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Abstract 

We present two implementations of the Cube-4 
volume rendering architecture on the Teramac cus­
tom computing machine. Cube-4 uses a slice­
parallel ray-casting alg01'ithm that allows for a paral­
lel and pipelined implementation of ray-casting with 
tri-linear interpolation and su'rface normal estima­
tion from interpolated samples. Shading, classifica­
tion and compositing are part of rendering pipeline. 
Wzth the partitioning schemes introduced in this pa­
per, Cube-4 is capable of 1'endering lmye datasets 
with a limited number of pipelines. The Teramac 
hardwm'e simulat01' at the Hewlett-Packard research 
laboratories, Palo Alto, CA, on which Cube-4 was 
implemented, belongs to the new class of custom 
computing machines. Teramac combines the speed 
of special-purpose hardware with the flexibility of 
general-purpose computel's. With Teramac as a de­
velopment tool we were able to implement in just five 
weeks working Cube-4 prototypes, capable of rendering 
for example datasets of 1283 voxels in 0.65 seconds 
at 0,96 MHz processing frequency. The performance 
results from these implementations indicate real-time 
performance for high-resolution data-sets. 

Introduction 

Volume rendering is a key technology with increas­
ing importance for the visualization of 3D sampled, 
computed, or modeled datasets. 3D volumetric data 
is delivered by acquisition devices such as biomedical 
scanners (MRI, CT) or acoustic wave devices for geo­
physical explorations, as well as super-computer sim­
ulations and scientific experiments, including aero­
dynamics, weather simulations, material tests, and 
many more, Volume rendering provides a powerful 
technique to reveal the information contained in these 
datasets. 

The computational cost for volume rendering is 
very high and becomes worse for the visualization of 

dynamically changing datasets in real-time, a process 
that is called 4D (spatio-temporal) visualization. Nu­
merous software approaches for interactive rendering, 
mainly based on algorithmic optimizations and large­
scale parallelism, have been introduced, The highest 
performance for rendering of a 25.63 data set at over 
10 frames per second was achieved on an expensive 
16 processor SGI Challenge using the s.hea.r-warp al­
gorithm [10]. This impressive achieve~ent is only 
possible by using lengthy pre-calculations, storage 
of large auxiliary data structures, approximations, 
2D instead of 3D interpolation, and expensive multi­
processor machines. 

Providing real-time volume rendering at a reas­
onable cost with high image quality is the goal of 
special-purpose volume rendering hardware. The 
Cube project [9, 14, 15, 16, 13] for hardware ac­
celerated volume rendering pioneered several volume 
rendering architectures using parallel rendering pro­
cessors and a special interleaved memory organization 
to provide high processing performance and memory 
bandwidth. 

Cube-4, the most recent approach, is a paral­
lel and scalable architecture with modular rendering 
pipelines using only local and fixed bandwidth inter­
connections. Cube-4 is estimated to achieve real-time 
performance (30 frames per second) for example for 
a 5123 dataset with 128 pipelines running only at 
30 MHz. Cube-4 uses 3D interpolation and high­
quality surface normal estimation without any pre­
computations or additional data storage. The per­
formance of Cube-4 grows proportionally with in­
creasing number of pipelines, ultimately limited only 
by memory speeds. The cost-performance ratio of 
Cube-4 is significantly better than existing solutions, 
The Cube-4 algorithm and dataflow have been simu­
lated in C and VHDL. 

This paper describes two prototype implement­
ations of the Cube-4 architecture on the Teramac 
hardware simulator at the Hewlett-Packard research 
laboratories, Palo Alto, CA. Teramac belongs to a 
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new class of machines called custom computing ma­
chines (CCM) which provide the user with a huge 
amount of programmable logic, thus combining the 
speed of special-purpose hardware with the flexibility 
of general-purpose computers. 

In Section 2 we briefly describe the Cube-4 volume 
rendering algorithm and the rendering pipeline de­
rived from this algorithm. We further describe a 
scheme for parallel volume rendering that has been 
implemented on the Teramac machine. We explain 
two partitioning schemes for rendering large volumes 
with a small number of rendering pipelines. Section 3 
gives an overview of t.he Teramac hardware and soft­
ware syst.em. In Section 4 we discuss our two Cube-4 
implementations on the Teramac in more detail and 
present results in the form of performance numbers 
and images. 

