {w/S]

Pr[w does cover extra column]
=Pr[X= Lw/Sf+2]
= {w/S]

Similariy for the random variable Y. The standard compound
probabilities can be computed by

Pr[no extra column, no extra row]
= Pr[X= Lw/SJ+l]* Pr[Y= Lh/Sf+lfl
= (I - {w/S}JyI - (MY})

Pr[extra column only]
= Pr[X= Lw/SJ+2]* Pr[Y= Lh/Sf +I])
= {w/S} *(I - {MS])

Pr[extra row only]
= Pr[X= Lw/SJ f I]* Pr[Y= LWSf -i-2])
= {Ids] *(I - {w/S])

Pr[extra column, extra row]
= Pr[X= Lw/SJ+2]* Pr[Y= LWSf +2])
= {w/S} * (h/S]

We can then calculate expected overlap Eo from the standard
calculation of the mean of independently distributed random
variables

E[XY] = E[X]*E[Y] =
EjXj * P[Xj] *z;i Yk * P[Yk]

Following this derivation equation 1 can be verified.

6.1 Aspect ratio
Let us define the aspect ratio of a bounding box by

r = w/h (when w > h)
r=h/w(whenh>w)

Consider the population of bounding boxes in a given scene with
a given aspect ratio r and fixed area A. The sides of these

‘Technically it must cover &w-.$/Sf+ I)*(L(h-&)/Sf+ I)
buckets, but a derivation that begins this way is neither
instructive nor tangibly more accurate.

28

bounding boxes are related to square bounding boxes of the
same area A by some constant c where

w = cs
h = (l/c)s

s= A. J-

Restricting c 2 I without loss of generality, we have that c and
aspect ratio r are related by r = c*. Substituting these
observations in equation 1, expected overlap given r is Eolr

Eo,, =l+(&++)$+($ (2)

Now, to solve E. in terms of Eel, over the full population of
bounding boxes would require the distribution of r in closed

form, or the expected values of &and l/J. We do not
pursue either of these directions in the current paper, However,
we do note that this function is at a minimum when I=] (recall
that by definition r 1 I).

This means that when the bounding box is square, we expect
overlap to be at a minimum. As the bounding box becomes
more of a rectangle, we expect overlap to increase, Of course,
when the bounding box is substantially larger than a bucket, the
third term dominates. But this equation certainly suggests that a
triangle smaller than a bucket will cover more buckets when its
bounding box is long and thin than when its bounding box is
square.

6.2 Experimental results
Scatter plots of bounding box area vs. bounding box ratio arc
shown in Figures 2 through 9. First, an incidental observation
deserves note. In most of these plots there is strong correlation
of increasing area with increasing aspect ratio (Figure 8 shows
this trend notably). We believe these “lines” to represent
underlying triangles from the same object(s), that stretch due to
perspective as they increase in area closer to the viewer,
However, for the current paper we have not investigated further,

Second, as can be seen there are in general substantially many
primitives with large aspect ratios that are smaller than a 32x32
bucket (i.e. smaller than 1K in size). These plots combined with
equation 2 should lead us to expect more overlap than predicted
assuming square bounding boxes.

Experimentally measured overlap is compared with predicted
overlap in Table 2. We have calculated expected overlap Eo
from equation 2, assuming square bounding boxes (i.e. r=l).
Contrary to our expectation, there is a cfosejit of expected to
observed overlap by assuming that bounding boxes are square.

- - - . - - - - - I - ^ - ~

- . _ _ _ _ _ _ _ . - - - ~ - - ~ ~ -

o 16
l
E
g s

i4

2

F4 2

1 1 I I I I I

32 -

‘3 16-
c

: s-

8 4-

iI

G
2-

4096 X
X

2048

1024

-5 512 x

256

128

64

32

16

S

4

2

1
b-NP”;s;fj $ izf2 coo\

Bounding box area Bounding box area

Figure 2. Scene 14. Figure 5. Scene 22.

512 X’k
X 256 X

-2 12s

E 64

8
p 32

i+f
;ii

16

9 8

i 4

2

rN+co;j;~grh)uI
L22G

Bounding box area

Figure 3. Scene 15.
X

-“‘“w!~~~~~~~~a&

Bounding box area

Figure 6. Scene 25.

X

x*

3 *”

Bounding box area Bounding box area

Fiyre 4. Scene 20. Figure 7. Scene 39.

