
--- 

Characterization of Static 3D Graphics Workloads 

Tzi-cker Chiueh Wei-jen Lin 

Computer Science Department 

State University of New York at Stony Brook 

Stony Brook, NY 117944400 
c chiueh@cs.sunysb.edu 

Abstract 

3D graphics transform 3D models into 2D images 
by simulating the physics of light propagation 
from the lighting sources, through the objects, 
and eventually to the eyes. Although specialized 
graphics hardware engines have been proposed 
and implemented in the past, and a heated in- 
terest in PC-class 3D graphics cards is currently 
emerging, detailed descriptions and analysis of 
3D graphics workloads which graphics hardware 
design can be based on are almost non-existent. 
This work takes the first step towards a compre- 
hensive 3D graphics workload characterization 
by reporting the results of an empirical study us- 
ing an instrumented software polygonal renderer 
tested on a wide variety of static 3D graphics 
models with sufficiently sophisticated geometric 

and texture properties. 
Keywords: 3D graphics rendering, depth com- 
plexity, span size, graphics workload characteri- 
zation, graphics compression, graphics pipeline 

1 Introduction 

3D graphics render three-dimensional model databases into 
two-dimensional images for given viewpoints by simulating 
the physical interaction between the light sources from spec- 
ified directions and the objects with complex geometrical 
and shading properties. The ultimate quality goal of 3D 
graphics is photo-realism, i.e., when there is no discernible 
distinction between synthetic images generated by computer 
graphics systems and photos captured by cameras. Nature 
creates high-quality images by shedding millions ofhght rays 
upon physical objects and waiting for the image to emerge 

Pen11issiol110 1:1&r digilnlhnrd copies ofnll or part oflhis mat&d for 
pcrsol1nl or &wool11 use is grantr‘d wihxt kc provided that 11x topics 
nrl: 11Ol 111ndl: Or distributed lb prolit or cou1nwcinl advanlngc. thr copy- 
ri# 11olicc, 111~’ tills: ol‘tl1c p~hliu~lio~1 and ils dntc appmr, and nolicd is 
givcl1 ll1nl cop>rigl11 is by pwiiiksion ol’lhe AChf, Inc. ‘I’0 Copy ollien~isc, 
10 re@li+. IO poq 011 scrvc~~ Or to rcdis!rilwk IO lists. rcquircs spccitic 
prnl1iss;ion nndhr I& 

I997 SJGCiJU J~JJiJ~~~r~.~r~phic ll'd~.d~t~p 
Copyrigllt 1997 AChi (J-S971)1-96l-O~97/8..s3.5O 

from the underlying physics. 3D computer graphics sys- 
tems attempt to approximate the same image quality while 
consuming only a small fraction of the resource that Na- 
ture uses. Nevertheless, high-end 3D graphics rendering is 
still considered highly computationally expensive, even with 
specialized hardware assists implemented in advanced VLSI 
technology. 

3D graphics rendering methods in general can be dassi- 
fied into two types: volume and surface rendering. When the 
interior properties of objects are of interest, such as biomed- 
ical (Ultrasound, Computer Tomography, Magnetic Reso- 
nance) imaging, volume rendering usually is the method of 
choice because its rendering primitive is a small 3D point 
called a voxel. Voxels are much smaller than geometric prim- 
itives used in surface rendering, which typically only focuses 
on object surfaces, and therefore allow more comprehensive 
sampling of the object space. On the other hand, volume 
rendering is almost always computationally more expensive 
than surface rendering. Most of the 3D graphics systems 
used today in applications such as engineering design, en- 
tertainment, and advertising are based on surface rendering. 
Among surface rendering methods, polygon graphics refer 
to those methods that use planar polygons as the only geo- 
metric primitives during rendering. Non-polygonal graphics 
can use procedural specifications for object geometry such 
as parametric curves and surfaces, fractals and particle sys- 
tems. Most 3D graphics hardware engines use polygonal 
surface rendering, which is also the focus of this work. 

