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Abstract 
Wrcket rendering is a technique whereby a scene is sorted into 
screen-space tiles and each tile is rendered independently in 
turn, We expect hardware-accelerated bucket rendering to 
become available on the PC, and in this paper we explore the 
effect of such accelerators on main memory bandwidth, bus 
bandwidth to the accelerator, and on increased triangle set-up 
requirements. The most important impact is due to the fact that 
in general primitives overlap multiple buckets, which is a direct 
cnuse of overhead. In this paper we evaluate bucket rendering 
that uses the most common algorithm for bucket sorting, one 
based on screen-aligned primitive bounding boxes. We extend 
previous techniques for analytically evaluating bounding box 
overlap of buckets, and together with experimental results use 
these to evaluate accelerators that may support 32x32 pixel tiles, 
and those that may support 128x128 pixel tiles. We expect the 
former to be possible with dense SRAM, the latter to be possible 
with DRAM embedded in a logic process (embedded DRAM). 
Our results suggest that embedded DRAM implementations can 
support bucket rendering with bounding box bucket sorting, but 
that SRAM implementations will likely be at risk with respect to 
overall system performance when bounding box bucket sorting 
is employed. These results suggest the requirement for more 
precise but still low-overhead bucket sorting algorithms when 
bucket rendering hardware is constrained to 32 x 32 tiles. 

CR Cntcgorics and Subject Descriptors: 13.1 [Computer Graphics]: 
Nardwnre Architecture-raster display devices; 1.33 [Computer 
Graphics]: Pictur&nrnge Generation -display algorithms; L3.7 
[Computer Graphics]: Three-Dimensional Graphics and Realism - 
visible surfnce algorithms. 

Additional Key Words and Phrases: bucket rendering, chunk 
rendering, tile rendering, overlap. 

1 Introduction 
Many of the features that users want require significant memory 
bandwidth and/or memory capacity. At the high-end of the 
market for example [ 11, oversampling for geometry anti-aliasing 
is typically implemented in “brute-force” fashion with large 
replicated interleaved memories, On the other hand, the PC 
market constrains the growth of both the memory bandwidth and 
memory capacity available with graphics acceleration hardware. 
Package costs constrain the pin bandwidth to external memory, 
cost constrains external memory capacity, and die area 
constrains the capacity of on-chip memory. 

I’cniiission lo nlnka digilnlllwd copies ofnll or pnrt oftlk mnterisl for 
pcrso~~nl or clnsvoont we is gmnled wilhollt fez provided that the copies 
nrl: not nlnds or distributed for prolit or comnwcinl adwnlnge, the copy- 
righl notice. lhe title of~llr publication nad its date appear, and notice is 
giwm Ilull copyrigld ic by permission of Ilie ACM, Inc. To copy olkrwisc, 
IO wpublkli, IO post 011 ser~c‘rs or to rcdislribute IO lists, requires specilic 
pcniiissioii niid~or fee 
ID9 7 SI(iCiR.4 PWEuro~rnphics Worksl~op 
Copyriglil 1997 AChf 0-S9791-9(,1-0/97/S..S3.50 

Narendra Bhandari 
Microcomputer Research Labs, Intel Corporation 

Bucker rendering is an approach that can be employed when 
there is insufficient memory to hold the intermediate results of 
rendering. With this approach, the screen is partitioned into 
tiles, and the primitives of the scene are sorted into buckets that 
correspond to the screen tiles. Then, in turn, each bucket is 
rendered into a tile, and the tiles are collected to form a final 
image. 

Bucket rendering has been around at least since Pixar’s first 
implementation of RenderMan [12], and has been implemented 
in hardware by PixelPlanes 5 [5], PixelFlow [7] and by Apple in 
a shipping product [S]. It has more recently resurfaced as a 
central technique in Microsoft’s Talisman architecture (where a 
“bucket” is referred to as a “chunk”) [ 111. 

