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Abstract 

Integrating the slope and setup calculations for trian­
gles to the rasterizer offloads the host processor from 
intensive calculations and can significantly increase 
3D system performance. The processing on the host is 
greatly reduced and much less data is passedfrom the 
host to the graphics subsystem. A setup architecture 
handling generalized triangle meshes and computing 
all necessary parameters for a high-end raster pipe­
line to generate Gouraud shaded, texture- and bump­
mapped triangles is described and its benefits on the 
final bandwidth are shown. To efficiently compute the 
slopes and color gradients for each triangle, some 
implementation aspects on division and multiplication 
pipelines are discussed. . 

1 Introduction 

Graphics perfonnance is increased through the devel­
opment of various hardware-supported graphics 
architectures. The majority of these architectures 
include a rasterizer to which the 3D vertex coordi­
nates in image space and associated color values are 
sent. For rasterization it is common to use triangles or 
triangle strips as basic drawing primitives. The raster­
izer interpolates the depth and color values for all the 
pixels bounded by the edges which define the trian­
gles. 

Triangles are planar shapes and this property sug­
gests the use of constant increments to linearly inter­
polate the color and depth along the scanlines. 
Traditional shaded triangle scan conversion is typi­
cally perfonned by a pipeline of an edge-walking 
phase followed by the span interpolation. During edge 
interpolation, a triangle is scanned horizontaly from 
top to bottom, delivering the boundaries of the trian­
gle, the starting and ending values ofRGBa and Z for 

(1 )Universitat Tiibingen 
Wilhelm-Schickard-Institut fUr Infonnatik 
Graphisch-Interaktive Systeme 

Auf der Morgenstelle 10 
D-72076 Tiibingen - Gennany 
email: kugler@gris.uni-tuebingen.de 
http://www.gris.uni-tuebingen.de/-kugler 

the span interpolation. Span interpolation fonns the 
inner loop of the triangle shading pipeline; it interpo­
lates the RGBa and z values along the current span, 
bounded by the starting and ending values for color 
and depth. 

Performance bottlenecks in graphics rendering sys­
tems typically appear at four stages: 

I. the world coordinate transfonnation to screen 
coordinate and computing the vertex colors 

2. 	 calculating the triangle edge slopes and incre­
ments necessary for the scan-conversion 

3. 	 the rate at which the fixed point iterators gener­
ate pixel values 

4. 	 the achieved bandwidth into the frame buffer 
and texture memory 

1) and 2) are accomplished through the design of 
highly efficient floating point units, arranged as a 
SIMD array [l]. 3) is achieved through hyperpipelin­
ing several iteration units, allowing each unit to sus­
tain the pixel generation requirements of multiple 
pixel memory buses. The level of pipe lining of each 
iteration unit is limited by the integration grain of the 
technology. Hyperpipelining adds pipeline stages to 
the iterator until the desired rate of pixel generation is 
reached. Inserting pipeline stages in the iterator 
requires significantly less gates than replicating or 
parallelizing the iterators. Multiple memory buses or 
the use of logic embedded memories [2, 3] can pro­
vide the necessary bandwidth for the frame buffer to 
satisfy the requirements of 4). The iteration pipeline 
must support a pixel generation rate of N times the 
worst case bandwidth of a frame buffer DRAM in 
page mode, where N is the number of memory banks. 

Many existing rasterizers do not include the initial­
isation step, but leave it to a dedicated floating-point 
coprocessor or to the same processor which perfonns 
the geometry processing. When the host CPU per­
fonns the initialisation, overall perfonnance of a 
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graphics subsystem drops, because of the latency 
introduced by the setup in the graphics rendering 
pipeline and not enough bandwidth between the 
geometry processor and the rasterizer. To circumvent 
this bottleneck, some graphics systems include spe­
cial-purpose coprocessors or DSP (Digital Signal 
Processing) chips which perform the setup for the ras­
terizer. The drawback of these solutions is that most 
such processors require a considerable number of log­
ical interface chips which increase the size and cost of 
a graphics accelerator board. Second, DSPs or float­
ing-point coprocessors are generally not optimized for 
3D graphics rendering tasks. If a dedicated floating 
point unit is used, the setup parameters still have to be 
transferred to the rasterizer over a bus with a fixed 
bandwidth which does not increase the bandwidth 
over the situation where the geometry engine com­
putes the setup values. Division usually is the slowest 
operation, and even if FPUs are able to serialize divi­
sions, they do not support parallel divisions. 

