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Summary ,. 
VIRIM, a real-time direct volume rendering system is evaluated 

for medical applications. Experiences concerning the hardware 

architecture are discussed. The issues are the flexibility of 

VIRIM, the restriction to two gradient components only, the 

duplication of the volume data sets on different modules, the 

size of the volume data set, the gray-value segmentation tool, 

and the support of algorithmic improvements like space-

leaping, early ray-termination and others. 

It turned out that flexibility is the main benefit and absolutely 

necessary for VIRIM. Given this flexibility the application 

areas of real-time rendering systems increase dramatically: 

Most of the user requirements focus now not on visualization 

but on general volume data processing. The most serious bot­

tleneck of VIRIM is the limited volume memory that is inte­

grated on the first prototype. 

The most frequently used tool of VIRIM is gray-value segmen­

tation. It is highly useful if original, i.e. unsegmented data 

have to be dealt with, and if pre-segmented data have to be 

investigated. 

All other benefits and architectural shortcomings are not criti­

cal for th,e application areas of VIRIM, i.e. operation simula­

tion and control in head surgery. 

Introduction 

In many time critical applications like medical operation simu­

lation and control, real-time frame rates are a prerequisite for 

the acceptance of direct volume rendering by the user. The real­

time condition can be met by two different approaches, by 

optimizing the underlying algorithms and by using special 

purpose hardware. Both approaches have been successfully 

applied. Lacroute and Levoy [I] have demonstrated that render­

ing of a 2563 data set on a 16-processor SGI Challenge is pos­

sible under some restrictions: The incident light is parallel, 

shear-warp is applied, and a preprocessing step of approxi­

mately I minute is necessary where e.g. gradients are precalcu­

lated and the data set is prepared for rendering (e.g. run-length 

encoding in three coordinate directions). Hightr performance 

processors and faster cache memory will speed-up these ap­

proaches in the next years by reducing the pre computation as 

well as the rendering time. 

Knittel [2J has presented a small PCI card solution that allows 

to generate frame rates of approximately 5 Hz on 2563 data sets 
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by using space-leaping and adaptive supersampling. He uses 

preprocessing that takes several minutes (30 were mentioned) 

to code the data set. Distance coding and a lossy fusion of 8 

sub-cubic neighborhoods into a 32 bit word are realized in this 

phase. During rendering each 32 bit word contains the informa­

tion for resampling one point in the volume. The main memory 

of the PC serves as volume memory for the rendering system; 

which keeps the size and the cost of the PCI board low. 

The DIV2A system of Lichtermann [3] is a relatively flexible 

system for direct volume rendering. It uses space-leaping and 

early ray-termination to speed-up rendering by up to an esti­

mated factor of 20. Three special purpose ASIC!> have been 

produced to resampie points in the ~ata volume in several cy­

cles per resampling point and to provide the resampled values 

and the estimated gradients to a digital signal processor for 

rendering. The volume memory is realized in SRAM and volume 

data is stored in an interleaved way. However memory usage is 

only 50% in order to reduce inter-processor communication. 

All three systems require appropriate data to achieve the re­

quired real-time frame rates. However these approaches fail to 

give the desired performance for semi-transparent objects. For 

such cases different systems have to be proposed or realized. 

One commercial system is the RealityEngine of SGI [4]. With 

the volume texture hardware it performs the oomJ)('si-ting step 

of the rendering algorithm in real-time (10 Hz for 256' data 

sets). However shading must be precomputed. 

Cube-4 [5] that is currently simulated by an FPGA multi-chip 

module allows to process a full scanline in parallel by using a 

skewed memory architecture (cubic-memory) and locally con­

nected pipeline processors for rendering. The system promises 

a maximal rendering rate of 30 Hz for 10243 data sets by using 

I024 memory banks and the same number of processors each 

working at 30 MHz. 

Vogue [6] is a realization that uses 4 dedicated ASICs into 

which the full rendering algorithm is mapped. It has been suc­

cessfully simulated and it is assumed to be integratable as a 

"pizza-box" solution. 