29

19.8
18.8
8.7
14.1

[42 1 1.9
Table 2. Observed Y. expected overlap. Oh
assuming square bounding boxes (w =h)

.s

E 32

: 16

i?
*- 8
74

g 4
p3

rt4.PoarWchrta~-NPcm
Q\~Jp!$$$:I;KZ7;Z

Bounding box area

Figure 8. Scene 41.

.s 16

E

8 s
9

2
.LI a 4

2

w 2

X
X
X

3tx

7.6
7.3 I
4.2
5.0 1 1.9
1.5

measured

Scene
I4
IS

S=16 S=32 s=64 S=128 S=256
Obs. 1 E. Ohs. 1 E. Obs. 1 E. Obs.) E. Obs. 1 E(J
3.6 3.5 2.1 2.1 1.5 1.5 1.3 1.2 1.1 1.1
2.8 2.9 1.8 1.8 1.4 1.4 1.2 1.2 1.1 1.1

Bounding box area

Figure 9. Scene 42.

6.3 Discussion
Contrary to expectation, our results suggest that in practice
overlap is insensitive to bounding box aspect ratio when the
bucket sort is by bounding box. We have found this result
surprising in light of the observation (equation 2) that expected
overlap is at a minimum when aspect ratio is 1.0. While we
expect from equation 2 that aspect ratio should have less impact
when bounding boxes are larger than a bucket, the scatter plots
in Figures 2 through 9 make it clear that there are substantially

3.1
3.2
2.0
2.9
1.2
1.2

overlap.

i$j ii!;
E. = expected overlap calculated from

I.5
1.5
1.3
1.3
1.1
1.1

equation 1

many bounding boxes smaller than, say, a 32x32 buckeL3 WC
conjecture that the reason for the discrepancy between observed

and expected is that underlying distribution of & has a mean
close to 2.0 for the scenes we have studieds4 However, since our
goal in this work has been the impact of bucket rendering on the
PC architecture, we have not investigated this question further.

On the other hand, our results do provide experimental
corroboration for the hardware architect who calculates overlap
of screen-aligned bounding boxes using equation 1 and the
square root of average bounding box area. That is, the origina
Molnar/Eyles equation (1) seems a reliable analytical tool for

predicting overlap by letting s = w = h = fi.

6.4 Scaling with screen resolution
A last aspect of overlap requires discussion. Most treatments of
overlap have ignored screen resolution. In PC graphics
accelerator hardware, however, we expect bucket size to be
fixed by the size of the on-chip memory dedicated to bucket
rendering. Furthermore, scenes will not be redesigned for each
resolution a given chip may support (and at which the user may
choose to render).’ As a result, bounding box area A scales with
screen resolution. If A is measured at resolution R, then we take
bounding box area A’ at resolution R’ to be (R’/R)A.

7 Architectural Implications of Bucket Size
In order to examine the effect of overlap on host memory, AGP,
and triangle set-up on the graphics accelerator, WC have done the
following:
. From equation 1, we have calculated expected overlap for

the eight scenes of Table 1. We have taken average

bounding box area from that table, and let s = fi . In
particular, we have ignored aspect ratio of bounding boxes,

. We have made the assumption that each primitive is written
by the host to each bucket into which it lands, and that each
primitive is read from each bucket by the accelerator.6

3 This is numerically corroborated by Table 1, which shows the
fraction of bounding boxes with area larger than 1K pixels,
4 Please see the discussion of aspect ratio in section 6,l.
’ The application may or may not even adjust field of view with
change in resolution.
6 We have not assumed “optimized” bucket storage based on
pointers to primitives. If the accelerator DMAs from host
memory, it is not clear that pointer-based buckets result in the
best performance.

640x480
14 15 20 22 25 39 41 42

Overlap 1.3 1.2 2.1 2.0 1.6 1.8 1.2 1.1
Ktris (0) 33.1 24.0 109.5 41.4 128.3 18.4 188.2 205.1

Ktris (raw) 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6
Mem (0) 5.6 4.0 18.4 7.0 21.6 3.1 31.6 34.5

Mem (raw) 4.3 3.3 8.9 3.4 13.5 1.7 26.3 30.7
AGP (0) 2.8 2.0 9.2 3.5 10.8 1.5 15.8 17.2

AGP(raw) 2.1 1.6 4.4 1.7 6.8 0.9 13.1 15.3

1024x768 Overlap 1.5 1.4 2.9 2.8 2.0 2.3 1.3 1.2
Ktris (0) 38.2 27.0 153.4 57.7 162.4 24.2 208.8 219.3

Ktris (raw) 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6
Mem (0) 6.4 4.5 25.8 9.7 27.3 4.1 35.1 36.8

Mem (raw) 4.3 3.3 8.9 3.4 13.5 1.7 26.3 30.7
AGP (0) 3.2 2.3 12.9 4.8 13.6 2.0 17.5 18.4

AGP(raw) 2.1 1.6 4.4 1.7 6.8 0.9 13.1 15.3

1280x1024 I 1.7 1.5 3.6 3.~ .