Moving the setup to the rasterizer reduces the 
number of data which is transferred from the geome­
try unit to the rasterizer for each drawn primitive. Fur­
thermore, it minimizes the software overhead of raster 
algorithms. In this paper, we give a theoretical model 
from which future solutions can be derived. To our 
knowledge, only very few rasterizers include a setup 
engine on the same chip. 

2 The graphics rendering pipeline 

The generic pipeline for 3D graphics is shown in fig­
ure I [4]. Individual systems differ in the partitioning 
of this graphics rendering pipeline. Two areas in ren­
dering have been subject to separate optimization: the 
floating-point intensive initial stages and the numer­
ous primitive setup operations; the drawing-intensive 
part which scan-converts the pixels of a primitive and 
z-buffers them into the frame buffer. Rasterizing is 
computationally intensive since it must handle the 
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interpolation for color, texture and transparency, 
before it sends the final image for display to the frame 
buffer. 

Initially. a triangle is defined by the coordinates (x, 
y, z) of its three vertices and the color values RGBa 
associated to each vertex. Before scan conversion, a 
series of increments used to walk along the edges of 
the triangle and for the span interpolation must be 
computed. In the framework of a hardware imple­
mented rasterizer, this step initializes the rasterizer 
with the initial values defining the triangle and the 
increments necessary for interpolation. The initialisa­
tion is part of the graphics pipeline and must be done 
for every triangle being rendered. 

The throughput of the rasterization pipeline 
depends on the granularity of the primitives being 
rendered. When processing very small or degenerated 
triangles, the span interpolation can not operate at its 
full speed because it is slowed down by the edge 
interpolation. By moving the setup on the rasterizer, 
we aim at increasing the throughput of the standard 
graphics pipeline at the cost of additional chip sur­
face. 

3 Scan conversion pipeline 

To render triangles we will use a variation of Bresen­
ham's incremental line drawing algoritlun [5]. The 
chosen algorithm ensures that triangles which share 
an edge do not share any pixels and do not produce 
any dropouts or overlaps between adjacent polygons. 
In broad lines, the modified algorithm uses the edge's 
slope I1xJtq and initial error So (the horizontal dis­
tance between the edge and the pixel center) and 
updates an error term s for each scanline. 

During the edge walk phase, triangles are decom­
posed into horizontal spans and lines into pixels. Two 
iterators are used to compute the beginning and end x­
locations of a span and six other iterators to compute 
the RGBaZY starting values for the first pixel on a 

Span VRAMZ-Buffered 
Interpolation Frame BufferBlending 

Figure 1. The standard 3D graphics pipeline. 
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span. The edge extending from the vertex with the 
maximum y-coordinate value to the vertex with the 
minimum y will be denoted as the leading edge. The 
edge runing from the vertex with minimum y to the 
vertex with the middle y value is called the first trail­
ing edge. The edge between the ver:ex with the mi~­
die y and the vertex with the maxImum y value IS 
called the second trailing edge. Edge processing starts 
by iterating down in parallel the leading and trailing 
edge. When the vertex with middle y is crossed, first 
and second trailing edges get swapped and the edge 
processing continues down the edge with the maxi­
mum y coordinate. 

~~+=f=4 -I····--+~-- first 
...... scanline 

current 
f.-........I--.~I.f'-~~~~ .... +__ IJ~_···· scanline 

Y P;: 	Zj:= Zi-1 + azIJx 

ri := rj-t + ar/ax 

gj:= gi-1 + ag/ax 

bj:= bi-I + ablax 


Figure 2. Triangle decomposition into spans and 
pixels. 

In figure 4 we model a typical raster pipeline. The 
measure of granularity of pipelining is chosen to be 
bounded by the latency of a 32-bit full adder and the 
clock frequency is set to 80 MHz. Any subsequent 
data flow decomposition is scaled to this measure. 