The advantage of bucket rendering is that it enables algorithms 
to store only a tile of intermediate results when the algorithms 
would otherwise require a full screen of intermediate results. In 
particular, bucket rendering can enable such features as full- 
screen oversampling or A-buffering, with significantly less 
memory, or z-buffering without the requirement to store an 
external full z-buffer. Recent and anticipated advances in 
fabrication technology also make bucket rendering of interest 
now. Fairly dense on-chip SRAM has become commercially 
viable, and the major fabrication houses are actively pursuing 
processes to embed DRAM in a logic process (embedded 
DRAM). These advances potentially enable on-chip tiles for 
greater memory bandwidth, and potentially for decreased 
external memory capacity requirements. 

We expect accelerators that employ/support bucket rendering 
will be designed for the PC platform. The features that become 
possible with fast on-chip memory and the potential reduction in 
external memory costs are compelling. Since the PC market is 
horizontal rather than vertical we should expect that bucket 
rendering accelerators will be available from more than one 
Independent Hardware Vendor (HIV), and that these vendors 
may make different hardware choices. Furthermore, software 
must be written (or modified) to use such accelerators and we 
should expect multiple Independent Software Vendors (ISVS) to 
make different software choices as well. 

A critical choice that the HIV must make is the bucket size. An 
important decision that must be made by the ISV is the bucket 
sorting algorithm Together, these have potentially significant 
impact on the PC architecture. In this paper we examine two 
bucket sizes in particular that the H-IV may implement, one 
corresponding to an implementation using dense SRAM, the 
other to an implementation using embedded DRAM. We also 
examine the interaction of bucket size with the most common 
bucket sorting algorithm, bounding box bucket sorting. 

This paper is organized as follows. First, we present an 
overview of the PC architecture that we assume. Next, we 
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A average 
At?UX 
r average 
EL2 

IK 
N tris. 
Resolution 

e 
I4 I5 20 22 2.5 39 41 42 , 
192.2 121.5 3162.0 2989.0 1125.6 1590.9 139.2 52.7 
370.5 710.7 52788.0 74198.8 72256.9 20144.8 12909.2 35587.5 

2.3 4.2 10.0 28.4 10.9 34.8 10.9 2.4 
34.0 44.5 630.5 5212.1 525.0 857.2 154.9 33.0 
0.00 0.00 0.48 0.35 0.17 0.33 0.03 0.00 
844 645 1760 671 2683 346 5209 6085 

440x402 440x402 632x484 632x484 632x484 632x434 632x434 632x434 

Table 1. Scene statistics. A = bounding box area. r = aspect ratio. Frac > IK = fraction of bounding boxes larger 
than 1K in area. N = number of triangles in the scene. Resolution - - resolution at which the scene was traced. 

discuss bucket sorting and the provenance of the most common 
algorithm. Following this, we discuss the issue of primitive 
overlap, and our experimental methodology in evaluating it. 
Then we extend previous analytical results to calculate overlap, 
and finally use these and gathered statistics to evaluate the effect 
of 32 x 32 and 128 x 128 tiles on the PC architecture when the 
software algorithm employs bounding box bucket sorting. 

2 Architecture 
We assume the PC architecture shown in Figure 1. In this 
architecture, the CPU (or host) communicates with both main 
memory and the Graphics Accelerator (GA) via Core Logic 
(CL). The path from the CL to the GA is via the Accelerated 
Graphics Port (AGP) which provides up to 512 Mbytes/set of 
bandwidth dedicated to graphics. Typically associated with the 
GA is external memory employed for frame buffer, z-buffer, and 
(depending on the accelerator architecture) texture memory. 

We assume that the buckets into which primitives are sorted are 
stored in main memory, and that the processor maintains 
buckets. Putting the buckets in the external graphics memory 
would drive that memory to significantly larger size, and would 
meet resistance from many of the potential customers of a GA. 
In any event, placing the buckets in external graphics memory 
would not provide graceful failure for large scenes. 