Cube-4 

Cube-4 implements ray-casting, one of the the most 
commonly used image-space volume' rendering meth­
ods [7]. Rays are cast from the viewpoint into the 
volume. At evenly spaced locations along each ray a 
sample value is computed using surrounding voxels. 
A surface normal approximation for a sample point 
is obtained by computing the gray-level gradient [8]. 
The so computed surface normal with the 
computed sample value is used to each sample 
a color based on a local shading model and a sample 
opacity. Shaded and classified sample values are com­
posited along the rays into pixel values of the final 
Image. 

To achieve real-time performance we need to re­
move several bottlenecks of the algorithm, 
the most important being the frequent and mostly 
random accesses to memory. Voxels may be addressed 
multiple times due to the non-uniform mapping of 
samples along the rays and the overlap of voxel neigh­
borhoods during independent calculations, namely 
interpolation and gradient estimation. To get a one­
to-one mapping of ray-samples onto voxels we use a 
template-based ray-casting technique first introduced 
by Yagel and Kaufman [17] and shown in Figure L 

Discrete voxel rays with a COHstant stepping of 
one in major viewing direction are sent into the 
volume from each pixel on the base-plane, the face 
of the volumetric dataset that is most perpendicular 
t.o the viewing direction. After the volume has been 
rendered, the base-plane contains a distorted image 
which has to be warped and projected onto the view­
plane [10,17]. 

To achieve the required high memory bandwidth 
we llse a skewed memory organization [9] that allows 
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Figure 1: Base-plane for template based ray-casting. 

for conflict free simultaneous access to a row of voxels 
(called a beam) parallel to one of the major viewing 
axis. A regular volumetric dataset with n3 voxels is 
distributed over n logical memory modules, each ron­
taining n2 words of 8 bits, using the' skewing fu~ction 
(j : [z, y, x] >---to [k, iJ, which maps a voxel with co­
ordinates (z, y, x] (or address [zyx]) in volume space 
to logical memory module k at index i as follows: 

k 	 (x + y + z) mod n O:S k,x,y,z:S (n -1), 

y+:: *n. (1) 

Adjacent voxels of beams in X direction are placed in 
the same relative locations of adjacent memory mod­
ules, (i.e., rows across the memory). This choice of 
X direction storage is arbitrary. For all following de­
scriptions, \\'e choose Z as the major direction and 
beams in X-direction. For the five physical memory 
banks used, a partitioning junction ¢ : [k, i] >---t 

[kp, ip] has to be applied, which partitions the beams 
in X directions, thus re-mapping the skewed memory 
space as follows: 

kp k mod p, 

Zp 	 .nzp + lkJp . (2) 

For example, Figure 2a shows a 43 dataset in its 
local coordinate system, each voxel represented by 
its address a, which is the [zyx] tuple of the local 
coordinates of the voxel. Figure 2b shows the dataset 
stored in p = 4 memory modules and Figure 2c shows 
the arrangement for p = 2. 

For real-time performance the ray-casting al­
gorithm needs to be parallelized. In Cube-4 we im­
plement a form of parallelism called slice-pamllel pro­
cessing. During ray-casting, the volume is t.raversed 
by processing beams along consecutive slices parallel 
to the base-plane. The conceptuaJ dataflow of slice­
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Figure 2: Memory organization for a 4 x 4 x 4 dataset. a) Volume space b) p =4 memory modules c) p = 2 
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memory modules. 

parallel ray-casting is shown in Figure 3. Two con­
secutive slices are required for tri-linear interpolation. 
To reduce the number of memory accesses, the previ­
ously fetched slice is stored in a plane buffer (FIFO) 
so that it can be retrieved without further access to 
the voxel memory. The gradient is computed using 
samples from three slices of interpolated samples [14]. 
The two previously calculated slices of interpolated 
sample are stored in FIFO plane-buffers, delaying 
them by nand 2n cycles, respectively. After shading 
and classification each slice is composited onto the in­
termediate results of the previous slices, yielding the 
final base-plane image after n 2-cycles. 

The slice-parallel approach discussed so far oper­
ates on beams of n voxels, thus requiring n processing 
elements, where n is the dimension of the dataset. 
This leads to an undesirable amount of hardware and 
limits the maximum size of datasets. To render data­
sets of size n3 with p < n processing elements, we 
developed two different approaches called sub-volume 
partitioning and beam partitioning. 