An edge processor decomposes triangles into hori­
zontal spans and lines into pixels. Spans are further 
decomposed into pixels by a span processor. Two suc­
cessive iterators are needed for computing the begin­
ning and end x-locations of the span, and six iterators 
to compute the RGBaZY for the first pixel on the 
span. The edge walk is able to generate a ne:v ?ixel 
every clock cycle. For processing the spans, SIX Itera­
tors scan the pixels on a span and generate the 
RGBaXZ values of each pixeL Assuming Gouraud 
shading and z-buffering, the span processor will gen­
erate one pixel per cycle in the x-direction. Schemati­
cally a span iterator consists of 3 stages of logic: a 
two-input adder, two multiplexers (equivalent to three 
2-to-l multiplexers) and two registers. Thus the span 

z-increments 

ADD It 
latency 

Figure 3. A span iterator . 

processor has a pipeline latency of 3 cycles. 
Before pixel data can be written to the color buffer, 

the newly generated colors may be blended with an 
already existing color in the color buffer. Blending 
requires readback from th~ color buffer. Since blend­
ing requires a read-modify-write to the frame buffer, it 
only is possible at half the fill performance of direct 
color write performance. We assume three cycles for 
the read and write operations to the color buffer, four 
cycles for multiplying the 8-bit RGB components in 
parallel and three cycles for blending the components 
with the illumination coefficients from the Phong 
shading engine or a previous color taken from the 
FIFO. If the frame buffer is driven by a raster pipeline 
clocked at 80 MHz, it must be five times interleaved, 
so that color filling along a span happens contention­
less. 

The z-buffer operation consists of reading back the 
old z-value, comparing it with the new z-value, and if 
the comparison succeeds, the new z-value and color 
value are written to their respective buffers. Since the 
z-buffer requires two accesses (read and write) for 
every write to the color buffer, the memory for the z­
buffer shall be twice interleaved as the color buffer to 
accomodate the z-buffer update at the color Gouraud 
shaded fill rate. 

Synchronous DRAMs with a bandwidth five times 
wider than the bandwidth of single ported DRAMs 
are right becoming available. Still, operations like 
color blending or the z-buffer compare do require a 
read-modify-write to the memory, resulting in a 
sequential two-way data exchange between the raster­
izer and memory, which is one limiting factor to real­
time performance. Converting the read-modify-write 
of the z-value and the RGBa color blend into a single 
write operation is the solution proposed with the 
FBRAM [2] and offers a ten times higher bandwidth 
than standard 60n8 VRAM. 
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Figure 4. The raster pipeline. 

Phong shading and texture mapping requires the 
triangle vertex normals Nand (u, v) texture coordi­
nates to be interpolated. Because the reflection vector 
is based on the changing eye vector, we expect it to be 
computed by the Phong shading engine. The reflec­
tion vector can be calculated from unnormalized sur­
face normal and eye vectors [6]. Normal and 
reflection vectors are characterized by their horizontal 
and vertical angles which are used to index specular 
and diffuse maps [6, 7, 8]. Computing these angles 
involves division of the vector's minor axis values by 
the major axis values. To eliminate the distortions due 
to perspective projection of textures a division is nec­
essary per rendered pixel. Accurate perspective divi­
sion at pixel rate requires costly division operations 
for each pixel, and therefore approximation tech­
niques will be employed [9]. The texture mapping 
pipeline has a latency of 15 cycles: 5 cycles for the 
address generation, 3 cycles for the texture memory 
controller and 7 cycles to trilinearly interpolate the 
textured pixels. Computing the reflected ray vector 
has a latency of 10 pipeline stages, followed by 14 
stages for projecting the vector and 5 stages for specu­
lar and diffuse shading coefficients lookup. 

4 Triangle Meshes 

Triangles can be generalized to triangle meshes. A 

} 

14 
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I 

13 
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mesh given by N vertices is rendered by sending the 
vertices down the graphics pipeline to the setup stage. 
where they are pushed on a stack to be popped later 
when no longer needed. 