0 CPU 

Processor bus 
I 

Figure 1. PC Architecture. 

values (and perhaps Z), and that when the GA is done rendering, 
it filters these intermediate results and writes final pixel values 
to the frame buffer (which is probably but need not be external 
graphics memory). After doing so, the GA is ready to render the 
next bucket. 

3 Bucket Sorting 
We assume that bucket sorting is done by the host, and that 
buckets are constructed and maintained in main memory by the 
application and/or graphics library. The issues in bucket sorting 
are non-trivial,’ and we do not in this paper address more than 
the type of sorting that may be employed. 

Probably the simplest algorithm that makes sense is bowdh~g 
box bucket sorting. In this algorithm, the screen-aligned 
bounding box for each primitive is constructed (hy ntirr(x), 
mu&), min(y), and mar(y)) and with simple comparisons each 
bounding box is placed in each bucket that the bounding box 
overlaps. This algorithm has the advantage that it is extremely 
cheap, easy to implement, and is robust. It has the disadvantage 
that it may place a bounding box in buckets that the inscribed 
primitive does not actually overlap. However, it has been 
employed in both software [2,3, 121 and hardware [5,7] 
renderers. 

Alternatively, the application may calculate exactly the buckets 
that a primitive overlaps (exact bucket sorting). In general, exact 
sorting requires scan conversion of the primitive (a bucket is just 
a large pixel), and primitive set-up for such scan conversion 
done on the host is a duplication of the work done by triangle 
set-up on the accelerator. The adv‘antage of exact bucket sorting 
is that it potentially reduces the number of buckets into which 
each primitive is placed. Its disadvantage is cost, complexity, 
and duplication of work. We are not aware of implementations 
that do exact bucket sorting, and we do not in this paper 
examine its cost or the extent to which it may reduce overlap, 

There are other potential techniques intermediate bctwecn 
bounding box bucket sorting and exact bucket sorting in both 
cost and benefit. In particular, standard techniques such as 
trivial accept/reject culling (cf. [4]) may be modified for bucket 
culling. Primitives may be clipped to bucket boundaries, 
completely eliminating overlap (implicitly utilized in “patch 
renderers” such as [12]). Or primitives may be partitioned into 

We assume that each bucket is written to the GA (or DMA’d) 
when the GA is ready to render that bucket. We assume on-chip 
memory in the GA for intermediate sample or fragment color 

’ Consider, for example, the semantics required to interleave 2D 
bitblt’s with 3D primitives when the 3D primitives arc. 
oversampled. Consider also, for example, what is required to 
sort a triangle strip into buckets. 
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those sufiiciently small that the cost of overlap is small, and 
those sufficiently large that their overlap cost is high; larger 
primitives may be clipped or exactly sorted. Except for the use 
of “splitting” in “patch renderers” such as RenderMan [12], we 
are unaware of implementations that employ these potential 
techniques. 

In this paper, our point of view is from the hardware 
architecture, In particular, our concern is with the hardware 
implications of the worst reasonable bucket sorting algorith 
that an ISV may employ. Thus, we consider in this paper the 
effect on the PC architecture when bucket sorting is by bounding 
box. 

4 Overlap and Overhead 
There is system overhead incurred by bucket rendering. When a 
primitive falls into multiple buckets (overlaps them), its 
processing requires additional 
. main memory bandwidth, 
l AGP bandwidth, and 
l primitive set-up cycles from the accelerator. 

If a primitive overlaps Eo buckets, it must be written Eo times 
to memory, read l?o times from memory across AGP, and set up 
for rasterization ,Yo times by the accelerator. Therefore overlap 
is a key statistic in the evaluation of the effect of bucket 
rendering on the components of the PC. Consequently, the tile 
size supported by the accelerator is a key metric: the smaller the 
tile the larger the overlap. Tile size is one area where the WV’s 
choices impact the potential performance of the overall system 
(involving memory and AGP bandwidth). 