In contrast to other systems that have been suggested, simu­

lated, or emulated only, VIRIM is a fully operational prototype 

for real-time direct volume rendering which has been in use 

since June 1995 [7]. rt is designed for maximal flexibility at 

moderate cost. It will be described below in more detail. Both 

architecture and implemented algorithms are shortly men­

tioned. Operation simulation and control, where VIRIM has 

been evaluated first, has particularly difficult real-time de­

mands. Experiences made during the evaluation phase are dis­

cussed below. The outlook describes the improvements planned 

for redesign of the hardware. 

VIRIM Architecture 
VIRIM uses image space parallelism for rendering (see Fig. I). 


First the object data set is resampled into an image data set 


where one coordinate direction (y) coincides with the main 


viewing direction. The x direction is parallel to the scanlines. 


Two light sources are used where the light rays are parallel to 


the x-y plane of the image data set. One light source lies in the 


direction of the viewer, the other 45° apart from the first one 


[7]. 


After this geometry operation rendering is performed on the x­


y-slices of the image data set. 


The architecture of the VIRIM system corresponds to this ap­


proach. It consists of two components (see Fig. 2), a geometry 


unit and a ray-cast unit. 


The geometry unit is used for resampling, perspective calcula­


tion, and gradient estimation. Since it requires full access to the 


volume memory it has been designed for maximum speed in 
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order to reduce the number of geometry units to a minimum that 

allows to mitigate object data set distribution problems on 

several volume memories. The geometry unit is integrated into 

a parallel pipeline processor that generates each clock cycle 

(20-40 MHz) one sample point and its two gradient compo­

nents. 

Object Data Set Image Data Set 
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ii I ~ 
-/Render l 
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Fig. I: Sketch of the image parallel approach of VIRIM. First 
the object data set is resampled into an image data set. Each 
slice of the image data set supplies the information for render­
ing one scanline of the projection. 

The ray-cast unit performs the remaining rendering operations 

in a programmable way on a multiprocessor consisting of 

digital signal processors (DSPs). Since only x and y gradient 

components are used for shading, each scanline can be proc­

essed independently from others and no communication is 

necessary between the DSPs. 

Geometry unit and ray-cast unit are connected by a 240 

MBytes/s fast bus that transfers sample point density and its 

two gradient components. Each geometry unit supplies data for 

8 to 128 DSPs. At a 20 MHz data rate 16 DSPs are required per 

geometry unit to harness its full speed. 

Fig. 2: Picture of VIRIM. The two outer boards are the ray-cast 
unit, the two inner boards the geometry unit. All four boards as 
well as a host workstation are connected by a ¥ME bus. The 
geometry-ray-cast bus is integrated in the customized ¥ME 
backplane. 

Implemented Rendering Al­
gorithnlS 

VIRIM is designed for maximal flexibility in real-time volume 

rendering. Currently four different algorithms are implemented, 

maximum intensity projection, ray-casting, and two volume 

ray-tracing algorithms. 

Maximum intensity projection (MIP) [10] is a commonly used 

projection method to display volume information. The projec­

tion is generated by determining the maximum gray-value 

along each ray cast from an image pixel into the data set. The 

main application area in medicine is angiography where the 

only objects that give contrast are blood vessels; which are 

displayed and which can be viewed from any direction. 
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One standard rendering algorithm is ray-casting. From each 

image pixel a ray enters the virtual scene. At equally spaced 

positions on the rays sample points are interpolated from their 

8 neighboring voxels in the object data set by e.g. trilinear 

interpolation. Gradients are estimated and shading is performed 

on each sample point. Gradients are determined by local differ­

ence filters. Shading is calculated according to reflectance 

models like Phong shading where it is assumed that each sam­

ple point obtains a constant intensity of light from each light 

source. Finally, the contributions of the rays' sample points 

are composited into the final projection using the over opera­

tor [II]. 

