
Evaluation of a Real-Time Direct Volume

Rendering System

M. de Boer, J. Hesser, A. Gropl, T. Gunther, C. Poliwoda, C. Reinhart, R. Manner
Lehrstuhl fUr Informatik V, Universitat Mannheim, D-68131 Mannheim, Germany

guenther@mp-sunl.informatik.uni-mannheim.de

Summary ,.
VIRIM, a real-time direct volume rendering system is evaluated

for medical applications. Experiences concerning the hardware

architecture are discussed. The issues are the flexibility of

VIRIM, the restriction to two gradient components only, the

duplication of the volume data sets on different modules, the

size of the volume data set, the gray-value segmentation tool,

and the support of algorithmic improvements like space-

leaping, early ray-termination and others.

It turned out that flexibility is the main benefit and absolutely

necessary for VIRIM. Given this flexibility the application

areas of real-time rendering systems increase dramatically:

Most of the user requirements focus now not on visualization

but on general volume data processing. The most serious bot­

tleneck of VIRIM is the limited volume memory that is inte­

grated on the first prototype.

The most frequently used tool of VIRIM is gray-value segmen­

tation. It is highly useful if original, i.e. unsegmented data

have to be dealt with, and if pre-segmented data have to be

investigated.

All other benefits and architectural shortcomings are not criti­

cal for th,e application areas of VIRIM, i.e. operation simula­

tion and control in head surgery.

Introduction

In many time critical applications like medical operation simu­

lation and control, real-time frame rates are a prerequisite for

the acceptance of direct volume rendering by the user. The real­

time condition can be met by two different approaches, by

optimizing the underlying algorithms and by using special

purpose hardware. Both approaches have been successfully

applied. Lacroute and Levoy [I] have demonstrated that render­

ing of a 2563 data set on a 16-processor SGI Challenge is pos­

sible under some restrictions: The incident light is parallel,

shear-warp is applied, and a preprocessing step of approxi­

mately I minute is necessary where e.g. gradients are precalcu­

lated and the data set is prepared for rendering (e.g. run-length

encoding in three coordinate directions). Hightr performance

processors and faster cache memory will speed-up these ap­

proaches in the next years by reducing the pre computation as

well as the rendering time.

Knittel [2J has presented a small PCI card solution that allows

to generate frame rates of approximately 5 Hz on 2563 data sets

121

mailto:guenther@mp-sunl.informatik.uni-mannheim.de
http://www.eg.org
http://diglib.eg.org

by using space-leaping and adaptive supersampling. He uses

preprocessing that takes several minutes (30 were mentioned)

to code the data set. Distance coding and a lossy fusion of 8

sub-cubic neighborhoods into a 32 bit word are realized in this

phase. During rendering each 32 bit word contains the informa­

tion for resampling one point in the volume. The main memory

of the PC serves as volume memory for the rendering system;

which keeps the size and the cost of the PCI board low.

The DIV2A system of Lichtermann [3] is a relatively flexible

system for direct volume rendering. It uses space-leaping and

early ray-termination to speed-up rendering by up to an esti­

mated factor of 20. Three special purpose ASIC!> have been

produced to resampie points in the ~ata volume in several cy­

cles per resampling point and to provide the resampled values

and the estimated gradients to a digital signal processor for

rendering. The volume memory is realized in SRAM and volume

data is stored in an interleaved way. However memory usage is

only 50% in order to reduce inter-processor communication.

All three systems require appropriate data to achieve the re­

quired real-time frame rates. However these approaches fail to

give the desired performance for semi-transparent objects. For

such cases different systems have to be proposed or realized.

One commercial system is the RealityEngine of SGI [4]. With

the volume texture hardware it performs the oomJ)('si-ting step

of the rendering algorithm in real-time (10 Hz for 256' data

sets). However shading must be precomputed.

Cube-4 [5] that is currently simulated by an FPGA multi-chip

module allows to process a full scanline in parallel by using a

skewed memory architecture (cubic-memory) and locally con­

nected pipeline processors for rendering. The system promises

a maximal rendering rate of 30 Hz for 10243 data sets by using

I024 memory banks and the same number of processors each

working at 30 MHz.

Vogue [6] is a realization that uses 4 dedicated ASICs into

which the full rendering algorithm is mapped. It has been suc­

cessfully simulated and it is assumed to be integratable as a

"pizza-box" solution.