Below we describe the experimental methodology we have 
employed to examine expected overlap from bucket rendering, 
and the effect of tile size on overhead. 

5 Experimental Methodology 
We have instrumented internal research software at Intel in 
order to gather statistics from existing synthetic databases. The 
Intel Scene Management (ISM) software is a scene management 
and rendering software package [lo]. We have instrumented 
ISM to trace upon command every polygon rendered during a 
“fly through”. For each polygon, we calculate the bounding 
box, the bounding box aspect ratio, into which buckets the 
primitive would be placed by bounding box sorting, and we 
mark those buckets. During rendering, we perform the bucket 
calculation for bucket sizes 16x16,32x32,64x64,128x128, and 
256x256. Statistics are then written to a file and analyzed off- 
line. We have assumed that the accelerator has fixed bucket 
sizes, and that it can be configured to apply bucket rendering to 
arbitrary window resolutions. For resolutions that are not a 
multiple of the bucket size, we have assumed that the first 
bucket is window-aligned in both x and y, but that the last 
bucket in x or y may partially overlap the window (i.e. that not 
all pixels in the bucket may be valid). 

We have traced and evaluated multiple frames from several 
databases, and have chosen the frames with the greatest polygon 
count as our samples. The test scenes for which results we 
include in this paper are: 

Scene 
I4 

15 
20 

22 
25 
39 

41 

42 

Description 
Sphere. Traced to generate statistics from 
curved surfaces at arbitrary orientation. 
Teapot. 
Scene of a house from the ‘Village” 
database, an advanced environment for PC 
rendering (courtesy of Evans and 
Sutherland). 
Another scene from the ‘Village”. 
More intricate scene from the “Village”. 
Computer-generated terrain, courtesy of 
Turner Whitted and Numerical Design 
Limited (NDL). The NDL package that 
generated this supports Level-of-Detail 
(LOD). This scene generated with LOD 
enabled. 
Computer generated terrain from NDL 
package, LOD disabled. 
Animated character leaving a box - 
modeled with bezier patches and tessellated 
into polygons. 

The statistics we have gathered from these scenes are shown in 
Table 1. We report the average and maximum bounding box 
area A, the average and maximum aspect ratio of bounding 
boxes r, as well as the number N of triangles, and the resolution 
at which the trace was made. Aspect ratio is calculated as 
follows: divide the longer side of the bounding box by the 
shorter. The fraction of primitives with bounding boxes larger 
than 1K pixels is discussed later. Pictures of these scenes can 
be found following the references at the end of this paper. 

6 Analytical Tools to Calculate Overlap 
Overlap has previously been considered primarily in the context 
of parallel rendering and parallel graphics hardware 
architectures (cf. [2,3,9]). Molnar reports (and credits to Eyles) 
an expected-case closed form for overlap when bounding box 
bucket sorting is employed [9]. However, the Molnar/Eyles 
equation is in terms of the width w and height h of the bounding 
box, and offers no substantial guidance concerning an 
appropriate relationship behveen the hvo (i.e. an expected aspect 
ratio). Some researchers have assumed a rectangular bounding 
box such that w = rh for some r [3], and some graphics 
hardware architects have reluctantly assumed square bounding 
boxes for lack of better data. We begin with the Molnar/Eyles 
equation, briefly deriving it for completeness, and then consider 
aspect ratio. We require the following definitions: 

The Molnar/Eyles equation for expected-case overlap of square 
buckets is: 
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It can be derived briefly as follows. First, note that a bounding 
box of size wh must cover at least (Lw/sJ+ I)*( ,&sJ+ I) 
buckets? It may cover an extra column ([w&f+ 2)*( ,!ws~+ 1) 
or row (Lw/sf+ I)*( Lh/sf+ 2), or an extra column and row 
(Lw/sf + 2)*( ,!ldSf + 2). These cases depend on the chance 
alignment of w and h with respect to tbe bucket. Let us define 
the random variables X and Y to be the number of buckets hit by 
the bounding box in screen-coordinate x and y, respectively, and 
also assume that these random variables are independently 
distributed. Then 