E 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6
I I 42.4 29.5 192.5 72.1 19;.; 2;.; 22;:: 23;): :

t Mem (0) 7.1 -5.0 32.3 12.1 32.2 4.9 37.9 38.7
I fern (raw) 4.3 3.3 8.9 3.4 13.5 1.7 26.3 30.7

AGP (0) 3.6 2.5 16.2 6.1 16.1 2.5 18.9 19.4
AGP(raw) 2.1 1.6 4.4 1.7 6.8 0.9 13.1 15.3

Table 3. S=128, Hz = 30.
Overlap calculated from equation 1. Ktris required with bucket rendering (0) and without (raw). Memory bandwidth
(Mem) required with bucket rendering (0) and without (raw), in MbytesIsec. AGP bandwidth required with bucket
rendering (0) and without (raw), in Mbyteslsec.

. We have assumed isolated triangles (i.e. 3 vertices per
triangle).

. We have assumed that each vertex comprises
cx,y,z,u,v,w,rgba>, and that each of these fields requires 32
bits, This results in 28 bytes per vertex, 84 bytes per
triangle.

. The calculations we have done assume 30 Hz frame rate.
Higher frame rates scale directly from these bandwidth
numbers.

The results appear in Tables 3 and 4. For each of the three
resolutions in these tables, we have scaled bounding box area as
discussed in section 6.4. The effect appears in the Overlap
numbers at the target resolution. Following overlap are the
triangle set-up throughput, and memory and AGP bandwidth
that we calculate would be required for bucket rendering of the
eight scenes in this paper. Triangle rates required of the
accelerator set-up engine are shown in rows labeled Ktris, units
are Ktriangleslsec. Memory bandwidth required is shown in
rows labeled Mem; units are Mbyte&c. AGP bandwidth
required is shown in rows labeled AGP, units are Mbytes/s=.
For each statistic we report two numbers, labeled by 0 and raw.
0 rows take into account overlap, and correspond to the
throughput we calculate would be necessary for bucket
rendering. RUW rows ignore overlap, and correspond to the
throughput we calculate would be necessary for standard
rendering (i.e. full-frame).

7.1 Discussion
We expect to see rendering engines in the near future that can
perform set-up of 1M triangles/set. The current sustainable
delivered bandwidth from main memory on the PC is between
200 and 300 Mbytes&c. We would like support for bucket
rendering to consume only a fraction of this, since texturing
from main memory requires significant bandwidth and since
graphics is not the only memory bandwidth consumer. AGP is
expected to deliver 256 Mbyte&ec of sustained bandwidth.

Consider Table 3 and the requirements when tiles are 128x128.
AU scenes show acceptable estimated requirements at all
resolutions. Triangle set-up, memory bandwidth, and AGP
bandwidth requirements stay below 25%. 15%. and 10%
respectively. We conclude that with tiles 128x128 pixels in size,
and bucket sorting by bounding box, there should be minimal
impact of bucket rendering on main memory, AGP, and triangle
set-up.

Consider now Table 4 and the requirements when tiles are
32x32 pixels. At 1024x768 one scene consumes a solid 40% of
memory, another 30%. At 1280x1024 the same scenes consume
>60% and > 45%. Furthermore, AGP bandwidth consumed at
1280x1024 can surpass 33%. These numbers are prohibitively
high. We conclude from these results that when tiles are 32x32
pixels and bucket sorting is by bounding box, the performance
impact of bucket rendering on main memory, AGP, and triangle
set-up is minimal at 640x480, moderate at 1024x768 and quite
high at 1280x1024.