In contrast to other systems that have been suggested, simu­

lated, or emulated only, VIRIM is a fully operational prototype

for real-time direct volume rendering which has been in use

since June 1995 [7]. rt is designed for maximal flexibility at

moderate cost. It will be described below in more detail. Both

architecture and implemented algorithms are shortly men­

tioned. Operation simulation and control, where VIRIM has

been evaluated first, has particularly difficult real-time de­

mands. Experiences made during the evaluation phase are dis­

cussed below. The outlook describes the improvements planned

for redesign of the hardware.

VIRIM Architecture
VIRIM uses image space parallelism for rendering (see Fig. I).

First the object data set is resampled into an image data set

where one coordinate direction (y) coincides with the main

viewing direction. The x direction is parallel to the scanlines.

Two light sources are used where the light rays are parallel to

the x-y plane of the image data set. One light source lies in the

direction of the viewer, the other 45° apart from the first one

[7].

After this geometry operation rendering is performed on the x­

y-slices of the image data set.

The architecture of the VIRIM system corresponds to this ap­

proach. It consists of two components (see Fig. 2), a geometry

unit and a ray-cast unit.

The geometry unit is used for resampling, perspective calcula­

tion, and gradient estimation. Since it requires full access to the

volume memory it has been designed for maximum speed in

122

order to reduce the number of geometry units to a minimum that

allows to mitigate object data set distribution problems on

several volume memories. The geometry unit is integrated into

a parallel pipeline processor that generates each clock cycle

(20-40 MHz) one sample point and its two gradient compo­

nents.

Object Data Set Image Data Set

_R_e_sam_p_le--....(~ Slice

ii I ~
-/Render l

/1 1)1

§:"nlin"
Fig. I: Sketch of the image parallel approach of VIRIM. First
the object data set is resampled into an image data set. Each
slice of the image data set supplies the information for render­
ing one scanline of the projection.

The ray-cast unit performs the remaining rendering operations

in a programmable way on a multiprocessor consisting of

digital signal processors (DSPs). Since only x and y gradient

components are used for shading, each scanline can be proc­

essed independently from others and no communication is

necessary between the DSPs.

Geometry unit and ray-cast unit are connected by a 240

MBytes/s fast bus that transfers sample point density and its

two gradient components. Each geometry unit supplies data for

8 to 128 DSPs. At a 20 MHz data rate 16 DSPs are required per

geometry unit to harness its full speed.

Fig. 2: Picture of VIRIM. The two outer boards are the ray-cast
unit, the two inner boards the geometry unit. All four boards as
well as a host workstation are connected by a ¥ME bus. The
geometry-ray-cast bus is integrated in the customized ¥ME
backplane.

Implemented Rendering Al­
gorithnlS

VIRIM is designed for maximal flexibility in real-time volume

rendering. Currently four different algorithms are implemented,

maximum intensity projection, ray-casting, and two volume

ray-tracing algorithms.

Maximum intensity projection (MIP) [10] is a commonly used

projection method to display volume information. The projec­

tion is generated by determining the maximum gray-value

along each ray cast from an image pixel into the data set. The

main application area in medicine is angiography where the

only objects that give contrast are blood vessels; which are

displayed and which can be viewed from any direction.

123

One standard rendering algorithm is ray-casting. From each

image pixel a ray enters the virtual scene. At equally spaced

positions on the rays sample points are interpolated from their

8 neighboring voxels in the object data set by e.g. trilinear

interpolation. Gradients are estimated and shading is performed

on each sample point. Gradients are determined by local differ­

ence filters. Shading is calculated according to reflectance

models like Phong shading where it is assumed that each sam­

ple point obtains a constant intensity of light from each light

source. Finally, the contributions of the rays' sample points

are composited into the final projection using the over opera­

tor [II].

Our implementation on VIRIM differs from that of Levoy [8] by

two modifications. First, only two gradient components, one

parallel to the scanline and one parallel to the main viewing

direction, are calculated. Second, the classification step for

assigning opacity to interpolated sample points is reduced to

gray-values only instead of gray-values and gradient magni­

tude.

The third class of algorithms are volume ray-tracing algo­

rithms. In contrast to ray-casting volume ray-tracing takes into

account the absorption of incident light during its way through

the data volume to the sample point. Two light sources are used

in order to avoid totally black areas. Volume ray-tracing thus

allows to generate shadows that are helpful in some applica­

tions [12].

