
1

Cube-4 Implementations on the Teramac Custom Computing Machine

Urs Kanus, Michael MeiBner, Wolfgang StraBer

WSljGRIS, University of Tiibingen, Germany.

Hanspeter Pfister, Arie Kaufman

Department of Computer Science, SUNY at Stony Brook, NY, U.S.A.

Rick Amerson, Richard J. Carter, Bruce Culbertson, Phil Kuekes, Greg Snider

Hewlett-Packard Research Laboratories, Palo Alto, CA, U.S.A.

Abstract

We present two implementations of the Cube-4
volume rendering architecture on the Teramac cus­
tom computing machine. Cube-4 uses a slice­
parallel ray-casting alg01'ithm that allows for a paral­
lel and pipelined implementation of ray-casting with
tri-linear interpolation and su'rface normal estima­
tion from interpolated samples. Shading, classifica­
tion and compositing are part of rendering pipeline.
Wzth the partitioning schemes introduced in this pa­
per, Cube-4 is capable of 1'endering lmye datasets
with a limited number of pipelines. The Teramac
hardwm'e simulat01' at the Hewlett-Packard research
laboratories, Palo Alto, CA, on which Cube-4 was
implemented, belongs to the new class of custom
computing machines. Teramac combines the speed
of special-purpose hardware with the flexibility of
general-purpose computel's. With Teramac as a de­
velopment tool we were able to implement in just five
weeks working Cube-4 prototypes, capable of rendering
for example datasets of 1283 voxels in 0.65 seconds
at 0,96 MHz processing frequency. The performance
results from these implementations indicate real-time
performance for high-resolution data-sets.

Introduction

Volume rendering is a key technology with increas­
ing importance for the visualization of 3D sampled,
computed, or modeled datasets. 3D volumetric data
is delivered by acquisition devices such as biomedical
scanners (MRI, CT) or acoustic wave devices for geo­
physical explorations, as well as super-computer sim­
ulations and scientific experiments, including aero­
dynamics, weather simulations, material tests, and
many more, Volume rendering provides a powerful
technique to reveal the information contained in these
datasets.

The computational cost for volume rendering is
very high and becomes worse for the visualization of

dynamically changing datasets in real-time, a process
that is called 4D (spatio-temporal) visualization. Nu­
merous software approaches for interactive rendering,
mainly based on algorithmic optimizations and large­
scale parallelism, have been introduced, The highest
performance for rendering of a 25.63 data set at over
10 frames per second was achieved on an expensive
16 processor SGI Challenge using the s.hea.r-warp al­
gorithm [10]. This impressive achieve~ent is only
possible by using lengthy pre-calculations, storage
of large auxiliary data structures, approximations,
2D instead of 3D interpolation, and expensive multi­
processor machines.

Providing real-time volume rendering at a reas­
onable cost with high image quality is the goal of
special-purpose volume rendering hardware. The
Cube project [9, 14, 15, 16, 13] for hardware ac­
celerated volume rendering pioneered several volume
rendering architectures using parallel rendering pro­
cessors and a special interleaved memory organization
to provide high processing performance and memory
bandwidth.

Cube-4, the most recent approach, is a paral­
lel and scalable architecture with modular rendering
pipelines using only local and fixed bandwidth inter­
connections. Cube-4 is estimated to achieve real-time
performance (30 frames per second) for example for
a 5123 dataset with 128 pipelines running only at
30 MHz. Cube-4 uses 3D interpolation and high­
quality surface normal estimation without any pre­
computations or additional data storage. The per­
formance of Cube-4 grows proportionally with in­
creasing number of pipelines, ultimately limited only
by memory speeds. The cost-performance ratio of
Cube-4 is significantly better than existing solutions,
The Cube-4 algorithm and dataflow have been simu­
lated in C and VHDL.

This paper describes two prototype implement­
ations of the Cube-4 architecture on the Teramac
hardware simulator at the Hewlett-Packard research
laboratories, Palo Alto, CA. Teramac belongs to a

133

http://www.eg.org
http://diglib.eg.org

2

new class of machines called custom computing ma­
chines (CCM) which provide the user with a huge
amount of programmable logic, thus combining the
speed of special-purpose hardware with the flexibility
of general-purpose computers.

In Section 2 we briefly describe the Cube-4 volume
rendering algorithm and the rendering pipeline de­
rived from this algorithm. We further describe a
scheme for parallel volume rendering that has been
implemented on the Teramac machine. We explain
two partitioning schemes for rendering large volumes
with a small number of rendering pipelines. Section 3
gives an overview of t.he Teramac hardware and soft­
ware syst.em. In Section 4 we discuss our two Cube-4
implementations on the Teramac in more detail and
present results in the form of performance numbers
and images.