In sub-volume partitioning, a volumetric dataset 
of size nS is divided into smaller sub-volumes of res­
olution p, each being processed by p pipelines. The 
images of each subvolume are combined to yield the 
final image. Our first prototype implementation on 
Teramac, described in Section 4, uses sub-volume par­
titioning. 

However, this first prototype revealed two main 
problems with this approach. First, the voxel neigh­
borhood required for tri-linear interpolation and 
gradient estimation at sub-volume boundaries can 
only be provided by overlap of sub-volumes. As Table 
1 shows. this results in substantial memory overhead, 
which leads to higher execution time (see Section 6). 
The second problem is that rays can traverse multiple 

Rendering pipelines Memory overhead in percent 
p Subvolume size p x p x 128 
8 61 
16 34 
32 18 
64 10 

Table 1: Memory overhead in percent due boundary­
voxel overlap for sub-volume partitioning of a 1283 

dataset. 

sub-volumes for non-orthogonal viewing directions, as 
illustrated in Figure 4. The intermediate compositing 
results for rays that cross the sub-volume boundary 
have to be stored in a buffer so that they can be ac­
cessed during processing of the next sub-volume. The 
order in which the sub-volumes have to be processed 
depends on the viewing direction and the compositing 
order (front-to-back or back-to-front). To access the 
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Figure 3: Dataflow of slice-parallel ray-casting. 
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Figure 4: Sub-volume processing order for front-to­
back compositing and given viewing direction. Inter­
mediate results at sub-volume boundaries have to be 
stored for subsequent processing. 

buffer of intermediate compositing results requires 
global connectivity between processing pipelines. 

These problems with sub-volume partitioning lead 
to the development of beam partitioning. Instead 
of subdividing the volume into subcubes, the size of 
beams is adjusted to the number of processing ele­
ments (see Figure 5). With p processing units beams 
are partitioned into b partial beams of width p, which 
are subsequently processed. 

Beams Slices 
Partial beams 
(p Voxels wide) 

Figure 5: Volume traversal for beam partitioned slice­
parallel ray-casting. 

Similar to sub-volume partitioning, the voxel­
neighborhoods required for tri-linear interpolation 
and gradient estimation need to overlap at the bor­
der of partial beams. For example, tri-linear inter­
polation at the rightmost position of a partial beam 
requires voxels from the partial beam, which will be 
fetched in the next cycle. Using a technique called 
beam extension, these border cases can be handled 
without the overhead in computation and storage of 
sub-volume partitioning (see Figure 6). Partial beam 
i at time t is delayed by one cycle so that the neces­
sary extension for partial beam i can be transfered 
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Figure 6: Beam extension provides the necessary data 
on partial beam boundaries. 

from partial beam i + 1 at time t + 1. 
The next section gives an overview of the Teramac 

system. In Section 4 we describe the sub-volume 
partitioned prototype implementation of Cube-4 on 
Teramac, and Section 5 describes our beam parti­
tioned Cube-4 prototype. 

3 Teramac - a CCM 

The merits of general-purpose versus special-purpose 
computers have long been debated by computer ar­
chitects. The configurable custom machine (CCM) 
[12, 4] is a new class of machine that falls half-way 
between these extremes. Teramac [2], the largest such 
machine built to date, achieves the massive parallel­
ism of special-purpose computers and the reusabil­
ity of general-purpose computers. Teramac provides 
large numbers of programmable gates, wires, and 
memories that can be configured to implement user 
designs. 

Special-purpose architectures have often been pro­
posed to accelerate the solution of compute intensive 
problems. However, these machines are often never 
built because they solve too narrow a range of prob­
lems to justify the cost of their construction. Because 
one custom computer can implement a countless vari­
ety of special-purpose machines, the cost of a cus­
tom computer can often be justified when a special­
purpose computer cannot. When special-purpose 
hardware is built, its correctness and usability can 
be verified first with a custom computer. The high 
speed of custom computing, relative to conventio~al 
software simulations, makes much more exhaustIve 
testing possible. 

General-purpose computers have many virtues: 
they are ubiquitous, inexpensive, and easy to pro­
grall). They typically also have significantly higher 
clock speeds than custom computers. However, be­
cause general-purpose computers execute at most a 
handful of inst:rudions per clock cycle while cus­
tom computers perform hundreds, custom computers 

are potentially much faster. On many applications, 
Teramac has out-performed high-performance work­
stations by a factor of a hundred or more. 