Although the development of 3D graphics hardware started 
almost as early as the 3D graphics itself, most of these en- 
gines, notably SGI machines, have until recently remained 
out of reach for everyday applications because the special 
software and hardware required are cost prohibitive for PC- 
class users. Since the middle of 1995, a fhn-ry of PC-based 
3D graphics cards [7] started to flood into the marketplace. 
Most of these cards came from vendors that were previously 
manufacturing 2D video cards. The first generation of these 
3D graphics boards did not perform as well as expected. 
However, subsequent generations are getting better and bet- 
ter, and start to pose serious threats to high-end graphics 
machines. As of October 1996, some of these cards already 
exhibit respectable performance, e.g., four ISP chips from 
NEC/PowerVR together can perform 1,028K mip-mapped 
textured, smooth shaded triangles/second with perspective 
correction at the cost of less than Sl,OOO USD. 

17 



Despite the long history and recent furious race in 3D 
graphics hardware development, empirical studies on the 
characteristics of 3D graphics workloads whose results can 
be used to guide the architectural and implementation deci- 
sions have been curiously few in the literature. Descriptions 
of 3D graphics hardware architectures in earlier publications 
mostly focused on how graphics algorithms are translated 
into hardware, rather than on design tradeoffs that are op- 
timized according to empirical workload statistics. The goal 
of this work is to fill this gap by reporting the result, of a 
characterization study of static 3D graphics workloads based 
on an instrumented software renderer tested on a large set 
of complicated 3D models. By static graphics, we mean the 
positions and other properties of graphics objects in the 3D 
model do not, change over time. 

Published work in 3D graphics workload characteriza- 
tion is relatively scarce. Whelan’s thesis [16] characterized 
the distribution of objects on the screen to help decide the 
partitioning strategy used in multiprocessor rendering. He 
used six images for the characterization study, most of whose 
complexity is relatively slow by today’s standard. Dun- 
woody [5] instrumented a SGI rendering system to collect, 
a trace of graphics library calls, from which a profiler pro- 
gram can compute workload statistics and a performance 
measurement tool can estimate the running time on a given 
hardware platform. The focus of that work was mainly on 
the design and implementation of the tracing software envi- 
ronment, rather than the detailed analysis of 3D workloads 
themselves. Cox and Han&an [3] discussed a particular 
aspect of 3D graphics workload, depth complexity, and its 
implications on parallel polygonal rendering. Perhaps the 
most comprehensive 3D graphics workload study so far is 
Ricki Blau’s Ph.D. thesis [2]. She studied nine highly com- 
plicated images from different periods of Pixar’s animation 
productions by instrumenting proprietary rendering tools. 
She also focused most of the attention on depth complex- 
ity and visible surface measurements. Compared to previ- 
ous work, the work reported in this paper is different in 
two important aspects First, the workload is based on 3D 
models from VRML (Virtual Reality Modeling Language) 
files freely available over the Internet. As a result, the re- 
sults from this project can be easily verified and extended 
using the tool we developed. We believe this represents a 
giant, step in 3D graphics workload study since most of the 
3D model files used in previous studies are proprietary and 
thus not easily available. Secondly, the analysis of the 3D 
graphics workload characteristics presented in this work is 
specifically oriented towards architectural implications for 
graphics hardware implementations. 

The rest, of this paper is organized as follows. In Sec- 
tion 2, we briefly review the graphics pipeline for polygon 
rendering to facilitate the discussion of architectural impli- 
cation of specific graphics statistics. In Section 3, the ex- 
periment methodology, including the instrumentation envi- 
ronment and the input 3D models, is described. Section 4 
presents the detailed characteristics of the input 3D work- 
loads, and their analysis from the viewpoint of graphics 
hardware/systems implementors. Section 5 concludes this 
paper with the major findings and an outline of the ongoing 
work along a similar line. 