Pr[w does not cover extra column] 
=Pr[X= Lw/Sf+I] 
= I - {w/S] 

Pr[w does cover extra column ] 
=Pr[X= Lw/Sf+2] 
= {w/S] 

Similariy for the random variable Y. The standard compound 
probabilities can be computed by 

Pr[no extra column, no extra row] 
= Pr[X= Lw/SJ+l]* Pr[Y= Lh/Sf+lfl 
= (I - {w/S}JyI - (MY}) 

Pr[extra column only] 
= Pr[X= Lw/SJ+2]* Pr[Y= Lh/Sf +I]) 
= {w/S} *(I - {MS]) 

Pr[extra row only] 
= Pr[X= Lw/SJ f I]* Pr[Y= LWSf -i-2]) 
= {Ids] *(I - {w/S]) 

Pr[extra column, extra row] 
= Pr[X= Lw/SJ+2]* Pr[Y= LWSf +2]) 
= {w/S} * (h/S] 

We can then calculate expected overlap Eo from the standard 
calculation of the mean of independently distributed random 
variables 

E[XY] = E[X]*E[Y] = 
EjXj * P[Xj] *z;i Yk * P[Yk] 

Following this derivation equation 1 can be verified. 

6.1 Aspect ratio 
Let us define the aspect ratio of a bounding box by 

r = w/h (when w > h) 
r=h/w(whenh>w) 

Consider the population of bounding boxes in a given scene with 
a given aspect ratio r and fixed area A. The sides of these 

‘Technically it must cover &w-.$/Sf+ I)*( L(h-&)/Sf+ I) 
buckets, but a derivation that begins this way is neither 
instructive nor tangibly more accurate. 
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bounding boxes are related to square bounding boxes of the 
same area A by some constant c where 

w = cs 
h = (l/c)s 

s= A. J- 

Restricting c 2 I without loss of generality, we have that c and 
aspect ratio r are related by r = c*. Substituting these 
observations in equation 1, expected overlap given r is Eolr 

Eo,, =l+(&++)$+($ (2) 

Now, to solve E. in terms of Eel, over the full population of 
bounding boxes would require the distribution of r in closed 

form, or the expected values of &and l/J. We do not 
pursue either of these directions in the current paper, However, 
we do note that this function is at a minimum when I=] (recall 
that by definition r 1 I). 

This means that when the bounding box is square, we expect 
overlap to be at a minimum. As the bounding box becomes 
more of a rectangle, we expect overlap to increase, Of course, 
when the bounding box is substantially larger than a bucket, the 
third term dominates. But this equation certainly suggests that a 
triangle smaller than a bucket will cover more buckets when its 
bounding box is long and thin than when its bounding box is 
square. 

6.2 Experimental results 
Scatter plots of bounding box area vs. bounding box ratio arc 
shown in Figures 2 through 9. First, an incidental observation 
deserves note. In most of these plots there is strong correlation 
of increasing area with increasing aspect ratio (Figure 8 shows 
this trend notably). We believe these “lines” to represent 
underlying triangles from the same object(s), that stretch due to 
perspective as they increase in area closer to the viewer, 
However, for the current paper we have not investigated further, 

Second, as can be seen there are in general substantially many 
primitives with large aspect ratios that are smaller than a 32x32 
bucket (i.e. smaller than 1K in size). These plots combined with 
equation 2 should lead us to expect more overlap than predicted 
assuming square bounding boxes. 