Cube-4

Cube-4 implements ray-casting, one of the the most
commonly used image-space volume' rendering meth­
ods [7]. Rays are cast from the viewpoint into the
volume. At evenly spaced locations along each ray a
sample value is computed using surrounding voxels.
A surface normal approximation for a sample point
is obtained by computing the gray-level gradient [8].
The so computed surface normal with the
computed sample value is used to each sample
a color based on a local shading model and a sample
opacity. Shaded and classified sample values are com­
posited along the rays into pixel values of the final
Image.

To achieve real-time performance we need to re­
move several bottlenecks of the algorithm,
the most important being the frequent and mostly
random accesses to memory. Voxels may be addressed
multiple times due to the non-uniform mapping of
samples along the rays and the overlap of voxel neigh­
borhoods during independent calculations, namely
interpolation and gradient estimation. To get a one­
to-one mapping of ray-samples onto voxels we use a
template-based ray-casting technique first introduced
by Yagel and Kaufman [17] and shown in Figure L

Discrete voxel rays with a COHstant stepping of
one in major viewing direction are sent into the
volume from each pixel on the base-plane, the face
of the volumetric dataset that is most perpendicular
t.o the viewing direction. After the volume has been
rendered, the base-plane contains a distorted image
which has to be warped and projected onto the view­
plane [10,17].

To achieve the required high memory bandwidth
we llse a skewed memory organization [9] that allows

'o+-\- Sample Locations

z

L
{ 	

' , , , Base-Plane

X -I

Figure 1: Base-plane for template based ray-casting.

for conflict free simultaneous access to a row of voxels
(called a beam) parallel to one of the major viewing
axis. A regular volumetric dataset with n3 voxels is
distributed over n logical memory modules, each ron­
taining n2 words of 8 bits, using the' skewing fu~ction
(j : [z, y, x] >---to [k, iJ, which maps a voxel with co­
ordinates (z, y, x] (or address [zyx]) in volume space
to logical memory module k at index i as follows:

k 	 (x + y + z) mod n O:S k,x,y,z:S (n -1),

y+:: *n. (1)

Adjacent voxels of beams in X direction are placed in
the same relative locations of adjacent memory mod­
ules, (i.e., rows across the memory). This choice of
X direction storage is arbitrary. For all following de­
scriptions, \\'e choose Z as the major direction and
beams in X-direction. For the five physical memory
banks used, a partitioning junction ¢ : [k, i] >---t

[kp, ip] has to be applied, which partitions the beams
in X directions, thus re-mapping the skewed memory
space as follows:

kp k mod p,

Zp 	 .nzp + lkJp . (2)

For example, Figure 2a shows a 43 dataset in its
local coordinate system, each voxel represented by
its address a, which is the [zyx] tuple of the local
coordinates of the voxel. Figure 2b shows the dataset
stored in p = 4 memory modules and Figure 2c shows
the arrangement for p = 2.

For real-time performance the ray-casting al­
gorithm needs to be parallelized. In Cube-4 we im­
plement a form of parallelism called slice-pamllel pro­
cessing. During ray-casting, the volume is t.raversed
by processing beams along consecutive slices parallel
to the base-plane. The conceptuaJ dataflow of slice­

134

15

7

6

3

4

332 333 330 331

130 131 132 133

121 122 123 120

5, 112 113 110 111

103 100 101 102

' 031 032 033 030

022 023 020 021

010

I:~il :~I001

4: 022 023

3 3 011 012

2

3

2 2 013 010

1 1 1 002 003

0o 000,0 001

1 2 3 0 1 2 3 0 1iL iL...
a) b) . c)

Figure 2: Memory organization for a 4 x 4 x 4 dataset. a) Volume space b) p =4 memory modules c) p = 2

i 030

020

010

000
'"---"

i 230

1220
i 130 131

120 121
031 032

021 022

011 012

001 002

330 331 332 333

320 321 322 323
231 232 233 r----­

313
221 222 223

r---,

- 303j
132 133 213

-
122 123 203
033 - 2

113
023

r--­
103

013
'--­ 1

003
0

7

5

memory modules.

parallel ray-casting is shown in Figure 3. Two con­
secutive slices are required for tri-linear interpolation.
To reduce the number of memory accesses, the previ­
ously fetched slice is stored in a plane buffer (FIFO)
so that it can be retrieved without further access to
the voxel memory. The gradient is computed using
samples from three slices of interpolated samples [14].
The two previously calculated slices of interpolated
sample are stored in FIFO plane-buffers, delaying
them by nand 2n cycles, respectively. After shading
and classification each slice is composited onto the in­
termediate results of the previous slices, yielding the
final base-plane image after n 2-cycles.

