
An Architecture for High-Performance 2-D Image Display

Stephen D. Jordan, Philip E. Jensen, Barthold B. A. Lichtenbelt

Hewlett-Packard, Graphics Hardware Lab and Graphics Software Lab

Ft. Collins, CO 80525

ABSTRACT

Image processing operations can be divided into two classes,
those pre-processing operations that are market- and application-spe­
cific, and those widely-used operations that are useful in any applica­
tion that requires the display of two-dimensional images. In the inter­
est of achieving real-time rates for the broader class of 2-D image
display operations, Hewlett-Packard has developed a hardware accel­
erator called VISUALIZE-IVX. It is capable of scaling, rotating,
mirroring, translating and filtering lk-by-lk output images at greater
than 30 frames/sec while simultaneously enhancing image.brightness .
and contrast. This paper describes the pipelined architecture u.sed to
'actiieve this performance oh a desktop computer .. The arChitecture
makes use of a hybrid mapping scheme for geometric transforma­
tions. Also a unique memory device was designed that minimizes 10­
eaI image buffers while eliminating the need to resend pixels from
main memory. A recently developed method of extending the filter­
ing capabilities, that may be incorporated into future products, is also
presented.

1. INTRODUCTION

The field of image processing encompasses a variety ofimage
manipulation techniques that ranges from operations that are custom­
ized for specific applications to those that are more general-purpose.
In general the former may be categorized as image pre-processing op­
erations and the latter as image display operations.

The pre-processing tasks include image registration, pattern
recognition, object segmentation, and frequency domain filtering.
These application-specific techniques operate on large portions ofthe
image simultaneously. They are therefore best accomplished with a
software solution. The display operations include spatial filtering,
scaling, rotation, translation, mirroring, and brightness and contrast
manipulation. These operations are useful in almost any application.
They use localized computations, i.e. they operate on pixel neighbor­
hoods or single pixels. For these reasons it makes sense to accelerate
them in hardware.

Hewlett-Packard has developed a 2-D image display accelera­
tor called VISUALIZE-IVX which performs the image display op­
erations at 40 Mpixels/sec. This paper discusses the system architec­
ture and the design of the IVX that allowed us to achieve this
performance cost-effectively,

The image display operations accelerated by the IVX can be
classified as convolution (spatial filtering), interpolation (scaling,

rotation translation; mirroring), and window/level mapping (bright­
ness/co~trast control) operations. Full-speed performance (40 Mpix­
els/sec) has been achieved with any or all operations active. Further­
more, the order of operations can be changed without affecting
performance.

This paper consists of 14 sections. Section 2 presents the
overall system architecture. Section 3 lists the IVX design goals. Sec­
tion 4 presents the IVX architecture, which in tum led to the develop­
ment of the memory device described in Section 5. In Section 6 the
unique geometric transformation technique is described. Then Sec­
tions 7 and 8 describe the pixel address generator and i~!erpolator, re­
spectively, that together implement the teChnique. The pipelined <=?n­
volver circuit is described in Section 9. A method for supportmg
convolutions of arbitrary kernel sizes is described in Section 10. Sec­
tion 11 contains a discussion of the windowllevel map circuit. Section
12 provides some chip-level details. The software used to expose the
accelerator to the user is discussed in Section 13. The paper is summa­
rized in Section 14.

2. SYSTEM ARCHITECTURE

We architected our 2-D image display system with the goal of
achieving greater than 30 frames per second on 24-bit lk-by-lk out­
put images in a desktop workstation. This performance was .t~ be
achieved with an image display scheme that assumed the ongmal
image should be stored in system memory and passed through the dis­
play accelerator once for each frame to be rendered. This led to the
choice of the HP PA·RISC SPU with the HCRX-24 graphics subsys­
tem as the workstation platform, The IVX is a single printed circuit
assembly that attaches to the HCRX as indicated in Figure 1.

SPU
Host
Inter­
face

Frame
Buffer Display

HCRX-24

Figure 1. Workstation architecture

This system provides a high-bandwidth bus to the system
memory, and sub-word parallelism in the CPU accelerates MPEG or
other decompression techniques. The HCRX-24 uses an internal 45
MHz clock. By using this existing display subsystem we were able
to leverage its existing production volumes and maintain a lower
product cost.