2 3D Polygonal Graphics Pipeline 

The graphics primitives in a 3D model input file are orga- 
nized as a tree. Rendering starts with a traversal through 
the tree of primitives. For each primitive, the renderer usu- 

I , 18 

ally decomposes it into more easily manipulable units for 
rendering, such as polygons or triangles, if necessary. For 
3D graphics rendering hardware, triangles are preferred. For 
example, our instrumented renderer divides a sphere into 26 
triangles and 52 squares. The rest of the rendering process 
[6] consists of two distinct stages: geometric transformation 
and roster&&on. The computation in the geometric trans- 
formation stage is mostly floating-point intensive, involving 
vector space operations such as matrix multiplication and 
inner products, and is also easily parallelizable, The raa- 
terization stage, on the other hand, involves mostly integer 
arithmetic, involving simple additions and compares, but 
requires coordination of accesses to shared data structures 
during visibility computation and is thus more difficult to 
parallelize. 

The first step in the geometric transformation stage in 
view transformation, in which the polygons and their nor- 
mal vectors are fh-st transformed from the world coordinate 
system to the eye coordinate system, taking into account the 
position and direction of the viewpoint. Then the polygons 
are transformed into the screen coordinate system, in which 
the positive X and Y axes extend to the right and up direc- 
tions of the screen, while the positive Z axis points into the 
screen. Because of the screen size limitation, polygone that 
fall outside the visible frustum will be clipped. The portions 
of the polygons within the frustum form new polygons and 
may need to be decomposed into simpler rendering primi- 
tives. Perspective correction is performed in this step. The 
second step is simple visibility culling, which eliminates from 
further consideration the polygons that are exactly perpen- 
dicular to the screen, and those that form the back faces of 
opaque objects with respect to the current, viewpoint. The 
f&l step is shading, in which the color of each vertex of 
each potentially visible polygon is computed according to 
the material property, the light source, and the asoumed 
lighting/shading model. The color representation can be 
based on RGB (Red, Green, Blue) or WV (Luminance and 
Cbrominance). If the polygon is associated with a transpar- 
ent object, a translucency parameter called the CI value is 
also computed for subsequent, compositing operations. 

The rasterization stage itself comprises three steps. The 
polygon processing step decomposes a given polygon into a 
set. of horizontal pixel segments called spans, and identifies 
the two end points of each span. For triangles, this step io 
trivial. For general polygons, a complete traversal through 
the polygon’s edges to compute the X and Y coordinates of 
each pixel on the edges is required. The edge walking step 
computes the color, depth (or Z) value, and LT value if appll- 
cable for each pixel on the edges. These values are derived 
from those associated with the edges’ end points using lin- 
.ear interpolation along the Y direction. The span processing 
step calculates the color, depth (or Z) value, and a value if 
applicable for each pixel on each span, again using linear in- 
terpolation from the corresponding values of the end points 
of the span. There is a separate buffer of the same size as 
the screen called the 2 Luger, which stores for each pixel the 
depth value of the portion of the polygon that contributes 
to that pixel, and its associated color and a values. During 
span processing, after the Z value of each pixel in the polygon 
is computed, it is compared with the current content of the 
Z buffer at. the corresponding X-Y coordinate. If the new 
Z value is smaller, that means the newly computed pixel is 
closer to the eye than the one traversed earlier. Therefore, 
the current content of that Z buffer entry is replaced with 
the new pixel’s Z value, color and a values. Otherwise, pro- 
ceed wivith the next pixel in the polygon. This is assuming 
that objects are opaque, i.e., a = 1. For transparent objects, 



~- -.-_-___ - 2. .~.__-- -_-.- -- - _~_ 

a < 1, the colors are cornposited together to accumulate the 
final pixel color, according to their a values. 

The above description of the 3D graphics pipeline implic- 
itly assumes that the shading model is Gouruud Shading, the 
lighting model is Diffuse Lighting, and no texture mapping, 
which is a technique to use 2D images to emulate 3D geomet- 
ric complexities. Of course, there are other more advanced 
graphics techniques that could further increase the realism 
of rendered images such as shadowing, anti-aliasing, and ray 
tracing, Most of these techniques will significantly increase 
the computational complexity of the rendering process. On 
the other hand, the described graphics pipeline is meant 
for hnrdware implementation and therefore doesn’t include 
any sophisticated software optimizations, such as advanced 
visibility culling techniques, dynamically generated texture 
mapping, and object-space sorting [14]. The goal of this 
study is to measure the detailed characteristics of the set of 
tasks thnt a generic 3D graphics hardware pipeline has to 
perform so that empirical workload statistics can be used to 
guide the design of high-performance graphics engines. 