We have implemented two different algorithms of this class,

the Heidelberg Ray tracer and the V[RlM ray-tracer. The Heidel­

berg Ray tracer realizes Phong shading and compositing in an

unusual way. Unnormalized gradient components are used for

Phong shading. All reflection coefficients are multiplied by

gradient magnitudes. Additionally, the ambient component is

neglected in favor of a component that emits light proportion­

ally to the local density. Also an unusual compositing opera­

tion is applied. The standard compositing multiplies the light

from backward by the transparency of the voxel, the reflected

light by the opacity (=l-transparency), and adds up both con­

tributions. In the Heidelberg Ray tracer the reflected component

is not weighted and therefore the contrast in the image is lower

than that for ray-casters.

The VIruM ray-tracer in contrast uses standard Phong shading

with normalized gradient components and standard compo­

siting; which gives sharp images but is prone to artifacts.

Most of the artifacts vanish if supersampling is used.

During our evaluation phase we experienced with all four im­

plemented algorithms and came to the following conclusions:

Maximum intensity projection is nearly always unsuited for

representing volume information. The standard ray-casting

approach turns out to be very useful for stereo projection, i.e.,

if two images are calculated with a 4° inclination and a shift due

to the eye distance --each such image is presented to one of the

viewers' eyes. Since ray-casting does not produce shadows the

viewer can look into caverns and perceives their depth. How­

ever it seems as if these caverns are illuminated from inside.

Algorithms that produce shadows obscure such caverns and the

3D-effect is restricted ~o ooFfaees only.

If however the normal (non-stereo) display mode is used, cav­

erns are difficult to detect with the standard ray-casting ap­

proach since the perception of depth is insufficient. Shadows

that are generated by the volume ray-tracing algorithms help

the viewer to detect them and to better perceive their form (see

Fig. 3).

124

Fig. 3: Visualization of a human heart cut into halves. Top:
Rendered with volume ray-tracing; Bottom: Rendered with ray­
casting. As can be seen the caverns are more clearly visible due
to the shadowing generated with volume ray-tracing.

Application Area
VIRIMs first application area is the support for operation

simulation and control in minimal invasive head surgery.

During both operation planning and control the interface to the

user is realized by a tracking system. The tracking system

consists of a magnetic source and several sensors in a stick-

like instrument (or the real endoscope); which allow to deter­

mine its position and orientation with a spatial resolution of a

few millimeters. The stick thus represents an input device with

6 degrees of freedom that is used to steer the visualization

process. This instrument is either used like an endoscope

whose position and orientation in the virtual head determines

which view is computed. Alternatively a fixed view is chosen

in which the movement of instruments like endoscopes, scal­

pels, forceps, etc. is displayed.

During operation simulation the problem arises how to access

the operation area with minimal risk to injure blood vessels,

nerves, eye or brain. A pre-operative segmentation assigns to

each voxel of the data set its respective object like tissue,

blood vessel etc. These data are loaded on VIRIM and the sur­

geon can begin the operation planning ta-sk. The surgeon uses

the input device as if he/she operates with the real endoscope in

the real patient. Tasks like finding the optimal access path and

the lesion-volume that is to be removed can be planned.

In the operation control phase the real endoscope replaces the

former input-stick to be tracked. Its actual position is compared

in real-time with the pre-planned path. Two images are pre­

sented to the surgeon: one created by the real endoscope

(optically or by camera), and one computed from the patient's

data by the visualization system. Both images show always the

same view although the computed image can be manipulated by

an appropriate choice of the visualization parameters. A semi­

transparent view, e.g., allows to see normally invisible struc­

tures like blood vessels or nerves hidden below the visible

surface. Moreover the actual instrument-position can be

checked continuously against the preplanned position and any

deviation can create warnings. Should it be necessary to alter

the access path during operation the modified operation can be

simulated on-line.

In May 1996 VIRIM has been successfully installed in the

Clinic for Head Surgery at the University of Heidelberg.

125

Experiences and Discussion
This section describes the experiences that have been made

during the first year of use of the prototype. Several critical

points have been identified.

Volume memory: One of the most serious obstacles for

using VIRIM is the limitation of the volume memory size.

Modem imaging devices like CTs generate slices with a

5l2x5l2 pixel resolution; industrial CTs generate even

larger slices. Another source of large data sets is 4D visu­

alization where 3D data sets are imaged at different times.

VIRIM allows to visualize 4D data by switching between

the 3D cubes and thus generates images of moving 3D data

sets.

As consequence the 25e volume memory size is too small

and will be changed for the next version.