39

http://www.eg.org
http://diglib.eg.org

3. IVX DESIGN GOALS

OUf image display accelerator was designed with the follow­
ing goals in mind. Along with each goal is listed the primary motiva­
tion for it.

• The accelerator should process more than 40 million
pixels/sec independent of the number or order of internal
operations active. This allows the system to achieve the
desired objective of greater than 30 frames/sec on lk­
by-lk output images even with software and module
interface overhead.

• The host CPU should be required to pass the source
image to the IVX exactly once for each frame displayed.
The intention here is to balance between minimizing the
amount of CPU cycles spent moving data and minimiz­
ing the local memory required in the accelerator.

• Each IVX internal module should output processed pix­
els at a burst rate of 45 million pixels/sec. This is based
on the first goal and the fact that the HCRX has an inter­
nal clock rate of 45 MHz.

• The order of image operations should be adjustable to
allow customers in different markets to select the order
most suitable to their application.

• Intemal pixel precision should be maintained to ensure
the integrity of 16-bit input data to the output image.

These design goals were met with the reconfigurable pipeline
architecture described in Section 4, a unique local memory solution
described in Section 5, and the individual module designs described
in Sections 6-9 and 11.

4. IVX ARCHITECTURE

The IVX chip consists of three major components as shown
in Figure 2. The convolver circuit uses a 3x3 programmable kernel
to perform spatial filtering functions specified by thHl5ef;-The ad­
dress generator and interpolator pair can be programmed to support
pan, zoom, rotation and mirroring about X or Y axes. The interpolator
can operate in any of three modes: bi-cubic convolution, bi-linear, or
nearest neighbor. Image brightness and contrast control is achieved
with a RAM-based look-up table by the windowllevel map module.

One, two, or all three ofthe IVX functional blocks may be ac­
tive at a time. In addition, except that the convolver can not follow the
interpolator, the crossbar connecting the separate modules permits the
order of operations to be adjusted arbitrarily.

Each block operates at a burst rate of45 million pixels/second.
To achieve the desired frame rate, the blocks are pipelined together:
each module begins processing an image as soon as it has the mini­
mum number of pixels to do so, and passes each output pixel to the
next block in the chain as soon as it is ready.

The convolver and interpolator kernels both require pixels
from multiple row to be available to compute the intensity of a single
output pixel. This is accomplished with the line buffer memory de­
scribed in the next section. This minimal memory is used to retain all
pixels that are reused until they are no longer needed and thereby elim­
inates the need for the CPU to resend any pixels. The windowllevel
map module does not need a local memory buffer since it performs a
point process.

5. LINE BUFFERS

Pixels from three rows of the input image need to be simulta­
neously available to the convolver's math modules. The corollary is
that each row of input pixels to the convolver will be used three differ­
ent times. As depicted in Figure 3 this is achieved with a pair of
memory modules called line buffers that store the reused pixels. Each
line buffer holds a single row of input pixels and shifts a pixel into a
convolver kernel register for each new output pixel computation. In
this manner the convolver walks through each row ofthe input image
from left to light. In adirectly analogous manner the interpolator uses
three line buffers to provide pixels from four rows ofthe input image
to its 4x4 kernel. For both modules the line buffers are chained togeth­
er such that one line buffer is fed from the incoming pixel stream and
dumps it output to both the kernel registers and 'the following line
buffer. With this chained arrangement the convolver or interpolator
can sequence through the entire input image one row after another.

6. HYBRID MAPPING SCHEME

For the geometric transformations an efficient means of ac­
complishing the input to output mapping was needed. Neither of the
traditional fotward or inverse mapping algolithms lends itself to a
low-cost high-speed hardware implementation. Therefore it was nec­
essary for a new solution to be developed.

Forward mapping allows the input image to be traversed a
single time in a straightforward manner, which permits an efficient
stream-based design and requires only a minimal amount of memory
to store a portion of the input image. However, a simple point-to­
point mapping will cause holes and overlaps in the output image. The
holes, of course, are unacceptable. The overlaps mean that an accu­
mulator is necessary, which requires a large amount of memory and
complicates the design. A region-based or four-corner mapping
would eliminate the holes but would not eliminate the need for an ac­
cumulator.