3.1 Teramac Hardware 

Teramac is scalable, with systems comprising one to 
sixteen boards. Figure 7 shows four PCB boards with 
the attached controller boards and the board to board 
connections. 

Figure 7: Four PCB boards, connected to each other 
with ribbon cable, and to a controller board. The 
pins of the MCM can be seen in the middle. 

A full sixteen-board system is capable of running 
user designs with one million gates at speeds typically 
in the range of one megahertz. 

A custom field-programmable gate array (FPGA), 
called Plasma [1], supplies the majority of Teramac's 
programmable resources: gates, crossbars, and multi­
ported register files. Groups of twenty-seven FP­
GAs are assembled into large multi-chip modules 
(MCMs) [3] (see Figure 8). Each board contains four 
MCMs. Each board also contains four dual-ported 
two-megaword by 32-bit RAM's; thus, Teramac's 
memory resources are very ample in both capacity 
and bandwidth. 

The Teramac routing resources, consisting of 
crossbars in the FPGAs and wires on the MCMs and 
board~, are sufficient for implementing almost any cir­
cuit topology. In particular, user circuits are not lim­
ited to systolic arrays, as they were in earlier custom 
computers. Users control Teramac from a host work­
station, which connects to Teramac via a SCSI bus. 
The host also provides configurations and I/O. 
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(a) 	 (b) 

Figure 8: The Teramac hardware. a) A PLASMA 
chip configurable in three seconds. b) MCM with 
27 PLASMA chips on it. The interconnections are 
handled in 39 layers and over 3,000 output pins. 

3.2 Teramac Software 

Configurable computers are of limited usefulness un­
less they include software to map designs onto them. 
Teramac was designed with the goal that user designs 
would be mapped onto it quickly and completely 
automatically. To insure that this goal was achieved, 
the Teramac hardware and mapping software were 
created in tandem. Large designs that fill our eight­
board Teramac system typically are mapped onto the 
system in about half an hour, making design itera­
tions reasonably painless. 

Users enter their designs into software tools that 
transform them in two steps into configurations that 
are ready to run on Teramac. For design entry and 
the first step of the transformation process, we use 
general-purpose digital hardware design tools. To 
maximize user productivity, we have chosen tools that 
permit the user to express their designs at a high 
level of abstraction. These tools use logic synthesis 
to automatically convert the highlevel designs into 
net lists of simple gates. 

The Cube-4 design was created with the Tsut­
suji design system [6J. Tsutsuji accommodates large 
designs particularly well and synthesizes them into 
gates in just a few minutes. Tsutsuji designs are 
hierarchies of block diagrams. The blocks represent 
one of three things: subdesigns which are themselves 
block diagrams; data path elements (adders, multipli­
ers, multiplexors, etc.) for which Tsutsuji provides an 
extensive library of sophisticated module generators; 
and subdesigns whose behavior is described in Tsut­
suji '5 textual Logic Description Format (LDF). LDF 
is intended for describing state machines, random lo­
gic, and truth tables. We have found that LDF is 
also useful for creating parameterized designs. Para­
meterized designs are ideal for parallel applications 

because they allow the degree of parallelism in the 
design to be scaled t.o fill the available hardware. 

The second step of the process of creating config­
urations is called mapping. It is performed by the 
Teramac compiler, which was written expressly for 
Teramac. It reads the netlists, merges the simple 
gates into FPGA-specific gates, performs placement 
and routing. and ultimately creates configuration bit­
streams. Figure 9 shows the design-flow for Teramac. 
In the following section \\'e introduce the implement­

[Tsutsuji library ]--1 Tsutsuji 1-[Private library] 

ITsutsuji 
.compiler 

1 Netlist 1 

Teramac 

Compiler
j

1 Teramac 1 

Figure 9: Design-flow for Teramac. 

ation of two Cube-4 prototype designs using the 
Teramac system and highlight the achieved results. 

4 	 Cube-4 Prototypes on 
TeranlaC 

Two prototype designs of Cube-4 were implemented 
on the Teramac custom computing system. The first 
design is based on the sub-volume approach, while 
the second uses beam partitioning. 