To clarify how the set of tasks are affected by the ge- 
ometric complexities of the input 3D model, Table 1 lists 
the basic geometric primitive with which each of the tasks 
is working. As can be seen, the computational requirements 
for different tasks depend on different levels of geometric 
details, For example, the amount of Shading computation 
is proportional to the total number of vertices in all the 
polygons, whereas the computational load due to Span Pro- 
cessing is determined by the number of pixels covered by the 
polygons. 

Table 1: The computational requirement for each task in 
the 30 graphics rendering pipeline in terms of the basi? 
geometric primitive. 

3 Experiment Methodology 

The original motivations for our study of 3D graphics hard- 
ware is to improve the interpretation speed of VRML files 
during Internet accesses. Also, the fact that many VRML 
files are readily available over the net opens up, for the first 
time ever, the unique opportunity to examine highly sophis- 
ticated 3D models that were not previously possible. There- 
fore, this workload characterization study is entirely based 
on VRML and its renderer. 

3.1 Instrumentation Environment 
VRML [ll], officially announced in May 1995, is a 3D graph- 
ics specification language based on Open Inventor [15], which 
itself is based on OpenGL [9] from Silicon Graphics, for 
defining 3D scenes, rather than textual/image descriptions, 
in documents that are linked through the World Wide Web 
technology. VRML allows definitions of geometry, text, group- 
ing, levels of detail, transformation, material properties, ren- 

Netscape 
I 

A 

V 

I Interface Layer I 

I Rendering I 

&, 
Mesa 

Figure 1: The softrvare architecture of VRrveb. The instru- 
mentation code is inserted into the Mesa library to measure 
various rendering statistics. 

dering attributes, light sources, and camera positions. In 
addition, VRML provides a document linking mechanism 
similar to HTML. VRML 1.0 supports only static scene de- 
scriptions; dynamic or moving object behavior is included 
in VRML 2.0. This work only focuses on 3D models written 
in VRML 1.0. 

The VRML-capable viewer we use is called VRweb [12], 
which is a VRML viewer that supports multiple Web proto- 
cols and whose software architecture is shown in Figure 1. 
We chose VRmeb because its source code is freely available, 
which is mandatory for instrumentation. Within VRweb, 
the VRML files are first parsed by a freely available parser 
from SGI called QuLib [13], which translates VRML specifi- 
cations into low-level OpenGLlike primitives, which are in- 
put to a public-domain 3D graphics rendering library called 
Mesa [lo]. OpenGL is the most prominent 3D graphics API, 
a vendor-neutral standard endorsed by many major suppli- 
ers. Most of the OpenGL primitives are at a sufiiciently low 
level that is amenable to direct hardware manipulation. In 
this study, the statistics collection code is inserted in the 
dfesa library to record relevant workload characteristics. As 
will be shown later, the instrumentation includes both geo- 
metric complexity of the input files and measurements that 
reflect the dynamics of the rendering pipeline. 

3.2 3D Input Models 
To test a wide variety of 3D models, this study focuses on 
four categories of VRML files, whose geometric characteris- 
tics in terms of the total file size, numbers of polygons and 
vertices are shown in Table 2. The ilrst four files, Chamber, 
Hall, Lab, and Room are created from graphics modeling 
tools and libraries from Lightscape Technologies, and repre- 
sent the high-quality polygon rendering category. They are 
all indoor scenes with the surfaces decomposed into very 

19 



II Name 1 No. of Polygons I No. of Vertices II 
.83& - I 140.826 n 

Table 2: Basic Characteristics of the 30 VRML files used in this study. 