Inverse mapping allows the output image to be traversed in a
straightforward manner. This guarantees that all output pixels are
computed (i.e. no holes), and eliminates the need for an accumulator.
However, in addition to requiring an interpolation stage, it mandates
a large memory buffer to store the entire input image. This method is
used in texture mapping systems, where the interpolation must often
be precomputed in the host, and additional local memory is typically
used to store versions of the image interpolated at a number of differ­
ent sample rates.

40

• •
• • •
• • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

•
•

, , - - . - ­- - ­ - ... - - - , , - . ,

·­ - ------­
I

- ... -,.,

,
,
,
,
I- .. ,,

Address
Generator

~

' ,
' ,, ,
, ,
, ,
, ,

· ·I , I

· :~ ,
~ - ...

frome~ ~

,
,
,
,
I ,
• .I ' ,Local Local Window/LevelConvolver Interpolator ,I. ~ - · ,

,
I ~ !o­ !o-Memory ~ MapperMemory f-?o

..
,
"

, ,, ,

· I . I--,., - - ... ­ - - - - - ­- - ... - -- - - - - - - ­ -
,It \v·

I

%­
" crossbar

. - - - - - - - ,. ,
, ,IOff-ChiP,), Memory ,
, ,,
I I

,

,

Figure 2. IVX Block Diagram

.­

to frame r--;. buffer

Kernel registers

Une buffer 0

Une buffer 1

Input pixel stream

Figure 3. Convolver input data scheme

Input space

• • •
• • •

• •
• •

2x2 region

+
+

4x4
interpolation

2. Inverse mawindow
output pixel

Output space

• • • • • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • • • • • •
• • • • • • • • •

Figure 4. Hybrid mapping scheme

41

•
• • • •

• •

• •
• • •

Input space

7
Base location Transformed

base location~
Figure 5. IVX address transformations

Our solution is to forward map a 2x2 input pixel subregion to
determine its respective region in output space. Next the output space
subregion is traversed in a manner that touches each output pixel ex­
actly once. For each output pixel in a subregion an inverse trans­
formation is performed to determine the exact relative location of the
sample point in input space. Then an interpolation aUhe sample point
is performed in input space using a 4x4 window to determine the re­
spective output pixel intensity. This method is depicted in Figure 4
for an image that is translated, scaled by 1.8, and rotated clockwise
15°.

In this hybrid mapping scheme the input image is traversed a
single time in a row sequential manner. This minimizes the local
memory requirements and permits a pipelined architecture. The re­
gion-based output space traversal guarantees that all output pixels are
computed, and means that an accumulator is not necessary, i.e. no
memory is requ ired for output pixels before the frame buffer. The im­
plementation of this scheme in the IVX address generator and interpo­
lator can perfC'rm affine transformations that preserve angles.

7. ADDRESS GENERATOR

In the IVX the forward mapping is accomplished by program­
ming the IVX address generator module once per image with the
transformed base address and the output space address increments.
The transformed base address locates the point of the output image
that corresponds to the first pixel in the input image. This output space
point does not typically lie on anoutput pixel. The address increments
specify the change in address in output space that corresponds to
single pixel movement in the input image. These concepts are de­
picted in Figure 5. The example shown includes a translation, count­
er-clockwise rotation, and scaling where the scaling in X is greater
than in Y.

Using the transformed address information the address gener­
ator determines all the output pixels within each output space subre­
gion. (The subregion is the rectangular area bounded by a trans­
formed input space 2x2 pixel group as shown in Figure 4.) The
addresses of each plxel to be displayed is sent \0 the interpolator for
the inverse mapping step. The order the address generator traverses

the output space is constrained by two factors. Firstly, the interpolator
only has pixels from four rows of the input data available at a time, and
interpolation requires remaining between the center two rows. Sec­
ondly, the IVX frame buffer bus uses multiplexed address/data, so ad­
dress cycles should be limited to minimize the image draw time. The
address generatof.!neets these constraints by drawing in a serpentine
fashion within each transformed row region and just sending the step
direction with each pixl?l.. This is shown in Figure 6. The serpentine
order of drawing by the address generator/interpolator pair is the rea­
son the convoJver can not follow them in the IVX pipeline, since the
convolver reqUires its input data in scanline order. This is not an issue

• for the point processing window/level map circuit.