Data set duplication: Another critical point seems to

be data set duplication which would be required if multiple

modules were used. However currently the rendering speed

of one module is fast enough for most users. A full-scale

system with four or more modules is thus not expected to

be built in the next future.

Gray-value segmentation: The possibility to ma­

nipulate gray-values during visualization turned out to be

an extraordinary valuable tool. It is permanently used and

its functionality is steadily increased taking into account

practical experiences with VIRIM. It works as follows: In

pre-segmented data, e.g., different objects in the volume

are marked by a different code that forms, together with the

gray-value of the voxel, a 16 bit word (see Fig. 4). A

64kx 16 look-up-table in the geometry unit allows to

transform the original gray-values of the object data set

into opacity values. In this look-up-table each object is

assigned a segment of size 2" that defines the opacity

mapping for all of its voxels in the object data set.

m n

Gray-Value

16 Bit

Fig. 4: A 16 bit voxel word consisting of object identification
bits and gray-value.

By individually manipulating these segments the opacity

of all objects can be manipulated without interference with

other objects. An example is the MRI data set of a human

head shown in fig. 5. After segmentation of eye, brain,

skull, and skull ceiling, each of these objects is assigned a

2 bit code (in this case m = 2). The user interface allows to

call these objects by name which is coded in the data set

format. During visualization the skull ceiling, e.g., can be

set to semi-transparent by pressing the corresponding but­

ton and by changing its transparency (see Fig. 5) interac­

tively.

A newer application is operation simulation. Here an

instrument is immersed into the data volume. The instru­

ment is generated by the host computer by writing its

shape directly into the volume data. The movements of the

instrument in the volume data can be used for removing the

corresponding virtual tissue. This is achieved by marking

all voxels that are touched by the instrument with a bit

code and by using the gray-value segmentation tool to set

all such marked voxels to transparent (see Fig. 6).

This tool is used to simulate an access and can be used to

quantitatively measure which amount of tissue to remove

during operation.

126

Fig. 5: An MRI head is rendered. The skull ceiling is segmented
from the remaining head. It is rendered semi-transparently.
Below the semi-transparent ceiling the brain is visible.

Fig. 6: A typical image generated during operation simulation.
A three-dimensional cross represents the surgical instrument
that removes the tissue locally. Below the opening in the head
the brain is visible.

Look-up tables: One disadvantage of the VIRlM hard­

ware is the lack of a look-up table (LUT) after resampling

or interpolation of data set voxels. We have observed that

setting the opacity of objects with the gray-value segmen­

tation LUT alone leads to some blurring of the objects dur­

ing visualization (see also [13]). However the decision to

use a look-up table before interpolation allows addition­

ally to handle pre-segmented data which would not be pos­

sible after interpolation. We concluded that a better sys­

tern should support both approaches.

Gradients: More detailed simulations that revealed the

sources of artifacts in the rendering algorithms showed

that, the Sobel operator for gradient estimation can be re­

placed by a simpler difference filter. The lack of the z

component (perpendicular to the scan line and the main

viewing direction; the final projection is given in x-z co­

ordinates) is not a major problem. A typical example

where the difference is seen most obviously is given in the

two images of Fig. 7.

Fig. 7: Top: Rendered image without z gradient. Bottom: Ren­
dered image with z gradient.

Flexibility of VIRIM: One of the major design goals

for the VIRIM system was to keep it maximally flexible. A

127

priori it was not clear which would be the most appropriate

rendering algorithm for the anticipated application areas.

The flexibility is based on a flexible resampling scheme,

on programmable interpolation filters, and on digital sig­

nal processors (DSPs) that perform shading and compo­

siting.

The resampling scheme allows in a programmable way to

resample many individual slices of arbitrary size and ori­

entation from the volume memory, and to transfer the re­

sampled slices to multiple DSPs. In other words, the

VIRIM architecture supports slice-based operations on

volume data very efficiently. These operations can be used

for different purpose.s, e.g. for resampling individual im­

age slices that are directly presented on the computer

screen or for image processing algorithms implemented

on DSPs.

The interpolation filters allow to resample the data set

voxels in a non-linear way instead of trilinar interpola­

tion. It turned out that this is not as important as initially

supposed. Throughout the data sets investigated their con­

tribution to image quality is negligible. The overhead of

using non-linear interpolation is not justifiable to our 6X-.

perience.

Most important however is the free programmability of

the DSPs. This flexibility allowed us to implement the

four different rendering algorithms that have been de­

scribed above. Since the system offers a high data rate be­

tween processors and volume memory as well as a high

processor performance, VIRIM allows to execute arbitrary

image processing algorithms in addition to visualization.