The sub-volume partitioned approach has been 
implemented with eight parallel pipelines, shown in 
Figure 10. Each pipeline includes the Cubic Frame 
Buffer (CFB) volume memory, the CFB address gen­
erator, tri-linear interpolation unit (TRI), and gradi­
ent estimation unit. (GRA). Shading and classification 
and compositing have been implemented in software. 
To provide the original volume data in a skewed and 
partitioned format we use a software front-end writ­
ten in C. A dataset is transformed into a file con­
taining the skewed data of all sub-volumes in sequen­
tial order. This file can then be downloaded into 
Teramac memory. Our implementation on Teramac 
performs memory access for arbitrary viewing dir­
ections, tri-Iinear interpolation between data slices, 
and ABC gradient estimation around sample points. 
The resulting sample values and gradient vectors are 
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Figure 10: Block diagram of the sub-volume parti­
tioned implementation. 

transfered from the Teramac memory onto the host 
computer and processed by the software baek-end. 

Our slice-parallel sub-volume partitioned Cube-4 
design on Teramac is able to render datasets of size 
1283 . Our implementation contains eight renderil1O' 
pipelines, although available logic gates on Terama~ 
would allow to implement a design with 16 pipelines. 
The timing results of this design (see Section 6) in­
dicate high performance. The global connectivity re­
quired for the partial result buffers in the compositing 
units is the main drawback of the sub-volume parti­
tioned design. Consequently, no further effort was 
put into this implementation. 

Our second prototype design on Teramac uses 
beam partitioning and implements the complete ren­
dering pipelines, including shading (SHA) and com­
positing (COM) (see Figure 11). Because all stages of 
the pipeline have been implemented on the Teramac 
system, the back-end software has been reduced to 
the 2D image warp. This reduces the software calcu­
lations from 3D to 2D, which proves to be a major 
breakthrough in performance. 

We implemented a minimal Cube-4 configuration 
with five parallel rendering pipelines. The limitation 
to five pipelines was given due to the structure of the 
Teramac system. A total of 256 MByte of memory. 
distributed across several memory banks. is available 
on Teramac. Our implementation uses memory banks 

Figure 11: Overview of the beam-partitioned imple­
mentation with five rendering pipelines. The inter­
connections provided inside the extension units are 
only local. not globaL 

to realize the plane-buffers, the look-up tables for 
opacity, color transfer-functions, and shading para­
meters, as well as the intermediate image buffers in 
the compositing units. The restriction of having one 
read and one write access to a single memory bank 
per cycle forced us to use all available memory banks. 

The beam partitioned implementatioll with five 
parallel rendering pipelines is able to process data­
sets of 1283 voxels. A dataset is downloaded into 
Teramac memory, processed, and the final base-plane 
pixels are stored in memory modules at the end of 
each rendering pipeline. A software program uploads 
the pixel values and performs the 2D image warp from 
the base-plane to the image plane. In the following 
section we describe the design of the different pipeline 
stages in more detail. 

139 



5 Bean} Partitioned Design 

The address of a voxel in volume space can be de­
scribed in terms of a slice inde:r (8_INDEX or S) 
in major viewing direction, a beam index (B_INDEX 
or B) in scanline direction, a pal'tial beam index 
(PH-INDEX or PB) and a (PIPELINE-INDEX) for 
the location inside a partial beam. For p = 5 memory 
banks, we obtain the address A with the following for­
mula: 

2 
4 - S 125 B 125 P B (3)"- * 5 + *5+ 

This formula is used in the CFB to address the 
memory banks. The CFB is the main control unit 
of each pipeline. It is split up into four sub-units 
as shown in Figure 12. The first is the TRA­
VERSAL_UNIT which keeps track of the position of 
the currently fetched voxel inside the volume. It con­
sists of three cascaded counters, one for PB_INDEX, 
one for B_TNDEX, and one for S_INDEX (see Fig­
ure 5). The values of the three counters are provided 
to the other sub-units of the CFB unit. The AD­

" 

._, PB_J~DEX 

B_f~DEX
VIE\\'_X 

S_J~Dr,X 

') I I I I IVIEW_X 
H-+-+-- \lEW Y 

CONTROl.11 r II t,~:;:·rn~:,w
H_lJ'liDEX 

s l~D[X 


---- PIPfU"E_ISD[X 

VIEW_X 

"rEW_Y 


Figure 12: CFB blockdiagram, PB_INDEX indic­
at.es the index of the current partial beam, while 
B_INDEX and S_INDEX indicate the current beam­
and slice-index. 