OpenGL provides the functionalities for mesh ren­
dering [10]. A triangle mesh is rendered using the GL 
graphics library by sending a sequence of vertices 
through the graphics pipeline. This sequence is usu­
ally encapsulated in a display-list, recognized by the 
rendering hardware, and a triangle is automatically 
drawn between every three consecutive vertices of the 
sequence. A sequence of N vertices specifies N-2 tri­
angles. Because at least one vertex must be supplied 
to render each triangle, ideally only the data for one 
vertex is sent through the graphics pipeline. 

The time cost of the rendering stage is proportional 
to the number of vertices sent down the graphics pipe­
line and bounded by the latency of the setup computa­
tions for each pair of adjacent vertices. Triangles may 
either come as simple strip like meshes, or as star like 
meshes, in which cases N vertices specify N-2 trian­
gles. In these two cases, triangles can be scanned by a 
non-intersecting path, or Hamiltonian path. In the 
third case of triangle meshes, a mesh is specified as a 
chain ofK vertex sequences defining separate isolated 
paths. Here the time cost for N triangles is propor­
tional to 2K+N. It can be shown [II] that any N-ver­
tex triangle mesh can be rendered by sending each 
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Typically the display-list for these triangle strips may look like: 


{(RE, V1, V2, V3), (RE, V4, Vs. Vs), (RO, V7), (RE, Vs, Ve, VlO), 

(RO, Vll ), (RO, V12), (RO, V13), (RO, V14), (RE, V1S' V16, V17), 


(RM, V1S), (RM. V1e), (RM. V20), (RM, V21 ). (RM, V22), 

(RM, V23), (RE, V24, V25• V26), (RO, V27), (RO, V28), (RO, V29), 

(RM, V30), (RM, V31 ), (RM, V32), (RM, V33), (RO. V34)} 


Mixed Strip 	 RE: restart new triangle RC: repeat color 

RO: replace oldest RN: repeat normal 

RM: replace middle 


Figure 5. Triangle strips. 

vertex only once down the graphic~ pipelin~ in mini­ next three bits the sextant and finally two 6-bit fields 
mum time (time cost proportional to N) by buffering specify two spherical coordinateS'" [12]. Successful 
the vertices in a stack of size 0(...m). Some triangle compression of vertex normals from 96 down to 18 
meshes may have a topology for which the stack size bits can be done by simple table look-up in software, 
is considerably less. so normals can be transferred compressed to the setup 

To be able to handle triangle strips, information on stage, where on-the-fly decompression is done by a 
the connexion and order between vertices is associ­ dedicated decompression circuitry. Decompressed 
ated with each vertex. Bits (replace oldest, replace normals have l6-bit components, including one sign 
middle. restart new triangle, repeat color, repeat nor­ and one guard bit. Another benefit of this representa­
mal) in the vertex header within a strip specify how tion is in the design of a Phong shading and environ­
the incoming vertex is combined with the previous ment mapping engine with datapaths for compressed 
three vertices to form the next triangle. Before scan vectors. We are currently investigating this. 
conversion starts, the incoming vertices are sorted 
with the vertices of the previous triangle to determine 6 Initialisation Data 
the leading (left) edge and trailing (right) edge which 
enclose the spans of the current triangle. Like in any digital interpolator, the number of frac­

The ability of a generalized triangle strip to effec­ tional bits of precision is chosen such that the accu­
tively change from a strip to a star mode in the middle mulated error over interpolation is invisible in most 
of a strip as shown in figure 5 allows the geometry to cases (Table 1). The needed resolution is determined 
be represented compactly and requires less input data by the resolution of the delta terms (Ax, Ay) which 
bandwidth. require one more bit than the number of bits in the X 

or Y range and by the number of bits wished for sub­
5 Geometry Compression pixel positioning. For a display with a 1280x 1024 

pixel resolution 12 bits of fraction are enough (16 bits 
Geometry compression [12] is a good alternative to when using 4 bits for sub-pixel positioning). The 
reduce the triangle vertex input data width, if the data number of bits of fraction for the color and depth 
is loaded from a media in compressed form. Hardware increments is chosen such that the error accumulated 
decompression of the vertex data is possible at high by interpolation along the longest line in a 1280x 1024 
rate and increases the input bandwidth to the setup raster is unnoticeable. If the software for the geometry 
stage. processing computes these increments, it will use the 