Currently a region-growing algorithm is being imple­

mented for segmenting medical data sets.

Our experiences show that flexibility is most important

for real-time rendering systems which are used for interac­

tive work with the data set.

Algorithmic improvement techniques: In con­

trast to DIY'A, space-leaping, early ray-termination, and

adaptive supersampling have not been implemented for

VIRIM so far.

Adaptive supersampling has a great potential to reduce the

amount of computations at the sacrifice of loosing small

details that can be critical in medicine. Instead we used a

more efficient method, dynamic resolution, that is possi­

ble when operating with volume data at interactive rates.

Dynamic resolution reduces the resolution of the image

data set by a factor of 2 while viewing parameters are

changed thus saving a factor of 8 in rendering time. When­

ever the user keeps the parameters for one image genera­

tion period the image is generated at full resolution.

This feature is used nearly always since it allows to

achieve full interaction speed with one module only.

Space-leaping and early ray-termination are promising in

about 50-70% of all cases (reduction of computational

time by a factor 5-20); in all other cases the user displays

the objects semi-transparently where the performance gain

is estimated to 50%. It seems therefore necessary to incor­

porate these methods in the next generation of renderers

we are currently investigating.

Space-leaping and early ray-termination change the resam­

piing sequence. Space-leaping omits those voxels that are

empty. The information about empty spaces in the volume

128

have to be known before accessing the memory by using a

preprocesing step. During rendering this information has

to be read to generate the required resampling positions ­

this is not supported by VIRIM.

Early ray-termination omits all subsequent sample point for

the considered ray when the light intensity falls below a

threshold. This decision can be used only in the ray-cast

unit in order to stop the geometry unit and change the re­

sampling sequence. Stopping and restarting the geometry

unit however would consume too much time to use this im­

provement technique efficiently.

In order to mitigate the problem for its implementatioif on

VIRIM the slice wise processing of the final projection has

to be replaced by a sub-cube based approach. In this ap­

proach each signal processor of the rendering unit renders

non-intersecting sub-cubes of the object data set. The par­

tial images of each sub-cubes is then composited to the fi­

nal projection. A typical size of such non-intersecting sub­

cubes is 83
•

..... l~ r.....,
."
·"IM

"­ I"'""

"­ l)(

"f'..'"

""
r:.
fl

LX

"­
o empty voltune element

~ opaque volume element
~ opaque voltune element

that need not be considered

Fig. 8: Left: The data structure to describe empty and non­
empty sub-cubes is a three-dimensional binary array. 0 indi­
cates empty, I indicates non-empty sub-cubes. Only a slice of
that array is shown. Right: Light rays illuminate only those
sub-cubes that are not empty. The dark squares are the sub-cubes
that are illuminated first and assigned to signal processors
accordingly. The hatched squares are the sub-cubes that are not

illuminated since the light intensity cast onto these sub-cubes
is below a user-defined threshold.

In a first phase empty sub-cubes must be distinguished from

non-empty sub-cubes. For this purpose the maximum in­

tensity algorithm is used; which returns the largest opacity

in the respective sub-cube. The required time for 2563 data

sets is 0.8 s for one module. These results are stored on the

host system as a list-data structure of non-empty sub-cubes

(see Fig. 8).

In the second phase, the host assigns each signal processor

sub-cubes to render. The assignment of sub-cubes is in

front-to-back order, i.e., the non-empty sub-cubes riearest­

to the viewer are proc1!Ssed first.

The partial image, that is obtained by rendering one sub­

cube, consists of the pixel brightness and the correspond­

ing ray intensity. It is stored in the volume memory.

Before rendering the next layer of sub-cubes by the signal

processors the processors have to check whether the sub-

cube can contribute to the final image, i.e., whether the

calculated ray intensities hitting the sub-cube exceed a user­

defined threshold. Therefore each such processor first reads

the required intensity and the pixel brightness from the

volume memory. The processor integrates the intensity and

compares it with the user-given threshold. If the threshold

is exceeded the processor renders the sub-cube and compos­

ites its partial result with the pixel brightness and updates

the intensity. Both, updated intensity and pixel brightness,

are again stored in the volume memory.

In the other case it directly requests the host for the next

sub-cube to be rendered.