DRESS_UNIT is connected to the voxel memory of 
each pipeline, one 8 MByte bank of Teramac memory. 
The TEAfPLATE_UNIT generates the resampling 
weights for the tri-linear interpolation which are for­
warded to the TRI unit. To reduce the amount of lo­
gic, weights are updated incrementally every time the 
S_INDEX changes. The current resampling weights 
in X and Yare updated by simply adding t.he com­
ponent.s oHhe viewing vector IlIEILX and VIEW_Y, 

respectively, modulo 256 (we use 8 bit for resampling 
weights), 

The CONTROLUNIT provides the control in­
formation (13 bit, shown in Table 2) forwarded with 
data, allowing the other of the pipeline to cor­
rectly align the data. Start and End indicate the 
beginning and the end of a volume, Forget marks 
invalid values, X-wmp and Y-wrap indicate that a 
value is the last one along a ray, old-X-step, old- y­
step, X-step and Y-step (are needed to perform the 
gradient correction and compositing) mark discrete 
steps along rays inbetween slices. This information is 
required to reconstruct the rays. In the TRI unit the 

Bit-No. 
Signal 

D 
Start 

1 
End 

2 
Forget 

Bit-No, 
Signal 

3/4 
X/V-wrap 

5,6/7,8 
old-X/Y-step 

9,10/11,12 
X/V-step 

Table 2: Control signals for the beam partitioned ap­
proach. .' ., 

iI).terpolation of the samples is performed using the 
weights calculated in the CFB. Seven linear interpol­
ators, each implementing the following formula, are 
able to calculate one sample per cycle: 

w*vO+(1 w)*vl=(vO-v1)*w+vl (4) 

In the GRA unit, samples out of three consecutive 
slices are aligned to compute the gray-level gradient 
[8]. This unit also performs a correction of the values 
to generate a gradient parallel to the Z-axis and to 
prevent aliasing [16], 

The SHA unit uses the three components of the 
gradient for a look-up table based im­

plementation of Phong shading [5]. This Phong 
model can be very efficiently implemented using only 
1.5 kBytes of memory and four memory accesses per 
cycle. We used a four times wider implementation 
with 6 KByte lookup-tables because the Teramac lim­
its memory access to one read and write per cycle. 

The resulting intensity value is then multiplied 
with the classified samples, resulting in red, green, 
blue, and opacity values which are then forwarded 
to the COM unit. The tables for the classification 
of the samples are 32 bit wide and 256 entries deep, 
corresponding to the eight bit representation of voxel 
values. 

In the COM unit, the shaded samples delivered by 
the SHA unit are composed to final pixels. The slice 
by slice order requires a base-plane buffer for one slice 
of intermediate compositing results which has 125*25 
entries per pipeline. Incoming shaded samples are 
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directly composed with the corresponding prevIOus 
values from the base-plane buffer. 

Special attention has to be paid when values not 
coming out of the same partial-beam range need to 
be forwarded (cases 0, 2, 3 and 4). Figure 13 shows 
these cases in which int.ermediate results from adja­
cent partial beams are required. The dark square 

With skewing 

Pipeline 2 3 401 2 3 401340 1 2 340 1 

Figure 13: The five pipelines and their possible values 
for the compositing. 

indicates the intermediate result that would be for­
warded if no discrete steps in X or Y occur. The 
surrounding lighter squares indicate the intermediate 
values that are required depending on discrete steps 
in X and Y. With skewing, values from adjacent par­
tial beams have to be forwarded in pipeline 0, 1, 2, 
and 4. 

Figure 14 gives an overview over the COM unit. 
An instance of the TRAVERSAL-UNIT of the CFB 
is used in the COM unit to keep track of the cur­
rent slice, beam, and partial beam indices. The AD­
DRESSING_UNIT addresses the intermediate com­
positing results which have to be composited with 
the shaded samples delivered by the SHA. 

Compositing is performed in the COMPOS/T­
lNG_UNIT using front-to-back compositing [11] and 
the BASE-PLANE BUFFER is implemented using 
Teramac memory. After a ray is finished, it.s value 
is output to the Teramac memory together with the 
address in X and Y on the base-plane. Otherwise, 
the intermediate result is stored inside the base-plane 
buffer. 