The slice-parallel approach discussed so far oper­
ates on beams of n voxels, thus requiring n processing
elements, where n is the dimension of the dataset.
This leads to an undesirable amount of hardware and
limits the maximum size of datasets. To render data­
sets of size n3 with p < n processing elements, we
developed two different approaches called sub-volume
partitioning and beam partitioning.

In sub-volume partitioning, a volumetric dataset
of size nS is divided into smaller sub-volumes of res­
olution p, each being processed by p pipelines. The
images of each subvolume are combined to yield the
final image. Our first prototype implementation on
Teramac, described in Section 4, uses sub-volume par­
titioning.

However, this first prototype revealed two main
problems with this approach. First, the voxel neigh­
borhood required for tri-linear interpolation and
gradient estimation at sub-volume boundaries can
only be provided by overlap of sub-volumes. As Table
1 shows. this results in substantial memory overhead,
which leads to higher execution time (see Section 6).
The second problem is that rays can traverse multiple

Rendering pipelines Memory overhead in percent
p Subvolume size p x p x 128
8 61
16 34
32 18
64 10

Table 1: Memory overhead in percent due boundary­
voxel overlap for sub-volume partitioning of a 1283

dataset.

sub-volumes for non-orthogonal viewing directions, as
illustrated in Figure 4. The intermediate compositing
results for rays that cross the sub-volume boundary
have to be stored in a buffer so that they can be ac­
cessed during processing of the next sub-volume. The
order in which the sub-volumes have to be processed
depends on the viewing direction and the compositing
order (front-to-back or back-to-front). To access the

135

GradientTri-Linear
Interpolation Sample-Buffers Estimation Shading

fX y
Baseplane

Compositingz
Figure 3: Dataflow of slice-parallel ray-casting.

' .• _~<.' Viewing Direction

',..#"'" :
-;..~-~- j

I ,-, " " ..• "
~. lzx.',,.'
" I ..

Subvolume processing .. t
Intermediate result buffer

Figure 4: Sub-volume processing order for front-to­
back compositing and given viewing direction. Inter­
mediate results at sub-volume boundaries have to be
stored for subsequent processing.

buffer of intermediate compositing results requires
global connectivity between processing pipelines.

These problems with sub-volume partitioning lead
to the development of beam partitioning. Instead
of subdividing the volume into subcubes, the size of
beams is adjusted to the number of processing ele­
ments (see Figure 5). With p processing units beams
are partitioned into b partial beams of width p, which
are subsequently processed.

Beams Slices
Partial beams
(p Voxels wide)

Figure 5: Volume traversal for beam partitioned slice­
parallel ray-casting.

Similar to sub-volume partitioning, the voxel­
neighborhoods required for tri-linear interpolation
and gradient estimation need to overlap at the bor­
der of partial beams. For example, tri-linear inter­
polation at the rightmost position of a partial beam
requires voxels from the partial beam, which will be
fetched in the next cycle. Using a technique called
beam extension, these border cases can be handled
without the overhead in computation and storage of
sub-volume partitioning (see Figure 6). Partial beam
i at time t is delayed by one cycle so that the neces­
sary extension for partial beam i can be transfered

136

Partial beam 0 Partial beam 2 Partial beam b-J

Partial beam i
Partial beam (i+1) % b

Extended partial beam i

Figure 6: Beam extension provides the necessary data
on partial beam boundaries.

from partial beam i + 1 at time t + 1.
The next section gives an overview of the Teramac

system. In Section 4 we describe the sub-volume
partitioned prototype implementation of Cube-4 on
Teramac, and Section 5 describes our beam parti­
tioned Cube-4 prototype.

3 Teramac - a CCM

The merits of general-purpose versus special-purpose
computers have long been debated by computer ar­
chitects. The configurable custom machine (CCM)
[12, 4] is a new class of machine that falls half-way
between these extremes. Teramac [2], the largest such
machine built to date, achieves the massive parallel­
ism of special-purpose computers and the reusabil­
ity of general-purpose computers. Teramac provides
large numbers of programmable gates, wires, and
memories that can be configured to implement user
designs.