Input image • • • • Display grid
lattice .J •

•

Figure 6. Address generator drawing path

Care must be taken in the computation of the location of sub­
region edges in order to ensure that no holes are created in the output
image. In particular, the upper edge ofone subregion must be situated
at exactly the same location as the lower edge of the subregion just
above it, even though these edges are computed at different times.
This is readily accomplished by computing the starting address of an
edge once and storing it for reuse the second lime the edge is needed.
Both times the edge is computed, from the starting address to the last
subregion, identical computations are used by the address generator.
This eliminates the possibility of different round-off errors each time
the edge is used for clipping, and thereby ensures no holes will be
created.

42

X coefficient generator

Output pix_e_I_~ 	 Inverse
matrixaddresses

X interpolator 0

X interpolator 1

X interpolator 2

X interpolator 3

Y coefficient generator

Figure 7. Interpolator block diagram

Outp
Y interpolator pixe

8. INTERPOLATOR

For each output pixel location calculated by the address gen­
erator, the interpolator module inverse maps to determine the location
in input space and interpolates using the selected method (nearest­
neighbor, bi-Iinear, or bi-cubic) to compute the output pixel intensity.
For example, for bi-cubic a one-dimensional.interpolation is per­
formed on four pixels from each of four rows in the kernel. These in­
terpolations occur in the input space X dimension. The results from
tlie four rows are then used to interpolate in Y, and thereby compute
the output pixel value. The I-D interpolation function is described
by Equation 1, where Pint is the interpolated pixel value, PiO, Pil, Pi2
and PiJ are the input pixel values, and Co, C1, C2 and C3 are thecoeffi­
cients or weights applied to the respective input pixels. The coeffi­
cient values are a cubic function of the distance from the sample point
to the respective input pixel as described in Equation 2, where dn is
the distance from an input pixel n to the sample point in input space.

Pint = PiO X Co + Pi! xC! + Pi2 X C2 + Pi3 X C3

Equation 1

Cn = (A+2) x Idnl3 - (A+3) X Idnl2 + 1, Osldnl<l;

en = A X Idnl3 - 5 x A X IdnF + 8 X A X Idnl- 4 X A, 1 sldnl<2;

en = 0 otherwise.

Equation 2

A block diagram of the interpolator is shown in Figure 7. The
inverse matrix block is programmed once per image with the values
of an inverse transformation matrix that maps the output pixelloca­
tions back to theirrelative locations in input space. The outputs of this
block are the distances dn of Equation 2 for the X and Y dimensions.
The X and Y coefficient generators use a form ofEquation 2 that takes
advantage of the relationship between the four dn values to use less
multipliers and adders.! This implementation has nine multipliers
and seven adders each for X and Y. Each XIY interpolator is a straight­
forward implementation ofEquation 1 that produces a 16-bit pixel re­
sult. The X interpolators receive the input pixels using a line buffer
scheme analogous to that shown for the convolver in Figure 3.

The interpolator submodules are chained together as a single
pipelined unit. All told there are 82 multipliers and 64 adders in the

three-channel (red, green, blue) interpolator pipeline. Once the pipe­
line is loaded, new data can be shifted in and a new pixel result can be
calculated in every clock cylce. With the 45 MHz clock, this gives a
burst pixel interpolation rate of 45 million pixels/second. Bi-Iinear
and nearest-neighbor interpolation modes are handled by switching
in appropriate values for the coefficients, so the interpol ator runs at the
same speed in these modes.

The address generator and interpolator work together to per­
form geometric transformations. X and Y scaling by integer and non­
integer factors up to 32 are supported. Any ratio of scaling in X to
scaling in Y from 1/2 to 2 is allowed. The angle of rotation may be
any multiple of l/lOth degree from 0 to 359.9. Images can'be trans­
lated to any position resolved to less than l/lOOOth of the pixel-to-pix­
el distance. The modules operate together at a burst rate of 45 million
pixels/second.

9. CONVOLVER

The convolver circuit is a spatial filter using a 3x3 kernel with
programmable coefficients. For a given pixel in the input image, the
corresponding output pixel value is a function of the input pixel and
its eight adjacent pixels. Each of these nine input pixel values is multi­
pl}ed by the respective coefficient in the convolution mask.