Experimentally measured overlap is compared with predicted 
overlap in Table 2. We have calculated expected overlap Eo 
from equation 2, assuming square bounding boxes (i.e. r=l). 
Contrary to our expectation, there is a cfosejit of expected to 
observed overlap by assuming that bounding boxes are square. 
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Figure 9. Scene 42. 

6.3 Discussion 
Contrary to expectation, our results suggest that in practice 
overlap is insensitive to bounding box aspect ratio when the 
bucket sort is by bounding box. We have found this result 
surprising in light of the observation (equation 2) that expected 
overlap is at a minimum when aspect ratio is 1.0. While we 
expect from equation 2 that aspect ratio should have less impact 
when bounding boxes are larger than a bucket, the scatter plots 
in Figures 2 through 9 make it clear that there are substantially 

3.1 
3.2 
2.0 
2.9 
1.2 
1.2 

overlap. 

i$j ii!; 
E. = expected overlap calculated from 

I.5 
1.5 
1.3 
1.3 
1.1 
1.1 

equation 1 

many bounding boxes smaller than, say, a 32x32 buckeL3 WC 
conjecture that the reason for the discrepancy between observed 

and expected is that underlying distribution of & has a mean 
close to 2.0 for the scenes we have studieds4 However, since our 
goal in this work has been the impact of bucket rendering on the 
PC architecture, we have not investigated this question further. 

On the other hand, our results do provide experimental 
corroboration for the hardware architect who calculates overlap 
of screen-aligned bounding boxes using equation 1 and the 
square root of average bounding box area. That is, the origina 
Molnar/Eyles equation (1) seems a reliable analytical tool for 

predicting overlap by letting s = w = h = fi. 

6.4 Scaling with screen resolution 
A last aspect of overlap requires discussion. Most treatments of 
overlap have ignored screen resolution. In PC graphics 
accelerator hardware, however, we expect bucket size to be 
fixed by the size of the on-chip memory dedicated to bucket 
rendering. Furthermore, scenes will not be redesigned for each 
resolution a given chip may support (and at which the user may 
choose to render).’ As a result, bounding box area A scales with 
screen resolution. If A is measured at resolution R, then we take 
bounding box area A’ at resolution R’ to be (R’/R)A. 

7 Architectural Implications of Bucket Size 
In order to examine the effect of overlap on host memory, AGP, 
and triangle set-up on the graphics accelerator, WC have done the 
following: 
. From equation 1, we have calculated expected overlap for 

the eight scenes of Table 1. We have taken average 

bounding box area from that table, and let s = fi . In 
particular, we have ignored aspect ratio of bounding boxes, 

. We have made the assumption that each primitive is written 
by the host to each bucket into which it lands, and that each 
primitive is read from each bucket by the accelerator.6 

3 This is numerically corroborated by Table 1, which shows the 
fraction of bounding boxes with area larger than 1K pixels, 
4 Please see the discussion of aspect ratio in section 6,l. 
’ The application may or may not even adjust field of view with 
change in resolution. 
6 We have not assumed “optimized” bucket storage based on 
pointers to primitives. If the accelerator DMAs from host 
memory, it is not clear that pointer-based buckets result in the 
best performance. 



640x480 
14 15 20 22 25 39 41 42 

Overlap 1.3 1.2 2.1 2.0 1.6 1.8 1.2 1.1 
Ktris (0) 33.1 24.0 109.5 41.4 128.3 18.4 188.2 205.1 

Ktris (raw) 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6 
Mem (0) 5.6 4.0 18.4 7.0 21.6 3.1 31.6 34.5 

Mem (raw) 4.3 3.3 8.9 3.4 13.5 1.7 26.3 30.7 
AGP (0) 2.8 2.0 9.2 3.5 10.8 1.5 15.8 17.2 

AGP(raw) 2.1 1.6 4.4 1.7 6.8 0.9 13.1 15.3 

1024x768 Overlap 1.5 1.4 2.9 2.8 2.0 2.3 1.3 1.2 
Ktris (0) 38.2 27.0 153.4 57.7 162.4 24.2 208.8 219.3 