Special-purpose architectures have often been pro­
posed to accelerate the solution of compute intensive
problems. However, these machines are often never
built because they solve too narrow a range of prob­
lems to justify the cost of their construction. Because
one custom computer can implement a countless vari­
ety of special-purpose machines, the cost of a cus­
tom computer can often be justified when a special­
purpose computer cannot. When special-purpose
hardware is built, its correctness and usability can
be verified first with a custom computer. The high
speed of custom computing, relative to conventio~al
software simulations, makes much more exhaustIve
testing possible.

General-purpose computers have many virtues:
they are ubiquitous, inexpensive, and easy to pro­
grall). They typically also have significantly higher
clock speeds than custom computers. However, be­
cause general-purpose computers execute at most a
handful of inst:rudions per clock cycle while cus­
tom computers perform hundreds, custom computers

are potentially much faster. On many applications,
Teramac has out-performed high-performance work­
stations by a factor of a hundred or more.

3.1 Teramac Hardware

Teramac is scalable, with systems comprising one to
sixteen boards. Figure 7 shows four PCB boards with
the attached controller boards and the board to board
connections.

Figure 7: Four PCB boards, connected to each other
with ribbon cable, and to a controller board. The
pins of the MCM can be seen in the middle.

A full sixteen-board system is capable of running
user designs with one million gates at speeds typically
in the range of one megahertz.

A custom field-programmable gate array (FPGA),
called Plasma [1], supplies the majority of Teramac's
programmable resources: gates, crossbars, and multi­
ported register files. Groups of twenty-seven FP­
GAs are assembled into large multi-chip modules
(MCMs) [3] (see Figure 8). Each board contains four
MCMs. Each board also contains four dual-ported
two-megaword by 32-bit RAM's; thus, Teramac's
memory resources are very ample in both capacity
and bandwidth.

The Teramac routing resources, consisting of
crossbars in the FPGAs and wires on the MCMs and
board~, are sufficient for implementing almost any cir­
cuit topology. In particular, user circuits are not lim­
ited to systolic arrays, as they were in earlier custom
computers. Users control Teramac from a host work­
station, which connects to Teramac via a SCSI bus.
The host also provides configurations and I/O.

137

(a) 	 (b)

Figure 8: The Teramac hardware. a) A PLASMA
chip configurable in three seconds. b) MCM with
27 PLASMA chips on it. The interconnections are
handled in 39 layers and over 3,000 output pins.

3.2 Teramac Software

Configurable computers are of limited usefulness un­
less they include software to map designs onto them.
Teramac was designed with the goal that user designs
would be mapped onto it quickly and completely
automatically. To insure that this goal was achieved,
the Teramac hardware and mapping software were
created in tandem. Large designs that fill our eight­
board Teramac system typically are mapped onto the
system in about half an hour, making design itera­
tions reasonably painless.

Users enter their designs into software tools that
transform them in two steps into configurations that
are ready to run on Teramac. For design entry and
the first step of the transformation process, we use
general-purpose digital hardware design tools. To
maximize user productivity, we have chosen tools that
permit the user to express their designs at a high
level of abstraction. These tools use logic synthesis
to automatically convert the highlevel designs into
net lists of simple gates.

The Cube-4 design was created with the Tsut­
suji design system [6J. Tsutsuji accommodates large
designs particularly well and synthesizes them into
gates in just a few minutes. Tsutsuji designs are
hierarchies of block diagrams. The blocks represent
one of three things: subdesigns which are themselves
block diagrams; data path elements (adders, multipli­
ers, multiplexors, etc.) for which Tsutsuji provides an
extensive library of sophisticated module generators;
and subdesigns whose behavior is described in Tsut­
suji '5 textual Logic Description Format (LDF). LDF
is intended for describing state machines, random lo­
gic, and truth tables. We have found that LDF is
also useful for creating parameterized designs. Para­
meterized designs are ideal for parallel applications

because they allow the degree of parallelism in the
design to be scaled t.o fill the available hardware.

The second step of the process of creating config­
urations is called mapping. It is performed by the
Teramac compiler, which was written expressly for
Teramac. It reads the netlists, merges the simple
gates into FPGA-specific gates, performs placement
and routing. and ultimately creates configuration bit­
streams. Figure 9 shows the design-flow for Teramac.
In the following section \\'e introduce the implement­

[Tsutsuji library]--1 Tsutsuji 1-[Private library]

ITsutsuji
.compiler

1 Netlist 1

Teramac

Compiler
j

1 Teramac 1

Figure 9: Design-flow for Teramac.

ation of two Cube-4 prototype designs using the
Teramac system and highlight the achieved results.