The coefficients ofthe mask can be programmed once for any
single image. By selecting the appropriate values for the mask coeffi­
cients the convolver can be used to perform low-pass filtering (blur­
ring), high-pass filtering (sharpening), edge enhancement, or other
functions determined by the user.

The convolution is performed using the math modules shown
in Figure 8. The modules are pipelined so that an output pixel is calcu­
lated for every clock period, and the convolver can therefore generate
45 million output pixels/second once the pipe is filled.

Since each output pixel is dependent on its eight neighbors,
special means should be provided for calculating output pixels at the
edge ofthe image. The JVX convolver includes hardware support for
expanding the input image size by one at each edge using a constant
pixel value or by copying the pixels at the edge. Alternatively, custom
adjustments may be made to the edges of the image before passing it
to the IVX, and the convolver can allow the image size to shrink in
each dimension by not locally adding data to the edges.

43

Eight

Adders
Result

+

Figure 8. Convolver math data flow

10. CONVOLVER ENHANCEMENTS

Realizing that support for convolutions of larger kernel sizes
would be useful, some work has been done since completing the IVX
for potentially enhancing convolution in future products.

Simply increasing the number of multipliers and adders to the
convolver to support larger kernels quickly becomes expensive in
terms of chip real estate. However, by increasing to a core Sx5 con­
volver circuit, and using it in multiple passes in conjunction with a lo­
cal memory buffer, performing convolutions of arbitrarily large ker­
nel sizes is possible. For example, 7x7 convolutions can be
performed in two passes by computing 25 of the 49 pixel-coefficient
products in the first pass, storing the intermediate sum for each pixel
in the memory buffer, and performing the remaining 24 products and
final summing in the second pass. A 7x7 convolution can thereby be
performed at fully half the speed of a 3x3 or 5x5 convolution.

This idea can be extended further. By using more passes
through the input image even larger kernel sizes can be supported us­
ing the same 5x5 core. For example, an llx11 convolution can be
performed by breaking the kernel into six sections and computing up.
to 24 pixel-coefficient products in each pass. Larger kernel sizes take
correspondingly more time for the convolution process, but the per­
formance advantage of the hardware accelerator over a CPU software­
based spatial convolution remains constant.

11. WINDOW/LEVEL MAPPER

Window and level controls are essentially pixel contrast and
brightness controls. As such they are straightforward but powerful
means of image transformation. By implementing with a standard
mapping table any arbitrary mapping function can be used. Since
most computer displays use an 8-bit DAC per channel, this is a useful
enhancement to make to the 16-bit image data before sending it to the
display in order to make use of the reduced range effectively. A1terna­

tively a mapping function could be loaded that converts single-chan­
nel input to red/green/blue output.

The IVX includes afull 16-bit input to 32-bit output mapping
table which is stored in high-speed static RAM. The window/IeveJ
mapper module in the IVX chip controls accesses to this RAM, piping
up the table look-up reads to achieve a 45 million pixeVsecond
throughput rate. The module supports accessing the off-chip RAM
as a single 8-bit LUT for fast loading, a single 16·bit LUT for maxi­
mum control, or sixteen 12-bit LUTs. The third mode allows consec­
utive images to be rendered more quickly by pre-loading the sixteen
tables and just switching between them for every frame.

12. CHIP·LEVEL STATISTICS

The IVX chip was implemented using Hewlett-Packard 's pro­
prietary 0.45 fJIll CMOS process and includes 1.7 million transistors.
All math modules are 24 bits or wider to maintain internal precision
of 16 bits/channel. Several statistics for the chip are listed in Table 1.
It is interesting to note that in this day of 100+ MHz clock speeds that
we have been able to achieve industry-leading image processing per­
formance without such a high chip frequency.