Our implementation on VIRIM differs from that of Levoy [8] by 

two modifications. First, only two gradient components, one 

parallel to the scanline and one parallel to the main viewing 

direction, are calculated. Second, the classification step for 

assigning opacity to interpolated sample points is reduced to 

gray-values only instead of gray-values and gradient magni­

tude. 

The third class of algorithms are volume ray-tracing algo­

rithms. In contrast to ray-casting volume ray-tracing takes into 

account the absorption of incident light during its way through 

the data volume to the sample point. Two light sources are used 

in order to avoid totally black areas. Volume ray-tracing thus 

allows to generate shadows that are helpful in some applica­

tions [12]. 

We have implemented two different algorithms of this class, 

the Heidelberg Ray tracer and the V[RlM ray-tracer. The Heidel­

berg Ray tracer realizes Phong shading and compositing in an 

unusual way. Unnormalized gradient components are used for 

Phong shading. All reflection coefficients are multiplied by 

gradient magnitudes. Additionally, the ambient component is 

neglected in favor of a component that emits light proportion­


ally to the local density. Also an unusual compositing opera­


tion is applied. The standard compositing multiplies the light 


from backward by the transparency of the voxel, the reflected 


light by the opacity (=l-transparency), and adds up both con­


tributions. In the Heidelberg Ray tracer the reflected component 


is not weighted and therefore the contrast in the image is lower 


than that for ray-casters. 


The VIruM ray-tracer in contrast uses standard Phong shading 


with normalized gradient components and standard compo­


siting; which gives sharp images but is prone to artifacts. 


Most of the artifacts vanish if supersampling is used. 


During our evaluation phase we experienced with all four im­


plemented algorithms and came to the following conclusions: 


Maximum intensity projection is nearly always unsuited for 


representing volume information. The standard ray-casting 


approach turns out to be very useful for stereo projection, i.e., 


if two images are calculated with a 4° inclination and a shift due 


to the eye distance --each such image is presented to one of the 


viewers' eyes. Since ray-casting does not produce shadows the 


viewer can look into caverns and perceives their depth. How­


ever it seems as if these caverns are illuminated from inside. 


Algorithms that produce shadows obscure such caverns and the 


3D-effect is restricted ~o ooFfaees only. 


If however the normal (non-stereo) display mode is used, cav­


erns are difficult to detect with the standard ray-casting ap­


proach since the perception of depth is insufficient. Shadows 


that are generated by the volume ray-tracing algorithms help 


the viewer to detect them and to better perceive their form (see 


Fig. 3). 
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Fig. 3: Visualization of a human heart cut into halves. Top: 
Rendered with volume ray-tracing; Bottom: Rendered with ray­
casting. As can be seen the caverns are more clearly visible due 
to the shadowing generated with volume ray-tracing. 

Application Area 
VIRIMs first application area is the support for operation 

simulation and control in minimal invasive head surgery. 

During both operation planning and control the interface to the 

user is realized by a tracking system. The tracking system 

consists of a magnetic source and several sensors in a stick-

like instrument (or the real endoscope); which allow to deter­

mine its position and orientation with a spatial resolution of a 

few millimeters. The stick thus represents an input device with 

6 degrees of freedom that is used to steer the visualization 

process. This instrument is either used like an endoscope 

whose position and orientation in the virtual head determines 

which view is computed. Alternatively a fixed view is chosen 

in which the movement of instruments like endoscopes, scal­

pels, forceps, etc. is displayed. 

During operation simulation the problem arises how to access 

the operation area with minimal risk to injure blood vessels, 

nerves, eye or brain. A pre-operative segmentation assigns to 

each voxel of the data set its respective object like tissue, 

blood vessel etc. These data are loaded on VIRIM and the sur­

geon can begin the operation planning ta-sk. The surgeon uses 

the input device as if he/she operates with the real endoscope in 

the real patient. Tasks like finding the optimal access path and 

the lesion-volume that is to be removed can be planned. 