Normal compression takes advantage of the IEEE floating point format to send the increments to 
symetries in the unit sphere. Normals are encoded as the rasterizer. 
following: the first three bits specify the octant, the Since E is a measure of the distance between the 
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TRIANGLE DATA 32-bit words TOTAL 

Vertices: 

xo. x,. x2,YO. y,. Y2,zO.Z1' Z2 9 words 

Colors: 

roo go. boo r,. 91, b,. r2. 92. b2.0.0. a,. 0.2 3 words 

Normals and texture coordinates 

No, N1, N2, (uo. vol, (u" V1), (U2, v2) Swords 18 words 

SETUP PARAMETERS 

information on vertex connexion and replacement: 1 word 

edge interpolation increments: 

Ax/l1y (edge t,2, 3) 3 words 

color, depth, texture, normal interpolation increments: 

or/()x, 0gI()x, Ob/()x. or/Oy, f}g/Oy, ObIOy, aal()X, aalOy 8 words 

Oz/()x, Oz/Oy, ou/()x. 8v/Oy, VN(x), VN(y) 10 words 22 words 

TOTAL 40 words 

.. Table 1 : Triangle Setup Data . 
" 

current pixel center and the triangle edge, the value of 
e in cunjunction with the edge slope m = AxlAy can be 
used to calculate subpixel information and look up a 
coverage mask for optional antialiasing edges. 
Antialiasing only makes sense when using appropri­
ate complementary subpixel masks for the pixels on 
edges ofadjacent triangles [13]. 

7 Stereoscopic Rasterization 

To properly perceive depth, our eyes perceive the 
world from a slightly different perspective. In a stere­
oscopic system [14], the scene is separately rendered 
from two different viewpoints, one for each eye and 
the work for the geometry transformations is doubled, 
as each vertex must be transformed twice. In previous 
work [15], the secondary view is obtained by trans­
forming the pixels from the primary view, and the 
objects visible to both the left and the right eye no 
longer need to be rendered twice. This approach will 
undeniably produce holes in the secondary image 
after the transformation due to either image expansion 
or object visibility change. Holes appear at pixelloca­
tions invisible to the left eye, but visible to the right 
eye. There is no color information for the invisible 
pixels of one view, so the other view is not properly 
shaded. Holes also appear when zooming in a poly­
gon: the visible area of the polygon is expanded in 
one view, but incorrectly expanded in the other view. 

An efficient algorithm for filling the holes that may 
arise in the secondary view after transformation of 

each pixel in the primary view was described in [16] 
and fills holes maintained in a linked list by interpolat­
ing the boundary pixels around the hole. This method 
can be efficiently implemented in software, but is not 
ameable to a special purpose and adequate hardware 
solution. The architecture proposed by [15] is approx­
imate. Though it certainly is a cost-effective solution, 
because the raster pipeline is not duplicated for the 
secondary view, it may produce eronous results. 

Instead, we propose to generate the stereo view 
after the perspective projection, by applying a simple 
shear operation in screen coordinates on the triangle 
vertices of the perspective view [17]. Such a shear 
operation can be done by one common setup stage 
shared by two rendering pipelines that run in paralleL 
To support alternative rendering modes, an additional 
x-coordinate interpolator is necessary in the raster 
pipeline that generates the secondary view. 

Projected vertices of polygons share y-coordinates 
but have different corresponding x-coordinates. The 
width of polygon pairs differs in each view, and there­
fore interior pixel information must be interpolated 
twice, once for each view. 

Antialiasing can also be applied to stereoscopic 
pairs and requires the pixel coverage value to be cal­
culated individually for each view, since the polygons 
of the primary and secondary views have different 
pixel coverage and geometrical characteristics. 
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Given the coordinate (xp, yp, zp).of a pOint P in space. (xproj. Yproj. Zproj) its perspective transformation 
and (xsi. Ys). (xsr• Ys) the coordinates of the left and right stereoscopic view. 