31

m
I4 IS 20 22 25 39 41 42

640x480 Overlap 1 2.5 2.1 7.6 7.4 4.2

4

5.4

rn ICI
Ktris (0) 1 62.5 40.9 402.5 149.4 338.5 55.8 30;:; 28;:;

Ktnk (jai)
Mem (0)

Mem (raw) ~

_-.-
25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6
10.5 6.9 67.6 25.1 56.9 9.4 50.7 47.2
4.3 3.3 8.9 3.4 13.5 1.7 26.3 30.7

AGP (0) 5.2 3.4 33.8 12.5 28.4 4.7 25.4 23.6
AGP(raw) 2.1 1.6 4.4 1.7 6.8 0.9 13.1 15.3

1024x768 Overlap 3.7 3.0 14.6 14.0 7.2 9.7 2.6 1.9
Ktris (0) 92.7 57.7 769.5 284.0 578.6 100.4 412.2 349.6

Ktris (raw) 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6
Mem (0) 15.6 9.7 129.3 47.7 97.2 16.9 69.3 58.7

Mem (raw) 4.3 3.3 8.9 3.4 13.5 1.7 26.3 30.7
1 A&/fl,~ 1
I=]

7.8
ii

4.8 64.6 23.9 48.6 8.4 34.6 29.4
1.6 4.4 I.7 6.8 0.9 13.1 15.3

21.5 20.6 10.1 13.9 3.3 2.2] -
1280x1024 Overlap 1 4.7 3.8 Kfrk10) I 120.2 72.7 1115.6 144.0 509.6 408.4 --.- 418.0 809.0 1

1
_ _. _ _ -

Ktrisfraw) , , 1 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6 1 . .
Mom IfI) 20.2 12.2 1Ql-l t? 7n7. 135.9 24.2 85.6 68.6 I

.._“.._ ,-, s V.” ---._

Mem (raw) 4.3 3.3 8.9 -ii 13.5 1.7 26.3 30.7
AfZP/fl\ 1 1n 1 6.1 O<A ?Sl lx n 12.1 42.8 34.3

‘.“A ,v,

AGP(raw)
--.- *.,.-

2.1 iI
,4.-r dd.A

4.4 1.7 6.8 -0:iJ 13.1 15.3 1

Table 4. S-32. Hz = 30.
overlo- ,.nln..ln+na f..nm ‘3nr.dinn 1 ~m’r rmAwl with h-n’-+ mnall.;nn m\ -WI withnd /mwL Memnrv hnndwidth (Mettd

reauir
Lp CLIlLuLLIL~U ll”Ul C’IYUUYAA a. -a .m, a”‘1 ---- . -_ JULILGC I ~~ru.d‘..~ ,“, U.... .,... ..,..-\.-. -,- -.--_____ ~ ---- ____ _.~. .~ ,

*ed with bucket rendering (0) and without (raw), in Mbyteslsec. AGP bandwidth required with bucket rendering (0) .
and without (raw), in Mbyteslsec.

These results lead to several conclusions:
. With sufficient on-chip memory to support 128x128 tiles,

we expect the performance impact of bucket rendering to
be minimal at resolutions to 1280x1024. This conclusion
makes embedded DRAM an attractive technology for
implementation of bucket rendering.

. With sufficient memory only to support 32x32 tiles, we
expect acceptable performance at 640x480 with bounding
box bucket sorting, but performance to degrade by
1280x1024. We expect on-chip SRAM to support only
32x32 tiles.

. For bucket rendering with 32x32 tiles, it is clear that for
resolutions higher than 1024x768, alternatives to bucket
sorting by bounding box will be desirable if not required.
Possible alternatives have been mentioned in section 3. We
cannot address the efficacy of these alternatives (in
particular when host sort overhead is included). However,
recall Table 1 and the fraction of bounding boxes larger
than 1K pixels in area (i.e. larger than a 32x32 tile). Some
of the scenes with high bucket rendering overhead (fable
4) certainly appear to be candidates for hybrid algorithms
that perform exact sorting only on large primitives (e.g.
Scenes 20 and 22). However, it also appears from this
table that not all scenes might benefit from such an
approach (e.g. Scene 25).