small polygons to simulate the fine details of lighting ef- 
fects. The next three files, Atrium, Exhibit, and Spiral, 
are generated by LightWork Design’s radiosity processor, 
which puts similar emphasis on lighting effects as the pre- 
vious four but uses less complex geometry. The next three, 
Abbey, Hilo, and Tee, are VRML files transIated from ar- 
chitectural models that are originally in the AutoCAD for- 
mat. The lighting and shading considerations are minimal 
but geometric accuracy is of major concern. The last four, 
Asian, Granmamt, Launchl, and Steel, are representative of 
3D scenes that include texture maps. They are generated 
from VFtML builders. The file size listed does not include 
the texture images themselves. A distinct characteristic of 
texture-mapped 3D scenes is that the geometric complexity 
is much less sophisticated compared to other non-texture- 
mapped scenes. This is because in texture-mapped models 
2D texture images are used to emulate fine 3D geometric 
details, thus greatly simplifying the geometric description. 

I 

4 Workload Statistics and AnaIysis 

The results of the characterization study are grouped into 
four subsections. In the first subsection, the effectiveness of 
simple culling techniques used in Mesais evaluated in terms 
of the percentage of polygons eliminated from further con- 
sideration. Among the poIygons that need to be rasterized, 
the input statistics that affect the rasterization performance 
such as the average span and edge Iength are also presented. 
Secondly, the depth complexity of the workloads is examined 
from three different perspectives. Thirdly, the compressibil- 
ity of computer graphics generated bitmaps is analyzed for 
a simpIe compression scheme that is based on 3D render- 
ing. Finally, the impact of viewpoint changes on the various 
workload statistics is discussed. 

4.1 Effectiveness of Culling 
Table 3 shows the effectiveness of Mesa’s culling techniques 
in reducing the number of polygons that are actually prop- 
agated to the rasterization stage, called rustetizedpolygons. 
Clipped polygons are those that completely fall outside of 
the view volume, according to a simple check based on world 
coordinates. Back-facedpolygons are those that are hidden 
behind opaque objects from the current viewpoint, accord- 

I 

20 

ing to a test on their transformed normal vectors. Zero-sized 
poIygons are non-clipped and non-back-faced polygons those 
whose effective visible area is too small to make any contri- 
bution. Usually these polygons are too far away from the 
viewer position to contribute to the rendered image, Zero- 
sized polygons can only be identified after their vertex coor- 
dinates are transformed. In Mesa, the vertex coordinates of 
zero-sized and rasterized polygons are always transformed 
during the view transformation step. However, only raster- 
ized polygons are shaded, i.e., the colors and a values arc 
actually computed. From Table 3, decoupling of shading 
from geometric transformation can indeed save a significant 
amount of computation, ranging from 26.54% (Ecchibit) to 
89.64% (Steel). ,Zero-sized and rasterized polygons arc col- 
lectively referred to as rendered polygons hereinafter. Some 
3D models include texture mapped polygons, the percent- 
ages of which that are actually rendered with respect to the 
total number of polygons in the model are indicated by the 
last column of Table 3. 

Among the rendered polygons, the workload parameters 
that affect rasterization performance are listed in Table 4. 
The length of the polygon edge is measured in terms of the 
effective extent along the Y direction, which afl’ects the com- 
putation requirements during polygon processing and edge 
walking. The span width is measured along the X dhec- 
tion, and it determines the computational requirement for 
span processing, including the number of Z buffer access and 
comparison. The numbers of edges and spans for texture- 
mapped models are much smaller than non-texture-mapped 
models because the total numbers of polygons are inher- 
ently smaller in the former. Accordingly, the average edge 
and span sizes for texture-mapped models are larger than 
non-texture-mapped models. From hardware implemcnta- 
tion standpoint, longer edge and span sizes are preferred 
since the fixed start-up cost for processing each edge and 
span can be amortized over a larger number of steps. To 
further understand the distribution of span length, Figure 
2(a) shows the histogram of span size for the non-texture- 
mapped 3D models. A great majority of spans have a size 
smaller than 5, indicating that spans are usually too small 
to allow for efficient pipelining of span processing. 