A simulation shows that for typical data sets with hard

surfaces and many empty spaces (e.g. heart data set or visu­

alization of bone of a skull) this approach of space-leaping

129

and early ray-termination reduces the number of rendered

sub-cubes by approximately a factor of 5.

Host assigns non-empty
sub-cube to signal processor.

Resample /' It the maximal ray
ray intensities intensity is below a--+	for assigned user-given threshold
sub-cube from, ask for a new sub-cube
partial images
on.geometry otherwise render sub-cube
umt and store result on

geometry unit

Fig. 9: Implementation of early ray-termination.

Nevertheless the efficiency of this approach is not as good

as pure software solutions (see [I]) although the preproc­

essing time is in the range of a second for one mod'ule;

which is tolerable compared to minutes for other ap­

proaches.

These experiences, made during the first year of operation of

VIRIM, may be biased due to the specific application where the

users work with the data instead of only visualizing them. Due

to our approach the user is tempted to use different techniques

for changing the transparency of the data set, and to move

freely within it.

Outlook

VIRIM is currently being redesigned for commercialization.

The new system will have a larger volume memory of 128 MB

and a look-up table after the interpolation step of the geometry

unit.

Acknowledgments

This work is supported by the Ministry of Education and Re­

search, Germany under grant 01 IR 406 A8 and by the Landes­

forschungsschwerpunktprogramm of Baden-WUrttemberg under

grant 7532.24-2-16.

References

[I] 	 P. Lacroute and M. Levoy. Fast Volume Rendering Using

a Shear-Warp Factorization of the Viewing Transform.

Computer Graphics, Proc. of SIGGRAPH '94, Orlando,

FL, 1994, pp. 451-457.

[2] 	 G. Knittel. A PCI-based Volume Rendering Accelerator.

W. Stral3er, 10th Eurographics Workshop on Graphics

Hardware, Maastricht, The Netherlands, 1995, pp. 73-82.

[3] 	 J. Lichtermann. Design of a Fast Voxel Processor for

Parallel Volume Visualization. W. Stral3er, 10th Euro­

graphics Workshop on Graphics Hardware, Maastricht,

The Netherlands, 1995, pp. 83-92.

[4] 	 R. Fraser. Interactive Volume Rendering using Advanced

Graphics Architectures. SGI Developer News, Dec., 1994,

pp. 5-9.

[5] 	 H.-P. Pfister, A. Kaufman, F. Wessels. Towards a Scalable

Architecture for Real-Time Volume Rendering. 10th Euro­

graphics Workshop on Graphics Hardware, Maastricht,

The Netherlands, 1995, pp. 123-130.

[6] 	 J. Hesser, R. Manner, G. Knittel, W. Strafier, H. Pfister,

A. Kaufman. Three Special-purpose Architectures for

Real-Time Volume Rendering. Eurographics '95, Maas­

tricht, The Netherlands, 1995, pp. C-III-----C-122.

[7] 	 T. GUnther, C. Poliwoda, C. Reinhart, J. Hesser, R. Man­

ner, H.-P. Meinzer, H.-J. Baur. VIRIM: A Massively Par­

allel Processor for Real-Time Volume Visualization in

Medicine. W. Stral3er, 9th Eurographics Workshop on

Graphics Hardware, Oslo, Norway, 1994, pp. 103-108.

[8] 	 M. Levoy. Display of Surfaces from Volume Data. IEEE

CG&A, Vol. 8, No.5, 1988, pp. 29-37.

130

[9] 	 H.-P. Meinzer, K- Meetz, D. Scheppelmann, V. Engel­

mann. The Heidelberg Ray Tracing Model. IEEE CG&A,

Nov. 1991.

[!O) 	 K.-H. Hahne, M. Bomans, A. Pommert, M. Riemer, C.

Schiers, U. Tiede, G. Wiebecke. 3D Visualization of To­

mographic Volume Data using the Generalized Voxel

Model. The Visual Computer, 6, pp. 28-36.

[II) 	J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes. Com­

pUler Graphics: Principles and Practice. Addison Wesley,

Reading, MA, 2d. ed., 1990.

[J 2) 	 H.J. Wieringa. MEG, EEG and the Integration with Mag­
~

netic Resonance Images. Ph.D. thesis, Vniv. Twente, The

Netherlands, 1993.

[13] 	 M. Bosma, J. Smit, J. Terwisscha van Scheltinga. Super

Resolution Volume Rendering Hardware. 10th Euro­

graphics Workshop on Graphics Hardware, Maastricht,

The Netherlands, 1995, pp. 117-122.

131