4 	 Cube-4 Prototypes on
TeranlaC

Two prototype designs of Cube-4 were implemented
on the Teramac custom computing system. The first
design is based on the sub-volume approach, while
the second uses beam partitioning.

The sub-volume partitioned approach has been
implemented with eight parallel pipelines, shown in
Figure 10. Each pipeline includes the Cubic Frame
Buffer (CFB) volume memory, the CFB address gen­
erator, tri-linear interpolation unit (TRI), and gradi­
ent estimation unit. (GRA). Shading and classification
and compositing have been implemented in software.
To provide the original volume data in a skewed and
partitioned format we use a software front-end writ­
ten in C. A dataset is transformed into a file con­
taining the skewed data of all sub-volumes in sequen­
tial order. This file can then be downloaded into
Teramac memory. Our implementation on Teramac
performs memory access for arbitrary viewing dir­
ections, tri-Iinear interpolation between data slices,
and ABC gradient estimation around sample points.
The resulting sample values and gradient vectors are

138

Figure 10: Block diagram of the sub-volume parti­
tioned implementation.

transfered from the Teramac memory onto the host
computer and processed by the software baek-end.

Our slice-parallel sub-volume partitioned Cube-4
design on Teramac is able to render datasets of size
1283 . Our implementation contains eight renderil1O'
pipelines, although available logic gates on Terama~
would allow to implement a design with 16 pipelines.
The timing results of this design (see Section 6) in­
dicate high performance. The global connectivity re­
quired for the partial result buffers in the compositing
units is the main drawback of the sub-volume parti­
tioned design. Consequently, no further effort was
put into this implementation.

Our second prototype design on Teramac uses
beam partitioning and implements the complete ren­
dering pipelines, including shading (SHA) and com­
positing (COM) (see Figure 11). Because all stages of
the pipeline have been implemented on the Teramac
system, the back-end software has been reduced to
the 2D image warp. This reduces the software calcu­
lations from 3D to 2D, which proves to be a major
breakthrough in performance.

We implemented a minimal Cube-4 configuration
with five parallel rendering pipelines. The limitation
to five pipelines was given due to the structure of the
Teramac system. A total of 256 MByte of memory.
distributed across several memory banks. is available
on Teramac. Our implementation uses memory banks

Figure 11: Overview of the beam-partitioned imple­
mentation with five rendering pipelines. The inter­
connections provided inside the extension units are
only local. not globaL

to realize the plane-buffers, the look-up tables for
opacity, color transfer-functions, and shading para­
meters, as well as the intermediate image buffers in
the compositing units. The restriction of having one
read and one write access to a single memory bank
per cycle forced us to use all available memory banks.

The beam partitioned implementatioll with five
parallel rendering pipelines is able to process data­
sets of 1283 voxels. A dataset is downloaded into
Teramac memory, processed, and the final base-plane
pixels are stored in memory modules at the end of
each rendering pipeline. A software program uploads
the pixel values and performs the 2D image warp from
the base-plane to the image plane. In the following
section we describe the design of the different pipeline
stages in more detail.

139

5 Bean} Partitioned Design

The address of a voxel in volume space can be de­
scribed in terms of a slice inde:r (8_INDEX or S)
in major viewing direction, a beam index (B_INDEX
or B) in scanline direction, a pal'tial beam index
(PH-INDEX or PB) and a (PIPELINE-INDEX) for
the location inside a partial beam. For p = 5 memory
banks, we obtain the address A with the following for­
mula:

2
4 - S 125 B 125 P B (3)"- * 5 + *5+

This formula is used in the CFB to address the
memory banks. The CFB is the main control unit
of each pipeline. It is split up into four sub-units
as shown in Figure 12. The first is the TRA­
VERSAL_UNIT which keeps track of the position of
the currently fetched voxel inside the volume. It con­
sists of three cascaded counters, one for PB_INDEX,
one for B_TNDEX, and one for S_INDEX (see Fig­
ure 5). The values of the three counters are provided
to the other sub-units of the CFB unit. The AD­

"

._, PB_J~DEX

B_f~DEX
VIE\\'_X

S_J~Dr,X

') I I I I IVIEW_X
H-+-+-- \lEW Y

CONTROl.11 r II t,~:;:·rn~:,w
H_lJ'liDEX

s l~D[X

---- PIPfU"E_ISD[X

VIEW_X

"rEW_Y

Figure 12: CFB blockdiagram, PB_INDEX indic­
at.es the index of the current partial beam, while
B_INDEX and S_INDEX indicate the current beam­
and slice-index.