--. _. _~ -.~----. .~ 

39.96% 
I 

4.46% 
I 

52.66ii 
I 

1 1 1 20.76% 
Steel 1 76.13% 1 13.06% I 0.45% 1 10.36% I 10.36% 

Table 3: The percentages ofpolygons that are eliminated due to culling techniques used in Mesa. 

Table 4: The workload parameters that affect the performance of the rasterization stage, i.e., polygon processing, edge walking, 
and spon processing. 

Table 5: The depth complexity of the 30 models as measured from the polygon, span, and pixel standpoints. The span and 
pixel depth complexities are only contributed by the polygons that pass Mesa’s culling techniques. 

21 



1 Name I Compressible Spans I Uncompressible Spans I Compression Efficiency 
I SA.79% I - Chamber 

Hall 
Lab 

lx--- 

45.21% ---.-,” 36.227~ 
27.65% I “.-I “Yew ,‘.JOIO I 

I 
tc? 70% “,.‘il,” II 

46.41% I 53.59% 52"" - w 1.9i1,O ii _-.-.._ 
EE s9,9, I “A VQW I ?A CA% tl 

, 

Table 6: The percentages of visible spans that are compressible and uncompressible, and the over& compression eflciency, 
which are thesmaller the better. 

4.2 Depth Complexity 
An important optimization technique to improve the perfor- 
mance of rasterization is to avoid processing the polygons 
that are hidden from others with respect to the current view- 
point. Two separate questions need to be addressed that are 
related to the feasibility of this approach. First, what is the 
percentage of polygons rasterized that are visible polygons, 
those that contribute to at least one pixel in the final image? 
If the percentage is low, it means that there is ample room 
for optimization through visibility pre-processing so that 
completely invisible polygons can be precluded from fur- 
ther manipulation early on in the geometric transformation 
stage. The ratio between the number of rendered polygons 
to that of visible polygons is called polygon depth complex- 
itg. Secondly, what is the average number of polygons that 
overlap on a 8iven pixel? The notion of pixel depth complex- 
ity is usually defined in terms of the number of polygons in 
the model that cover a given pixel for a specific viewpoint. 
In this study we only measure the depth complexity con- 
tributed by those polygons that pass through Mesa’s simple 
culling techniques. During the span processing step, two 
operations are performed: depth sorting through Z buffer- 
ing and pixel coloring. Although depth sorting needs to 
be performed for every polygon pixel, pixel coloring can be 
deferred until it is known that the corresponding polygon 
pixel indeed contributes to the &ml image. This idea is 
called lazy shading [4] [8], and is only applicable for opaque 
polygons. The larger the pixel depth complexity, the more 
overhead saved using lazy shading, especially when the pixel 
coloring operation involves expensive computation such as 
anti-a&sing and texture mapping. Table 5 lists the depth 
complexity of the examined 3D models from the polygon, 
span, and pixel standpoints. The span depth complexity is 
defined as the ratio between the number of rendered spans 
and the number of visible rendered spans, those that actu- 
ally contribute to the final image. Although not immedi- 
ately useful, span depth complexity indicates the potential 
performance improvement of visibility pre-processing ifit is 
performed at the span rather than polygon level. All the 
depth complexity measures exclude the background color. 
In general, these three depth complexity measurements are 
roughly but not strictly correlated. 

To further examine the distribution of pixel depth and 
the effectiveness of lazy shading, Figure 2(b) shows the his- 
togram of the pixel depth in the ten non-texture-mapped 

22 

models. The first several models are mainly indoor scenes 
and therefore have less depth complexity. On the othor 
hand, the remaining three are AutoCAD models, which tend 
to cover a larger physical scope and thus exhibit higher 
depth complexity. Transparent polygons have an a vnluc 
smaller than one. Among the 14 models examined, only 
two of them contain transparent polygons, Abbey and Tee, 
and the percentages of transparent polygons among all poly- 
gons are 0.36% and 2.87%. Therefore, lazy shading can be 
applied to most of the models quite effectively. 