Ktris (raw) 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6 
Mem (0) 6.4 4.5 25.8 9.7 27.3 4.1 35.1 36.8 

Mem (raw) 4.3 3.3 8.9 3.4 13.5 1.7 26.3 30.7 
AGP (0) 3.2 2.3 12.9 4.8 13.6 2.0 17.5 18.4 

AGP(raw) 2.1 1.6 4.4 1.7 6.8 0.9 13.1 15.3 

1280x1024 I 1.7 1.5 3.6 3.~ . 

E 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6 
I I 42.4 29.5 192.5 72.1 19;.; 2;.; 22;:: 23;): : 

t Mem (0) 7.1 -5.0 32.3 12.1 32.2 4.9 37.9 38.7 
I fern (raw) 4.3 3.3 8.9 3.4 13.5 1.7 26.3 30.7 

AGP (0) 3.6 2.5 16.2 6.1 16.1 2.5 18.9 19.4 
AGP(raw) 2.1 1.6 4.4 1.7 6.8 0.9 13.1 15.3 

Table 3. S=128, Hz = 30. 
Overlap calculated from equation 1. Ktris required with bucket rendering (0) and without (raw). Memory bandwidth 
(Mem) required with bucket rendering (0) and without (raw), in MbytesIsec. AGP bandwidth required with bucket 
rendering (0) and without (raw), in Mbyteslsec. 

. We have assumed isolated triangles (i.e. 3 vertices per 
triangle). 

. We have assumed that each vertex comprises 
cx,y,z,u,v,w,rgba>, and that each of these fields requires 32 
bits, This results in 28 bytes per vertex, 84 bytes per 
triangle. 

. The calculations we have done assume 30 Hz frame rate. 
Higher frame rates scale directly from these bandwidth 
numbers. 

The results appear in Tables 3 and 4. For each of the three 
resolutions in these tables, we have scaled bounding box area as 
discussed in section 6.4. The effect appears in the Overlap 
numbers at the target resolution. Following overlap are the 
triangle set-up throughput, and memory and AGP bandwidth 
that we calculate would be required for bucket rendering of the 
eight scenes in this paper. Triangle rates required of the 
accelerator set-up engine are shown in rows labeled Ktris, units 
are Ktriangleslsec. Memory bandwidth required is shown in 
rows labeled Mem; units are Mbyte&c. AGP bandwidth 
required is shown in rows labeled AGP, units are Mbytes/s=. 
For each statistic we report two numbers, labeled by 0 and raw. 
0 rows take into account overlap, and correspond to the 
throughput we calculate would be necessary for bucket 
rendering. RUW rows ignore overlap, and correspond to the 
throughput we calculate would be necessary for standard 
rendering (i.e. full-frame). 

7.1 Discussion 
We expect to see rendering engines in the near future that can 
perform set-up of 1M triangles/set. The current sustainable 
delivered bandwidth from main memory on the PC is between 
200 and 300 Mbytes&c. We would like support for bucket 
rendering to consume only a fraction of this, since texturing 
from main memory requires significant bandwidth and since 
graphics is not the only memory bandwidth consumer. AGP is 
expected to deliver 256 Mbyte&ec of sustained bandwidth. 

Consider Table 3 and the requirements when tiles are 128x128. 
AU scenes show acceptable estimated requirements at all 
resolutions. Triangle set-up, memory bandwidth, and AGP 
bandwidth requirements stay below 25%. 15%. and 10% 
respectively. We conclude that with tiles 128x128 pixels in size, 
and bucket sorting by bounding box, there should be minimal 
impact of bucket rendering on main memory, AGP, and triangle 
set-up. 