In the operation control phase the real endoscope replaces the 

former input-stick to be tracked. Its actual position is compared 

in real-time with the pre-planned path. Two images are pre­

sented to the surgeon: one created by the real endoscope 

(optically or by camera), and one computed from the patient's 

data by the visualization system. Both images show always the 

same view although the computed image can be manipulated by 

an appropriate choice of the visualization parameters. A semi­

transparent view, e.g., allows to see normally invisible struc­

tures like blood vessels or nerves hidden below the visible 

surface. Moreover the actual instrument-position can be 

checked continuously against the preplanned position and any 

deviation can create warnings. Should it be necessary to alter 

the access path during operation the modified operation can be 

simulated on-line. 

In May 1996 VIRIM has been successfully installed in the 

Clinic for Head Surgery at the University of Heidelberg. 
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Experiences and Discussion 
This section describes the experiences that have been made 

during the first year of use of the prototype. Several critical 

points have been identified. 

Volume memory: One of the most serious obstacles for 

using VIRIM is the limitation of the volume memory size. 

Modem imaging devices like CTs generate slices with a 

5l2x5l2 pixel resolution; industrial CTs generate even 

larger slices. Another source of large data sets is 4D visu­

alization where 3D data sets are imaged at different times. 

VIRIM allows to visualize 4D data by switching between 

the 3D cubes and thus generates images of moving 3D data 

sets. 

As consequence the 25e volume memory size is too small 

and will be changed for the next version. 

Data set duplication: Another critical point seems to 

be data set duplication which would be required if multiple 

modules were used. However currently the rendering speed 

of one module is fast enough for most users. A full-scale 

system with four or more modules is thus not expected to 

be built in the next future. 

Gray-value segmentation: The possibility to ma­

nipulate gray-values during visualization turned out to be 

an extraordinary valuable tool. It is permanently used and 

its functionality is steadily increased taking into account 

practical experiences with VIRIM. It works as follows: In 

pre-segmented data, e.g., different objects in the volume 

are marked by a different code that forms, together with the 

gray-value of the voxel, a 16 bit word (see Fig. 4). A 

64kx 16 look-up-table in the geometry unit allows to 

transform the original gray-values of the object data set 

into opacity values. In this look-up-table each object is 

assigned a segment of size 2" that defines the opacity 

mapping for all of its voxels in the object data set. 

m n 

Gray-Value 

16 Bit 

Fig. 4: A 16 bit voxel word consisting of object identification 
bits and gray-value. 

By individually manipulating these segments the opacity 

of all objects can be manipulated without interference with 

other objects. An example is the MRI data set of a human 

head shown in fig. 5. After segmentation of eye, brain, 

skull, and skull ceiling, each of these objects is assigned a 

2 bit code (in this case m = 2). The user interface allows to 

call these objects by name which is coded in the data set 

format. During visualization the skull ceiling, e.g., can be 

set to semi-transparent by pressing the corresponding but­

ton and by changing its transparency (see Fig. 5) interac­

tively. 

A newer application is operation simulation. Here an 

instrument is immersed into the data volume. The instru­

ment is generated by the host computer by writing its 

shape directly into the volume data. The movements of the 

instrument in the volume data can be used for removing the 

corresponding virtual tissue. This is achieved by marking 

all voxels that are touched by the instrument with a bit 

code and by using the gray-value segmentation tool to set 

all such marked voxels to transparent (see Fig. 6). 

This tool is used to simulate an access and can be used to 

quantitatively measure which amount of tissue to remove 

during operation. 
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Fig. 5: An MRI head is rendered. The skull ceiling is segmented 
from the remaining head. It is rendered semi-transparently. 
Below the semi-transparent ceiling the brain is visible. 

Fig. 6: A typical image generated during operation simulation. 
A three-dimensional cross represents the surgical instrument 
that removes the tissue locally. Below the opening in the head 
the brain is visible. 