DRESS_UNIT is connected to the voxel memory of
each pipeline, one 8 MByte bank of Teramac memory.
The TEAfPLATE_UNIT generates the resampling
weights for the tri-linear interpolation which are for­
warded to the TRI unit. To reduce the amount of lo­
gic, weights are updated incrementally every time the
S_INDEX changes. The current resampling weights
in X and Yare updated by simply adding t.he com­
ponent.s oHhe viewing vector IlIEILX and VIEW_Y,

respectively, modulo 256 (we use 8 bit for resampling
weights),

The CONTROLUNIT provides the control in­
formation (13 bit, shown in Table 2) forwarded with
data, allowing the other of the pipeline to cor­
rectly align the data. Start and End indicate the
beginning and the end of a volume, Forget marks
invalid values, X-wmp and Y-wrap indicate that a
value is the last one along a ray, old-X-step, old- y­
step, X-step and Y-step (are needed to perform the
gradient correction and compositing) mark discrete
steps along rays inbetween slices. This information is
required to reconstruct the rays. In the TRI unit the

Bit-No.
Signal

D
Start

1
End

2
Forget

Bit-No,
Signal

3/4
X/V-wrap

5,6/7,8
old-X/Y-step

9,10/11,12
X/V-step

Table 2: Control signals for the beam partitioned ap­
proach. .' .,

iI).terpolation of the samples is performed using the
weights calculated in the CFB. Seven linear interpol­
ators, each implementing the following formula, are
able to calculate one sample per cycle:

w*vO+(1 w)*vl=(vO-v1)*w+vl (4)

In the GRA unit, samples out of three consecutive
slices are aligned to compute the gray-level gradient
[8]. This unit also performs a correction of the values
to generate a gradient parallel to the Z-axis and to
prevent aliasing [16],

The SHA unit uses the three components of the
gradient for a look-up table based im­

plementation of Phong shading [5]. This Phong
model can be very efficiently implemented using only
1.5 kBytes of memory and four memory accesses per
cycle. We used a four times wider implementation
with 6 KByte lookup-tables because the Teramac lim­
its memory access to one read and write per cycle.

The resulting intensity value is then multiplied
with the classified samples, resulting in red, green,
blue, and opacity values which are then forwarded
to the COM unit. The tables for the classification
of the samples are 32 bit wide and 256 entries deep,
corresponding to the eight bit representation of voxel
values.

In the COM unit, the shaded samples delivered by
the SHA unit are composed to final pixels. The slice
by slice order requires a base-plane buffer for one slice
of intermediate compositing results which has 125*25
entries per pipeline. Incoming shaded samples are

140

directly composed with the corresponding prevIOus
values from the base-plane buffer.

Special attention has to be paid when values not
coming out of the same partial-beam range need to
be forwarded (cases 0, 2, 3 and 4). Figure 13 shows
these cases in which int.ermediate results from adja­
cent partial beams are required. The dark square

With skewing

Pipeline 2 3 401 2 3 401340 1 2 340 1

Figure 13: The five pipelines and their possible values
for the compositing.

indicates the intermediate result that would be for­
warded if no discrete steps in X or Y occur. The
surrounding lighter squares indicate the intermediate
values that are required depending on discrete steps
in X and Y. With skewing, values from adjacent par­
tial beams have to be forwarded in pipeline 0, 1, 2,
and 4.

Figure 14 gives an overview over the COM unit.
An instance of the TRAVERSAL-UNIT of the CFB
is used in the COM unit to keep track of the cur­
rent slice, beam, and partial beam indices. The AD­
DRESSING_UNIT addresses the intermediate com­
positing results which have to be composited with
the shaded samples delivered by the SHA.

Compositing is performed in the COMPOS/T­
lNG_UNIT using front-to-back compositing [11] and
the BASE-PLANE BUFFER is implemented using
Teramac memory. After a ray is finished, it.s value
is output to the Teramac memory together with the
address in X and Y on the base-plane. Otherwise,
the intermediate result is stored inside the base-plane
buffer.

AODRESSJSG_~li

PlUNDEX "IV\DDR
8_1~D£X W_AODR

CONTROL
S_ISDEX 'LADDR f-+4----l
CONTROI~ 'V ADDIt

L.------l-l> VAlIDJlIT

XJt,DDR

Y..ADDR

CO\{POSJUNG_U:-';IT

SHADED_SAMPLES

ISTERMEOfAlLSAMPLES

Figure 14: The COM unit.