4.3 Compressibility 
Because of the demanding computational requirements of 
high-quality 3D graphics processing, high-performance ren- 
dering servers are shared among a set of client machines on 
which end users deveIop graphics applications. When the 
rendering process is completed, bitmaps are transferred over 
the network to the clients for display. To conserve the net- 
work bandwidth, bitmaps should be compressed, preferably 
in a lossless fashion. Rather than apply a generic lossless 
compression algorithm to this problem, we make the fol- 
lowing observation: The process with which the rendering 
servers transform 3D models into 2D bitmaps can be consid- 
ered as a decompression process. Therefore, the best way to 
compress the 2D bitmaps is to carefully divide the SD ren- 
dering pipeline between the server and the client JO that the 
graphics representation that is transferred over the network 
is as compact as possible while the remaining processing at 
the client side is as simple as it can. With this approach, 
there is no need to explicitly compress at the server end, and 
decompression at the client side simply means finishing the 
rendering pipeline. 

One possible division of the graphics pipeline is to ship 
the visible spans that are determined at the end of spnn 
processing to the clients, which then expand them into pixel 
colors. Each span is represented as the R, G, B values of its 
starting end point, the Il., G, B deltas far expanding the rest 
of the span, its span length, and the length of the following 
uncompressible span, if any. The spans are concatenated to 
cover the entire screen space so that there is no need for 
explicit X and Y coordinates for each span, assuming that 
the spatial dimensions of the screen is known, Because each 
span presentation costs 8 bytes, only spans of length more 



. ___ ~~.-- __~_._ _- ~-. ._. .- -~--------- __I__ __- -.. .- 

Table 7: The percentage of rasterized polygons among all polygons in the model, the pixel depth, and the compression 
efficiency measured from different viewpoints for the 3D model, Tee. 

than two are compressed and are called compressible spans. 
Those with length less than three are represented explic- 
itly. Texture-mapped spans are also represented explicitly 
because the clients don’t have the texture images to expand 
the spans. Similarly, transparent spans are also represented 
explicitly. Spans shorter than three pixels, texture-mapped 
and transparent spans are called uncompressible spans. Ta- 
ble 6 shows the percentages of compressible and uncom- 
pressible visible spans and the overall compression efficiency, 
which is defined as the ratio between the sizes of the com- 
pressed and uncompressed representations. This table does 
include spans from the background color. As expected, non- 
texture-mapped models exhibit a higher compression gain, 
ranging from 1.73 to 7.24, than texture-mapped ones, where 
the compression gain is smaller than two and mainly results 
from background spans. Steelis particularly bad because al- 
most all its polygons are texture mapped and thus the pro- 
posed compression scheme can not apply at all. Note that it 
is possible to apply generic lossless compression techniques 
such as gzip to achieve further compression gains. 

4.4 Effect of Viewpoints 
Given a 3D model, rendering from different viewpoints may 
entail different computational requirements. Table 7 shows 
three visibility-related statistics for rendering computations 
from different viewpoints of the 3D model, Tee. Although 
there are small differences in the ratios between the number 
of polygons that are passed to the rasterization stage and the 
total number of polygons in the model, the pixel depth and 
compression efficiency vary significantly. Moreover, there 
doesn’t appear to have any correlation between rasterized 
polygon percentages and pixel depth, which is not surpris- 
ing since the pixel depth is measured among the rasterized 
polygons only, rather than all the polygons in the model. 
Similarly, compression efficiency has more to do with visible 
span length than with depth complexity. 

6 Conclusion 

Despite the recent heated interest in 3D graphics hardware 
such as Microsoft’s Talisman initiative [14], Intel’s Acceler- 
ated Graphics Port [l] system architecture, and the prolifer- 
ation of 3D programming APIs and graphics cards, system- 
atic studies on the 3D graphics workloads and their archi- 
tectural implications are conspicuously lacking. The work 
reported in this paper takes the first step to 6.l.l this gap by 
studying the detailed rendering characteristics of a wide va- 
riety of static 3D graphics models with different geometric 
nnd texture properties. Wherever appropriate, the implica- 

tions of these statistics on the graphics pipeline performance 
are analyzed and presented. 