Look-up tables: One disadvantage of the VIRlM hard­

ware is the lack of a look-up table (LUT) after resampling 

or interpolation of data set voxels. We have observed that 

setting the opacity of objects with the gray-value segmen­

tation LUT alone leads to some blurring of the objects dur­

ing visualization (see also [13]). However the decision to 

use a look-up table before interpolation allows addition­

ally to handle pre-segmented data which would not be pos­

sible after interpolation. We concluded that a better sys­

tern should support both approaches. 

Gradients: More detailed simulations that revealed the 

sources of artifacts in the rendering algorithms showed 

that, the Sobel operator for gradient estimation can be re­

placed by a simpler difference filter. The lack of the z 

component (perpendicular to the scan line and the main 

viewing direction; the final projection is given in x-z co­

ordinates) is not a major problem. A typical example 

where the difference is seen most obviously is given in the 

two images of Fig. 7. 

Fig. 7: Top: Rendered image without z gradient. Bottom: Ren­
dered image with z gradient. 

Flexibility of VIRIM: One of the major design goals 

for the VIRIM system was to keep it maximally flexible. A 
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priori it was not clear which would be the most appropriate 

rendering algorithm for the anticipated application areas. 

The flexibility is based on a flexible resampling scheme, 

on programmable interpolation filters, and on digital sig­

nal processors (DSPs) that perform shading and compo­

siting. 

The resampling scheme allows in a programmable way to 

resample many individual slices of arbitrary size and ori­

entation from the volume memory, and to transfer the re­

sampled slices to multiple DSPs. In other words, the 

VIRIM architecture supports slice-based operations on 

volume data very efficiently. These operations can be used 

for different purpose.s, e.g. for resampling individual im­

age slices that are directly presented on the computer 

screen or for image processing algorithms implemented 

on DSPs. 

The interpolation filters allow to resample the data set 

voxels in a non-linear way instead of trilinar interpola­

tion. It turned out that this is not as important as initially 

supposed. Throughout the data sets investigated their con­

tribution to image quality is negligible. The overhead of 

using non-linear interpolation is not justifiable to our 6X-. 

perience. 

Most important however is the free programmability of 

the DSPs. This flexibility allowed us to implement the 

four different rendering algorithms that have been de­

scribed above. Since the system offers a high data rate be­

tween processors and volume memory as well as a high 

processor performance, VIRIM allows to execute arbitrary 

image processing algorithms in addition to visualization. 

Currently a region-growing algorithm is being imple­


mented for segmenting medical data sets. 


Our experiences show that flexibility is most important 


for real-time rendering systems which are used for interac­


tive work with the data set. 


Algorithmic improvement techniques: In con­


trast to DIY'A, space-leaping, early ray-termination, and 


adaptive supersampling have not been implemented for 


VIRIM so far. 


Adaptive supersampling has a great potential to reduce the 


amount of computations at the sacrifice of loosing small 


details that can be critical in medicine. Instead we used a 


more efficient method, dynamic resolution, that is possi­


ble when operating with volume data at interactive rates. 


Dynamic resolution reduces the resolution of the image 


data set by a factor of 2 while viewing parameters are 


changed thus saving a factor of 8 in rendering time. When­


ever the user keeps the parameters for one image genera­


tion period the image is generated at full resolution. 


This feature is used nearly always since it allows to 


achieve full interaction speed with one module only. 


Space-leaping and early ray-termination are promising in 


about 50-70% of all cases (reduction of computational 


time by a factor 5-20); in all other cases the user displays 


the objects semi-transparently where the performance gain 


is estimated to 50%. It seems therefore necessary to incor­

porate these methods in the next generation of renderers 

we are currently investigating. 

Space-leaping and early ray-termination change the resam­

piing sequence. Space-leaping omits those voxels that are 

empty. The information about empty spaces in the volume 
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have to be known before accessing the memory by using a 

preprocesing step. During rendering this information has 

to be read to generate the required resampling positions ­

this is not supported by VIRIM. 