Xp Yp Zp 
= -z-­xproj Yproj = -z-- Zproj = -z-­
~+1 ~+1 ~+1
d d d 

+z axis 
e x -z­

p P2d e 

= xpror Zproj2d
Z 

1 +~ 
d 

The coordinates of the stereo­
Yp scopic views can be obtained by Y =-­

right view 

s Z applying a shear operation on
1 +~ 

d the projective coordinates. 

Figure 6. Shear operation applied to projective vertex coordinates. 

8 Latency Intensive Computations division, other iterative schemes were developed [19, 
20]. These are based on series expansion of the recip­

Multiplication is an operation which can be easily rocal. For example, Newton-Raphson implementa­
parallelized by breaking the mUltiplication of two val­ tions can achieve very low latency, as Newton­
ues in two, or four individual multiplications and by Raphson division converges to a result quadratically. 
summing the partial results. Multiplying two 16-bit This performance comes at the price of additional 
numbers together has a pipeline latency of 4 cycles. if hardware, accuracy and complexity for storing the 
several adds are performed in parallel at each stage. lookup table containing the initial estimates. Compar­

Division presents a coarser problem. The most ing the latency bounds of these algorithms when 
commonly used division algorithms in modem FPUs applied to the IEEE double precision 64-bit data type, 
are the subtractive and multiplicative methods. restoring division requires 428 gates. non-restoring 
Among the subtractive algorithms. digit recurrence 212, and Newton-Raphson 109 gates [19]. 
algorithms use subtraction as the iterative operator. The Newton-Raphson iterates in the following 
This class of algorithms can be further separated into way: it finds an approximation to the reciprocal lib 
restoring and non restoring division. Restoring divi­ and multiplies this to calculate the quotient. Each iter­
sion is similar to the traditional paper and pencil ation involves two multiplications that cannot be per­
method. The division of two N-bit numbers converges formed simultaneously and one subtraction: 
linearly and requires up to 2N+ 1 adds. Non restoring 
division eliminates the restoring cycles and example 
algorithms can be found in [18]. It progresses by trial 
and error using the following relation: One iteration can be split into one table look-up (I 

cycle), two multiplies (4 pipeline stages - we assume 
the presence of a pipelined multiplier and adder) and 
one subtraction (1 pipeline stage), so evaluating q = 11 

To calculate the next partial remainder Pj +I, the b in one iteration has a total latency of 10 pipeline 
divisor D is multiplied by the next quotient digit, and stages. 
the result is subtracted from the product of the last The performance of iterative algorithms generally 
partial remainder, or divident for the first iteration. depends on the initial approximation for the recipro­
and a radix r. Pipe lining divisions in a long pipeline cal, taken from a ROM look-up table (LUT). Such a 
comes at the cost of replicating an N-bit adder in each LUT is generally designed for normalized arguments 
stage. In each pipeline stage. the quotient is expanded 1 ::;; x < 2 and truncated to k bits to the right of the 
with one bit of precision and N bits of significance radix point, tl1lnc(x) = l.XjX2",xk' These k bits are 
will require N pipeline stages. used to index a table providing m output bits which 

To reduce the high latency of linearly convergent form the m bits after the leading bit in the m+ I-bit 
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fraction reciprocal approximation of x: 0.1q Iq 2··· qm· 

Since the leading bit of x is known to be I after nor­
malization, it is not actually useful! to use that bit as 
part of the index. When increasing the precision by 
one bit, the size of the approximation LUT is immedi­
ately doubled. Therefore, a better form of reciprocal 
table [21, 22] is constructed with k-bits-in x (k+g­
bits-out), where g is the number of guard digits in the 
input. The size of this table is 2k x (k+g) instead of 2k 
x m bits. Adding guard bits does provide sufficient 
additional accuracy in place of the more costly step of 
increasing k to k+ I, which results in more than dou­
bling the LUT size. If the initial approximation is to 
be refined by one Newton-Raphson iteration as part of 
a division process, the resulting doubling of precision 

_ _:-in each iteration then provides that a three guard bit 
initial enhancement implicitely contributes approxi­
mately two more bits of precision to the final recipro­
cal evaluation. 