8 Summary
In this paper we have considered the impact on the PC
architecture of accelerator support for bucket rcndcring. The
key statistic upon which we have focused is primitive overlap.
When a primitive overlaps multiple buckets, it must bc placed in
each. For each bucket that a primitive must be placed in, it must
be written to and read from memory, must be sent across AGP,
and must be set up by the accelerator for rasterization. WC have
explored the behavior of the most common bucket sorting
algorithm-bucket sorting by bounding box, and have cxplorcd
the architectural impact on the PC of accelerators that support
one of two tile sizes: 32 x 32 pixels and 128 x 128 pixels. The
former is approximately the size possible with dense SRAM,
and typical PC price constraints. The latter is approximalcly the
size possible with DRAM embedded in a logic process. WC
conclude that with 128 x 128 tiles, there is minimal impact on
the PC architecture, with 32 x 32 tiles the impact may
substantially degrade performance for resolutions higher than
1024x768. These results suggest that for architectures that
employ SRAM for on-chip bucket rendering (and support tilts
32 on a side), further work is required to demonstrate bucket
sorting algorithms that result in substantially less overlap (and
overhead) than bounding box bucket sorting.

In the process of exploring the architectural implications of
bucket rendering, we have extended results previously available
on analytic expressions for overlap. In particular, our

32

-- --.._^_-- _.__ -- .~~~ - --__~-

experiments suggest that bounding box ratio can be ignored
when using the MolnariEyles equation for bounding box
overlap, and in particular that the square root of the expected
bounding box size can be employed directly in equation 1 that
appears in section 5.

9 Acknowledgments
The authors would like to thank Dave Sprague, Jim Hurley, and
Tim Misner for supporting this work, Ram Nalla and Feng Xie

10 References r
1.

2,

3.

4.

5.

6.

K. Akeley, “RealityEngine Graphics,” Computer Graphics
(Proc. Siggraph), Vol. 17, No. 3, August 1993, pp. 109-
116.
M. Cox, Algorithms for Parallel Rendering, Ph.D. thesis,
Princeton University, May 1995.
D. Ellsworth, Polygon Rendering for Interactive
Visualizations on Multicomputers, Ph.D. thesis, University
of North Carolina at Chapel Hill, December 1996.
J. Foley, A. van Dam, S. Feiner, J. Hughes, Computer
Graphics: Principles and Practice, 2”6 ed., Addison-
Wesley, Reading MA, 1990.
H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D.
Ellsworth, S. Molnar, G. Turk, B. Teggs, L. Israel, “Pixel-
Planes 5: A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories,” Computer
Gruphics (Proc. Siggraph), Vol. 23, No. 3, July 1989, pp.
79-88.
Intel Corporation, Accelerated Graphics Port Intetjkce
Specification, revision 1 .O, Intel Corporation, July 3 1,
1996.

for help with rendering engine and ISM modifications. The first
author would also like to thank Sam Uselton for helpful review
and discussion of an earlier mathematical model of overlap with
varying aspect ratio. The authors thank John Garney for very
useful discussion about bucket sorting algorithms and hardware
tile sizes. Many thanks to Evans & Sutherland for the Village
database and Numerical Design Limited for the terrain.

7. S. Mohrar, J. Eyles, and J. Poulton, ‘PixelFlow: High-
Speed Rendering Using Image Composition,” Computer
Graphics (Proc. S&graph), Vol. 26, No. 2, July 1992, pp.
23 I-240.

8. M. Kelley, S. Winner, K. Gould, “A Scaleable Hardware
Render Accelerator using a Modified Scanline Algorithm,”
Computer Graphics (Proc. Siggraph), Vol. 26, No. 2, July
1992, pp. 241-248.

9. S. Molnar, Image-Composition Architectures for Real-Time
Image Generation, Ph.D. thesis, University of North
Carolina at Chapel Hill, October 1991.

10. M. Shantz, D. Krasnov, A. Kibkalo, A. Subbotin, F. Xie,
and T. Park, “Building Online Virtual worlds,” Gruphicon-
96, July l-5 1996, GRAFO Computer Graphics Society,
State Education Center, Saint Petersburg, Russia.

11. J. Torborg and J. T. Kajiya, “Talisman: Commodity
Realtime 3D Graphics for the PC”, Computer Graphics
(Proc. Siggraph), August 1996, pp. 353-363.

12. S. Upstill, The RenderMan Companion, Addison-Wesley,
Reading MA, 1989.

Screen 14 - Sphere Screen 15 - Teapot

33

Screen 20 - Village
Courtesy: Evans & Sutherland

Screen 22 - Village
Courtesy: Evans & Sutherland

Screen 25 - Village
Courtesy: Evans & Sutherland

34

Screen 39 - Terrain
Courtesy: Numerical Design Limited

Screen 41 - Terrain
Courtesy: Numerical Design Limited

~~~. ~_-._~ .--.

Screen 42 - Bezier Patches