Early ray-termination omits all subsequent sample point for 

the considered ray when the light intensity falls below a 

threshold. This decision can be used only in the ray-cast 

unit in order to stop the geometry unit and change the re­

sampling sequence. Stopping and restarting the geometry 

unit however would consume too much time to use this im­

provement technique efficiently. 

In order to mitigate the problem for its implementatioif on 

VIRIM the slice wise processing of the final projection has 

to be replaced by a sub-cube based approach. In this ap­

proach each signal processor of the rendering unit renders 

non-intersecting sub-cubes of the object data set. The par­

tial images of each sub-cubes is then composited to the fi­

nal projection. A typical size of such non-intersecting sub­

cubes is 83
• 
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Fig. 8: Left: The data structure to describe empty and non­
empty sub-cubes is a three-dimensional binary array. 0 indi­
cates empty, I indicates non-empty sub-cubes. Only a slice of 
that array is shown. Right: Light rays illuminate only those 
sub-cubes that are not empty. The dark squares are the sub-cubes 
that are illuminated first and assigned to signal processors 
accordingly. The hatched squares are the sub-cubes that are not 

illuminated since the light intensity cast onto these sub-cubes 
is below a user-defined threshold. 

In a first phase empty sub-cubes must be distinguished from 

non-empty sub-cubes. For this purpose the maximum in­

tensity algorithm is used; which returns the largest opacity 

in the respective sub-cube. The required time for 2563 data 

sets is 0.8 s for one module. These results are stored on the 

host system as a list-data structure of non-empty sub-cubes 

(see Fig. 8). 

In the second phase, the host assigns each signal processor 

sub-cubes to render. The assignment of sub-cubes is in 

front-to-back order, i.e., the non-empty sub-cubes riearest­

to the viewer are proc1!Ssed first. 

The partial image, that is obtained by rendering one sub­

cube, consists of the pixel brightness and the correspond­

ing ray intensity. It is stored in the volume memory. 

Before rendering the next layer of sub-cubes by the signal 

processors the processors have to check whether the sub-

cube can contribute to the final image, i.e., whether the 

calculated ray intensities hitting the sub-cube exceed a user­

defined threshold. Therefore each such processor first reads 

the required intensity and the pixel brightness from the 

volume memory. The processor integrates the intensity and 

compares it with the user-given threshold. If the threshold 

is exceeded the processor renders the sub-cube and compos­

ites its partial result with the pixel brightness and updates 

the intensity. Both, updated intensity and pixel brightness, 

are again stored in the volume memory. 

In the other case it directly requests the host for the next 

sub-cube to be rendered. 

A simulation shows that for typical data sets with hard 

surfaces and many empty spaces (e.g. heart data set or visu­

alization of bone of a skull) this approach of space-leaping 
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and early ray-termination reduces the number of rendered 

sub-cubes by approximately a factor of 5. 

Host assigns non-empty 
sub-cube to signal processor. 

Resample /' It the maximal ray 
ray intensities intensity is below a--+	for assigned user-given threshold 
sub-cube from, ask for a new sub-cube 
partial images 
on.geometry otherwise render sub-cube 
umt and store result on 

geometry unit 

Fig. 9: Implementation of early ray-termination. 

Nevertheless the efficiency of this approach is not as good 

as pure software solutions (see [I]) although the preproc­

essing time is in the range of a second for one mod'ule; 

which is tolerable compared to minutes for other ap­

proaches. 

These experiences, made during the first year of operation of 

VIRIM, may be biased due to the specific application where the 

users work with the data instead of only visualizing them. Due 

to our approach the user is tempted to use different techniques 

for changing the transparency of the data set, and to move 

freely within it. 

Outlook 

VIRIM is currently being redesigned for commercialization. 

The new system will have a larger volume memory of 128 MB 

and a look-up table after the interpolation step of the geometry 

unit. 
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