In order to compute 12 bits of reciprocal precision 
in one Newton-Raphson iteration (or 10 cycles), the 
reciprocal ROM lookup table must provide at least 25 

x (5+3) or 256 bits. For 16-bit reciprocal precision, a 
28 x 8 or 2048 bits LUT would normally be used, but 
a smaller 27 x (7+3) or 1280 bits LUT does give 
enough accuracy, when making one Newton-Raphson 
iteration on the initial approximation. 

Five independent reciprocal lookup tables are nec­
essary to fully pipeline the computations of the slopes, 
gradient calculations, perspective texture coordinate 
divisions, Phong illumination coefficients and bump 

... " 

mapping parameters. The use of reciprocal tables with 
guard bits [21] reveals to be a practical means of low­
ering the latency of complex computations and reduc­
ing the size of a rasterizer implementation. Such 
lookup tables occupy about 30% less space than the 
starting reciprocal approximation tables usually 
employed for Newton-Raphson iterations. 

9 Setup Architecture and Bandwidth 

To synchronize the input stage of the rasterizer with 
the geometry unit, the setup data is buffered in a stack. 
Special control words describing the connectivity 
between vertices separate different series of vertices 
and are decoded on the fly. Current and future vertices 
are droped in a stack. Vertex data is representetkc-em-- _ 
pactly as explained in section 4 to limit data redun­
dancy and reduce data transfer bandwidth. An internal 
state machine transfers the values from the stack to 
the registers of the rasterizer. The registers are part of 
a pipeline in which the setup parameters are calcu­
lated. Figure 7 shows the data flow in the setup pipe­
line. 

The vertex and color data for the current triangle 
goes down the setup pipeline, where edge, color, 
depth, texture coordinate and normal vector incre­
ments and starting values for every span are com­
puted, before being stored in the registers of the 
rasterizer. A double-sized register file is used for the 
vertex and setup values. One half of the registers is 
used for rendering the current triangle, while the val­
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ues for the next triangle can already be prepared. 
Color, depth and texture coordinate increments are 

all computed from the same reciprocal evaluation: 

oZ (z2 Zl)'(YS-Yl)-(ZS-Zl)'(Y2-Yl) 

ax- (X2 -X1)'(YS-Yl) (xs x1)'(Y2-Yl) 

OZ (ZS-Zl)·(X2 -X1)-(Z2 Zl)'(XS-x1) 

oy (X2 -X1)'(Ys Y1) (XS-x1)'(Y2-Yl) 

The ~-terms (vertex coordinate differences Xj-Xj, 

Yi-Yj) are operands shared between the gradients and 
therefore gradients should be calculated in paralleL 
Gradients are computed in individual SUB-MULT­
SUB pipelines running in parallel and sharing the reg­
isters containing the ~-terms. The last step involves 
multiplication of each gradient by the same recipro­
caL Any new triangle specified by one or three new 
vertices requires recomputation of the gradients. 

The slopes ~xJ~y are computed by a secondary 
division pipeline running in parallel with the gradient 
calculation pipeline. 

SiI.!ce a shear operation applied to a triangle of the 
primary view in a stereoscopic display is invarient on 
the area of the triangles projectea on the zx- and iy­
planes, the same numerators (det[Z, X], det[Z, V]) 
can be taken for calculating the depth, color and tex­
ture coordinate increments in the setup for stereo­
scopic rasterization. Only the reciprocal (lIdet[X, V]) 
must be computed individually for each view. 

To model the throughput of our setup pipeline, we 
will make following considerations: the setup and 
raster pipeline are clocked at 80 MHz, producing one 
rendered pixel per cycle. Standard VRAM and 
DRAM are used for the frame buffer and z-buffer. To 
achieve maximum performance in page mode access 
with a memory controller operating at 80 MHz, the 
frame buffer must be five times interleaved. As 
already mentioned, the z-buffer has a 10-way inter­
leaving. 