There are several directions that we are currently taking 
to continue the comprehensive 3D graphics workload charac- 
terization study. First, we would like to study the 3D work- 
load in which the relative positions between the viewpoint 
and graphics objects are dynamically changing, for example, 
in a computer game or virtual world simulation environ- 
ment. In this case, the performance goal of graphics hard- 
ware design is shifted from photo-realism to cinema-realism. 
Algorithms that could quickly approximate exact rendered 
images play a critical role in this type of applications. Also, 
we would like to continue this study by re-examining the 
statistics when advanced polygon rendering techniques are 
included, in particular, anti-r&sing and variants of texture 
mapping such as bump mapping. Characteristics of other 
rendering models such as volume rendering, radiosity, and 
ray tracing will also be included as part of the continuing 
effort of 3D graphics workload characterization. 

Acknowledgement 

This research is supported by an NSF Career Award MIP9502067 
and a contract 95F138600000 from Community Manage- 
ment Staff’s Massive Digital Data System Program. 

Reference 

[l] Accelerated Graphics Port Interface Specification, Revi- 
sion 1.0, http://www.intel.com/pc-supp/ platform/ 
agfxport/agpl August 1996. 

[2] Blau, R, Performance evaluation for computer image 

synthesis systems. Thesis (Ph.D.). of University of 
California, Berkeley, UCB/CSD 93/736, 1992. 

[3] Cox, M.; Hanrahan, P., “Depth complexity in object- 
parallel graphic architectures,” Princeton University. 
Department of Computer Science. CS-TR-382-92,1992. 

[4] Chiueh, T., “Heresy: A Virtual Image-Space 3D Ras- 
terization Architecture,” 1997 ACM Siggraphs/Eurographics 
Workshop on Graphics Hardware. 

[5] Dunwoody, J.C.; L&on, M.A., “Tracing interactive 3D 
graphics programs,” Computer Graphics (March 1990) 
~01.24, no.2, p. 155-63. 

[S] Foley, J.D.; van Dam, A.; Feiner, S.; Hughes, J., Com- 
puter Graphics: Principles and Practice, Addison-Wesley 
Pub. Co., Reading, Massachusetts, second edition, 
1990. 

[7] MacIntyre, B., “PC 3D Graphics Accelerator FAQ,” 
http://www.cs.colia.edu/ bm/ 3dcards/3d-cardsl.html, 

23 

__-_ ~...~~ -- 



March 1996. 
[8] Molar, S.; Eyles, J.; Poulton, J, “PixelFlow: High- 

/ Speed Rendering Using Image Composition,” Proceed- 

1 

ings of the 19th SIGGRAPH’Conference, pp. 231-240, 
Chicago, Illinois, July 1992. 

[9] Neider, J.; Davis, T.; Woo, M., OpenGL Programming 
Guide, Addison-Wesley, 1993. 

[lo] Paul, B., “The Mesa-SD graphics library, ” http://gopher.ssec.wisc.edu/ bri- 
anp/Mesa.html. 

[ll] Pesce, M., VRML: Browsing and Building Cyberspace, 
new Riders/Macmillan, 1995. 

[12] Pichler, M.; Orasche, G.; Andrews, K.; Grossman, 
I E.; McCahill, M., “VRweb: a multi-system VRML 
I viewer,” Proceedings of the first annual symposium on 

the Virtual Reality Modeling Language (VRML ‘95), 

’ 
San Diego, California, December, 1995. 

[13] Strauss, P.; Bell, G., “The VRML Programming Li- 
brary,” http://vag.vrml.org/www-vrml/vrml.tech/qv.html. 

1141 Torborg, J.; Kajiya, J., “Talisman: Commodity Real- 
time 3D Graphics for the PC,” http:// www.research.microsoft.com/SIGGRAPH96/Talisman/, 
also SIGGRAPH96, August 1996. 

[15] Wernecke, J., The Inventor Mentor, Addison-Wesley, 
1994. 

[16] Whelan, D. S., A multiprocessor architecture for red- 
time computer animation, 52OO:TR:85, California In- 
stitute of Technology. Computer Science Department, 
1985. 

24 