AODRESSJSG_~li 

PlUNDEX "IV\DDR 
8_1~D£X W_AODR 
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Figure 14: The COM unit. 

6 Results 

With the sub-volume design we achieved a frame-rate 
of 1.5 Hz using eight parallel rendering pipelines. Us­
ing multiple register- stages in the pipeline allowed us 
to optimize the design from the initial 0.37 MHz to 
a final frequency of 0.96 MHz. The complete design 
of the eight parallel rendering pipelines uses 162,816 
marketing gates, where one CFB unit requires 5,578 
gates, one TRI unit requires 8,557 gates, and one 
GRA unit requires 6,142 gates. The TRI unit re­
quires more gates than any of the other units due 
to the multipliers for the seven interpolators used for 
tri-linear interpolation. 

Figure 15 shows volume rendered images of a 
CT scanned lobster with different transfer functions 
and different light sources rendered with the sub­
volume partitioned Cube-4 design. The beam par­
titioned implementation with five pipelines is not op­
timized for speed. A SPICE-estimated maximum 
clock-rate of almost 0.2 MHz was achieved for 1283 

datasets. The resulting frame-rate of 0.5 Hz could be 
increased to 2.5 Hz by pipe lining the design further 
to a clock frequency of 0.96 MHz. However, our non­
optimized beam partitioned design with five pipelines 
is still faster than the optimized sub-volume parti­
tioned design with eight pipelines. 

The complete design uses 380,341 marketing 
gates, where one CFB unit requires 3,918 gates, one 
TRI unit requires 11,037 gates, one GRA unit re­
quires 18,030 gates, one SHA unit requires 13,858 
gates, and one COM unit requires 12,861. The lo­
gic needed to implement the beam extensions for 
TRI, GRA and SHA stage requires 80,932 marketing 
gates. TRI and GRA units have a larger size due to 
the necessary partial-beam buffers. Many gates can 
be saved if the partial-beam buffers are implemented 
with Teramac memory or hardware FIFOs instead of 
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Figure 15: Volume rendered images of a 1283 dataset 
of a CT lobster rendered with the sub-volume imple­
mentation of Cube-4 on Teramac. 

using the expensive Teramac registers. 
In Figure 16 we show the theoretical perform­

ance of Cube-4 beam partitioned design depending 
on the size of the dataset and the amount of render­
ing pipelines at a low 30 MHz processing frequency. 
Figure 17 shows orthogonal projections of several 
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Figure 16: Possible frame-rates assuming a low 30 
MHz processing frequency for different dataset di­
mensions n. 

datasets. Those images were rendered completely on 
Teramac. Additionally, we implemented a protocol 
for generating frames for animations on Teramac. 

, (g) (h) (i) 

Figure 17: Volume rendering images of 1283 datasets 
produced by the beam partitioned implementation of 
Cube-4 on Teramac. Each image took 1.5 seconds at 
200KHz clock-rate. a) Human MRI head. b) Hip­
pocampal pyramidal cell. c) UNC CT head dataset, 
45" rotated. Images d) through f) show the effect 
of different opacity and color transfer functions on a 
simulated high-potential iron protein dataset. g) MRI 
brain. h) Bullfrog ganglion cell. i) Volume sampled 
sphere flake. 

7 Conclusions 

We introduced the slice-parallel Cube-4 design on the 
Teramac. Additionally we showed two scalable and 
modular partitioning schemes for the slice-parallel ap­
proach and proved the feasibility of the proposed ar­
chitectures by implementing them on the Teramac 
system. Simulating architectures of this size is not a 
trivial task. Teramac was a valuable tool that allowed 
us to efficiently implement those designs in a very 
limited time-frame. An important future extension 
to the Teramac system is a frame-buffer to display 
graphics without uploading results to a host. Fur­
thermore, porting designs to Teramac will be easier 
in the future when the software is able to directly 
compile a VHDL description. 

Implementing Cube-4 on the Teramac system was 
a mayor step towards a full-fledged real-time render­
ing system. We were able to prove the feasibility of 
the scalable and modular Cube-4 design and got a 
first impression of the image quality with the rendered 
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images. The next logical step is to use this exper­
ience to develop a VLSI implementation of Cu1e-4 
which will then provide real-time performance for up 
to 1024 x 1024 x 1024 dat.asets. 
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