6 Results

With the sub-volume design we achieved a frame-rate
of 1.5 Hz using eight parallel rendering pipelines. Us­
ing multiple register- stages in the pipeline allowed us
to optimize the design from the initial 0.37 MHz to
a final frequency of 0.96 MHz. The complete design
of the eight parallel rendering pipelines uses 162,816
marketing gates, where one CFB unit requires 5,578
gates, one TRI unit requires 8,557 gates, and one
GRA unit requires 6,142 gates. The TRI unit re­
quires more gates than any of the other units due
to the multipliers for the seven interpolators used for
tri-linear interpolation.

Figure 15 shows volume rendered images of a
CT scanned lobster with different transfer functions
and different light sources rendered with the sub­
volume partitioned Cube-4 design. The beam par­
titioned implementation with five pipelines is not op­
timized for speed. A SPICE-estimated maximum
clock-rate of almost 0.2 MHz was achieved for 1283

datasets. The resulting frame-rate of 0.5 Hz could be
increased to 2.5 Hz by pipe lining the design further
to a clock frequency of 0.96 MHz. However, our non­
optimized beam partitioned design with five pipelines
is still faster than the optimized sub-volume parti­
tioned design with eight pipelines.

The complete design uses 380,341 marketing
gates, where one CFB unit requires 3,918 gates, one
TRI unit requires 11,037 gates, one GRA unit re­
quires 18,030 gates, one SHA unit requires 13,858
gates, and one COM unit requires 12,861. The lo­
gic needed to implement the beam extensions for
TRI, GRA and SHA stage requires 80,932 marketing
gates. TRI and GRA units have a larger size due to
the necessary partial-beam buffers. Many gates can
be saved if the partial-beam buffers are implemented
with Teramac memory or hardware FIFOs instead of

141

Figure 15: Volume rendered images of a 1283 dataset
of a CT lobster rendered with the sub-volume imple­
mentation of Cube-4 on Teramac.

using the expensive Teramac registers.
In Figure 16 we show the theoretical perform­

ance of Cube-4 beam partitioned design depending
on the size of the dataset and the amount of render­
ing pipelines at a low 30 MHz processing frequency.
Figure 17 shows orthogonal projections of several

Frame n 128 n 256 n=512 n=1024rate ' : : ' : . : : , ,. ~,- ~."" ~ .. ," [" .. <.. '"~ .. ,,} ,,'
: : : : : : : ,

30 •••••• • _'._., •• : _ , ••~ •••••••• ,.~ ••• " •• '._ ". _. >< ••••: •••• ", ., ••C•••.••••• .,.••••• ,
: : . : : ':

•............. j··.············:·······'·········:. : :: .. ········:·Z······· ':
.....;:~...10
: ,: , .

.... ~ . ,,, ,._ .. J.. ,_ ... i... _'" .. j.... "",.,. L... ,.. ".; _,., ,. ;.. _., .. *~
Parallel

I I I I I I I I III rendering
8 16 32 64 128 256 512 1024 pipelines

Figure 16: Possible frame-rates assuming a low 30
MHz processing frequency for different dataset di­
mensions n.

datasets. Those images were rendered completely on
Teramac. Additionally, we implemented a protocol
for generating frames for animations on Teramac.

, (g) (h) (i)

Figure 17: Volume rendering images of 1283 datasets
produced by the beam partitioned implementation of
Cube-4 on Teramac. Each image took 1.5 seconds at
200KHz clock-rate. a) Human MRI head. b) Hip­
pocampal pyramidal cell. c) UNC CT head dataset,
45" rotated. Images d) through f) show the effect
of different opacity and color transfer functions on a
simulated high-potential iron protein dataset. g) MRI
brain. h) Bullfrog ganglion cell. i) Volume sampled
sphere flake.

7 Conclusions

We introduced the slice-parallel Cube-4 design on the
Teramac. Additionally we showed two scalable and
modular partitioning schemes for the slice-parallel ap­
proach and proved the feasibility of the proposed ar­
chitectures by implementing them on the Teramac
system. Simulating architectures of this size is not a
trivial task. Teramac was a valuable tool that allowed
us to efficiently implement those designs in a very
limited time-frame. An important future extension
to the Teramac system is a frame-buffer to display
graphics without uploading results to a host. Fur­
thermore, porting designs to Teramac will be easier
in the future when the software is able to directly
compile a VHDL description.