Consider now Table 4 and the requirements when tiles are 
32x32 pixels. At 1024x768 one scene consumes a solid 40% of 
memory, another 30%. At 1280x1024 the same scenes consume 
>60% and > 45%. Furthermore, AGP bandwidth consumed at 
1280x1024 can surpass 33%. These numbers are prohibitively 
high. We conclude from these results that when tiles are 32x32 
pixels and bucket sorting is by bounding box, the performance 
impact of bucket rendering on main memory, AGP, and triangle 
set-up is minimal at 640x480, moderate at 1024x768 and quite 
high at 1280x1024. 
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_-.- 
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Ktris (0) 92.7 57.7 769.5 284.0 578.6 100.4 412.2 349.6 

Ktris (raw) 25.3 19.4 52.8 20.3 80.5 10.4 156.3 182.6 
Mem (0) 15.6 9.7 129.3 47.7 97.2 16.9 69.3 58.7 
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*ed with bucket rendering (0) and without (raw), in Mbyteslsec. AGP bandwidth required with bucket rendering (0) . 
and without (raw), in Mbyteslsec. 

These results lead to several conclusions: 
. With sufficient on-chip memory to support 128x128 tiles, 

we expect the performance impact of bucket rendering to 
be minimal at resolutions to 1280x1024. This conclusion 
makes embedded DRAM an attractive technology for 
implementation of bucket rendering. 

. With sufficient memory only to support 32x32 tiles, we 
expect acceptable performance at 640x480 with bounding 
box bucket sorting, but performance to degrade by 
1280x1024. We expect on-chip SRAM to support only 
32x32 tiles. 

. For bucket rendering with 32x32 tiles, it is clear that for 
resolutions higher than 1024x768, alternatives to bucket 
sorting by bounding box will be desirable if not required. 
Possible alternatives have been mentioned in section 3. We 
cannot address the efficacy of these alternatives (in 
particular when host sort overhead is included). However, 
recall Table 1 and the fraction of bounding boxes larger 
than 1K pixels in area (i.e. larger than a 32x32 tile). Some 
of the scenes with high bucket rendering overhead (fable 
4) certainly appear to be candidates for hybrid algorithms 
that perform exact sorting only on large primitives (e.g. 
Scenes 20 and 22). However, it also appears from this 
table that not all scenes might benefit from such an 
approach (e.g. Scene 25). 

8 Summary 
In this paper we have considered the impact on the PC 
architecture of accelerator support for bucket rcndcring. The 
key statistic upon which we have focused is primitive overlap. 
When a primitive overlaps multiple buckets, it must bc placed in 
each. For each bucket that a primitive must be placed in, it must 
be written to and read from memory, must be sent across AGP, 
and must be set up by the accelerator for rasterization. WC have 
explored the behavior of the most common bucket sorting 
algorithm-bucket sorting by bounding box, and have cxplorcd 
the architectural impact on the PC of accelerators that support 
one of two tile sizes: 32 x 32 pixels and 128 x 128 pixels. The 
former is approximately the size possible with dense SRAM, 
and typical PC price constraints. The latter is approximalcly the 
size possible with DRAM embedded in a logic process. WC 
conclude that with 128 x 128 tiles, there is minimal impact on 
the PC architecture, with 32 x 32 tiles the impact may 
substantially degrade performance for resolutions higher than 
1024x768. These results suggest that for architectures that 
employ SRAM for on-chip bucket rendering (and support tilts 
32 on a side), further work is required to demonstrate bucket 
sorting algorithms that result in substantially less overlap (and 
overhead) than bounding box bucket sorting. 

In the process of exploring the architectural implications of 
bucket rendering, we have extended results previously available 
on analytic expressions for overlap. In particular, our 
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experiments suggest that bounding box ratio can be ignored 
when using the MolnariEyles equation for bounding box 
overlap, and in particular that the square root of the expected 
bounding box size can be employed directly in equation 1 that 
appears in section 5. 
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Screen 20 - Village 
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Screen 22 - Village 
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