For isolated triangles, the geometry processor will 
have to pass 18 words of 32-bit data to the setup. Tri­

angle meshes only require one new vertex for each 
new triangle or 6 words to be transferred to the setup 
only. In a configuration without integrated setup cal­
culation, the geometry processor must supply 40 
words of setup data to the rasterizer for any new trian­
gle. Table 2 shows the amount of data transferred to 
the rasterizer and the necessary input bandwidth for 
different configurations. If we add up the latencies of 
the individual processing stages, we get a latency of 
50 stages for the raster pipeline and a latency of 30 
stages for the setup pipeline, giving a total latency of 
80 pipeline stages. If the rasterizer and setup are able 
to handle one million triangles per second (typical tri­
angles are between 50 and 100 pixels large), then the 
geometry processor must transfer 16 Mbytes!s of data 
to the rasterizer. This is well within the capabilities of 
current PCI chipsets (The Intel Triton offers 80 
MBytes/s of PC I bandwidth) and relaxes well the PCI 
bandwidth between the geometry processor and ras­
terizer. 

Triangles with a size S > 30 pixels are likely to get 
rendered in S cycles. The raster pipeline will start ren­
dering the last pixel S cycles after the first pixel of the 
triang1e. During this period, the setup data values for 
the next triangle are compl:lted and -the old contents of • .._ 
the register file are swapped with new values after S 
cycles, in order to have a continuous flow of pixels at 
the output. Fot S > 30, the geometryeiigirie can trans­
fer triangle vertices to the setup at the same rate' as the 
triangle output rate of the rasterizer. Small triangles 
with S < 30 are processed at a lower rate, in the sense 
that the setup does not offer sufficient bandwidth to 
handle triangle vertices at the same rate as the ouput 
rate of the rendered triangles. 

The texture mapping stage between the span gener­
ator and the color blend stage is a performance bottle­
neck. A texture mapping engine operating at the same 
speed as the rasterizer can hardly deliver one trilinear 
interpolated textured pixel per cycle, when texture 
data is retreived from standard DRAM [23, 24]. 

Division performance can be increased by using a 
reciprocal cache [25] that contains results from previ­
ous reciprocal evaluations for later reuse, instead of 

I 
i 

Gouraud Shaded: 
1 M triangles/s 

Texture Mapped and Blended: 
500k trlangles/s 

SETUP DONE BY Data Amount Input Bandwidth Data Amount Input Bandwidth 

GEOMETRY ENGINE 
isolated triangles 

34 words 136 MBytes/s 40 words 80 MBytes/s 

RASTERIZER 
triangle meshes 

4 words 16 MBytesis 6 words 12 MBytes/s 

RASTERIZER 
isolated triangles 

12 words 48 MBytes/s 18 words 36 MBytesis 

Table 2: Necessary Input Bandwidth to the Rasterizer. 
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increasing the size of the initial approximation recip­
rocal table. 

Performance at interactive rendering rates for tex­
ture mapped triangles comes at the cost of keeping the 
latencies of the division stage and texture mapping 
engine as small as possible. If the output bandwidth to 
frame buffer and z-buffer is sufficiently high and no 
bandwidth degradation is on the input to the setup and 
at the output from the texture mapping engine, per­
formance virtually becomes limited by the video out­
put rate of the frame buffer. 

10 Conclusion 

Performance of a graphics processor is affected by its 
architecture and the available bandwidth on the inter­
faces to the geometry processor and the external 
memories. In the design of a high-speed graphics ren­
dering pipeline, we are faced with several bottlenecks. 
One dominant time cost in rendering triangles is 
within the geometry processor, when computing the 
slope, color, depth and texture increments for every 
triangle and sending them to the rasterizer. 

In this paper, we have described an architecture for 
a complete raster pipeline including a setup stage 
operating at the same rate as the rasterizer. Moving 
the setup from the geometry processor to the raster­
izer greatly improves the available input bandwidth ~o '" 
the rasterizer and virtually permits to send triangles to 
the setup at the same rate as they can be written into 
the frame buffer by the rasterizer. To limit data redun­
dancy, the setup is able to handle generalized triangle 
strips and stores triangle vertex values in a stack for 
later reuse. 

We showed how to combine the setup engine and 
rasterizer into an evenly balanced pipeline, where 
high latency computations such as mUltiplication and 
division are efficiently implemented along the raster 
pipeline through hyperpipelining and the use of small 
reciprocal tables. 
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