Implementing Cube-4 on the Teramac system was
a mayor step towards a full-fledged real-time render­
ing system. We were able to prove the feasibility of
the scalable and modular Cube-4 design and got a
first impression of the image quality with the rendered

142

images. The next logical step is to use this exper­
ience to develop a VLSI implementation of Cu1e-4
which will then provide real-time performance for up
to 1024 x 1024 x 1024 dat.asets.

References

[1] 	 R. Amerson, R. Carter. W. Culbertson,
P. Kuekes, and G. Snider. Plasma: An fpga
for million gate systems. In Proceedings of the
ACM/SIGDA International Symposium Oil Field
Progmmmable Gate Armys, pages 10-16, 1996.

[2] 	 R. Amerson, R. J. Carter. W. B. Culbertson,
P. Kuekes, and G. Snider. Teramac - configur­
able custom computing. In Proceedings Of The
1.995 IEEE Symposium On FPGA 's For Custom
Computmg A1achines, pages 32-38, April 1995.
Napa. CA.

[:3] 	 R. Amerson and P. Kuekes. The design of an ex­
t.remely large mCI11-c-a case study. III ThE Inter­
national Joumal of Microcin:uits and Elutmllic
Packaging, pages 3:n-;382, 1994.

[4] 	 ,). M. Arnold, D. A. Buell, and E. G. Davis.
Splash 2. In Proceedings of the 4th AUTlual A CM
. ,:>'ymposium on Pamlld Algorithms all(l A I'chitec­
tuns. pages 316-322. 1992.

[.5] 	 IV[. Bosma. .J. Smil. and ,J. Tenvisscha van
Scheltinga. Design of an on-chip reflectance
map. In Proceedings Of The Twtll Eurogmphics
H/ol'ksllOp On Graphics Hal'dwore, August t995.
l\·laastricht., The Netherlands.

[6] 	 W. B. Culbertson, T. Osame. Y. Otsuru, .J. B.
Shackleford, and M. Tanaka. The HP Tsutsuji
logic synthesis system. Hewlett Packard Jot/mol,
pages 38-51, August 1993.

[7] 	 J. Danskill and P. Hanrahan. Fast algorithms
for volume ray tracing. III ACM SIGGRAPH
Workshop on Volume Visualization, pages 91­
9S, October 1992. Boston, MA,.

[8] 	 K. H. Hoehne and R. Bernstein. Shading 3D­
images frol11 CT using gray-level gradients. IEEE
Transactions On Medical Imaging, MI-5(1}:4fi­
47, March 1986.

[9] 	 A. Kaufman and R. Bakalash. Memory and
processing architecture for 3D voxel-based im­
agery. IEEE Computer Graphics 6 Applications,
8((:i):10-2:3. November 1988.

[10] 	 P. Lacrout.e. Fast volume rendering using a
shear-warp factorization of t.he viewing t.rans­
formation. Technical report, Stanford Uni­
versity, 1995. CSL-TR-9.5-678.

[11] 	 N. Max. Optical models for direct volume ren­
dering. IEEE Tmnsactions on Visualization and
Computer Gmphics, 1(2):99-108. June 1995.

[12] 	 J. V. P.Bertin, D. Roncin. Introduction to pm­
gmmmable active memories, Systolic Army Pro­
cessors. Prentice-Hall, 1989.

[13] 	 H. Pfister and A. Kaufman. Cube-4 a scalable
architecture for real-time volume visualizat.ion.
In ACM/IEEE Symposium On ~olume Visual­
i.:ation, San Francisco, CA, Oct. 1996.

[14] 	 H. Pfister, A. Kaufman, and T.-c. Chiueh. Cube­
3: A real-time archit.ecture for high-resolution·
volume visualization. In ACAf/IEEE Symposium
On Volume Visualization, pages 123-130, Odo­
bel' 1994. Washington. DC. .

[15] 	 H. Pfister, A. Kaufman, and F. Wessels. Towards
a scalable architecture for real-time volume ren­
dering. In Proceedings Of The 10th Eurogmphics
Workshop On Gmphics Hardware, pages 123-­
130, August 1995. ;\·laastricht, The Netherlands.

[16] 	 H. Pfister, F. Wessels, and A. Kaufman. Sheared
interpolation and gradient estimation for real­
t.ime volume-rendering. In Proceedings of the 9th
Burogmphics Workshop On Gmphzcs Hardware,
pages 70-79, September 1994. Oslo, Norway.

[17] 	 R. Yagel and A. Kaufman. Template-based
volume viewing. Computer Gmphics Forum,
11(3):153-167, September 1992.

143