. i ~. Table 1

Parameter Value

Die size 14.2mm x 14.2mm

Pins used 348

Power consumption <4 watts

Multiplier count 96

Adder count 85

FETcount 1.7 million

Interpolator FET count 1.1 million

Address Generator FET count 0.18 million

Convolver PET count 0.16 million

Internal memory 44 kbits

ClocksJl~ 45 MHz

13. VISUALIZE-IVL SOFTWARE

A hardware system is unusable without the accompanying
software that drives it. The IVX hardware is accessible to the user via
an imaging library c.aJled VISUALIZ~IVLwhich uses an API based
on the imaging portions of OpenGL and the imaging extensions
thereof. This bas been shown to be an effective strategy for an imag­
ing API.2 If the IVX accelerator is not present in the system, IVL will
automatically fall back to a software solution, with a performace pen­
alty. In either case IVL is optimized for memory to display transfers of
image data}

While the OpenGL® API is not often thought of as an API for
imaging, it was designed to expose the capabilities of modern frame

44

buffer hardware. The emphasis in this API is on 3D graphics, but it
also includes a fairly rich seWf capabilities for 2D ima~ing. The ~re
capabilities of the OpenGL API can be extended usmg extensIOns
for imaging proposed by Silicon Graphics, Inc. and others.

IVL is a stanwlone library that implements th(6:,imaging por­
tions of the OpenGL API and some of the OpenGL imaging ex­
tensions. IVL is a low-level application programming interface. By
this, we mean that IVL is intended to provide access to the fr~me buff­
erwith the highest possible performance and the lowest posstbJeover­
head. IVL does not include elaborate image processing algorithms,
nor does it support high-level abstractions for image formats. The
API focuses on providing a highly efficient path for transferring pix­
els to and from the frame buffer. Unlike X, IVL provides applications
direct access to the frame buffer hardware without the need to go
through any intermediate software layers or protocols.

Even though IVL exposes the capabilities of the IVX hard­
ware, it is not a hardware-specific API. It provides some degree of
abstraction from the hardware in order that it might be implemented
on a variety of hardware platforms, even on devices that have no spe-'
cific acceleration hardware for pixel processing operations. This level
of abstraction allows software written on top oflVL to be ported easi­
ly to any system that supports IVL.

With its similarity to the OpenGL®@'PI, software written us­
ing IVL can be easily ported to an OpenGL R environment. IVL pro­
vides a small, well-defined set of capabilities for pixel processing.
The IVL entry points ar~identical in. syntax and semantics. to. their
counterparts in OpenGL . IVL provlde®API cal!s that are Similar \0
function calls in the following OpenGL extensIOns:

• EXT_convolution
• EXT_texture
• EXT _ visuaUnfo
• EXT_color_table
• HPjmage_transform
• HP_convolution_border_modes

Extensions that begin with "EXT" have public support from
two or more companies. This ty~caJly means that at least. tW? of the
compani~ licensing OpenGL technology are shlppmg an
OpenGL product that supports the extension, or that they are plan­
ning to do so. The HPjmage_transform extension addr~ the lack
of image transformation facilities (zoo?1iot~te, resampl~.I.e. t~e ~-D
affine transformation) in the OpenGL pixel processmg pipeline.
The HP convolution border modes extension adds additional bor­
der-handling methods to the EXT_convolution extension.

14. SUMMARY

An image processing architecture has been described that can
perform the most widely used image transformations in real time.
This has been achieved while minimizing the load on the the system
CPU. The accelerator performance goals were met by chaining to­
gether dedicated high-speed modules that each perform one or more
of the desired transformations. Except at the very beginning and end
ofthe image, all modules are simultaneously busy, operating in paral­
lel albeit on different portions of the image. High throughput rates are
thereby sustained even when multiple operations are performed on
the same image, and independent of the order of operations. All op­
erations maintain 16 bits/channel internal precisions by using wider
math modules throughout the pipeline.

In order to achieve these results a unique image transforma­
tion algorithm was developed for the geometric transformations. This
algorithm uses a hybrid of forward and backward mapping to perform
affine transformations efficiently. Also, a unique memory scheme
was described that permits the image to be sent down only once from
the host, but minimizes local memory requirements.

Including image setup, driver and API overhead, the IVX has
been measured performing simultaneous filtering, scaling, transla­
tion, and windowing/leveling on a 256x256 image scaled to 1kx1k
at 43 frames/second.

15. ACKNOWLEDGMENTS

The authors would like to acknowledge the contribution of
the entire hardware and software teams in the successful development
of the VISUALIZE-IVX and VISUALIZE-IVL products.

OpenGL® is a registered trademark of Silicon Graphics, Inc.

16. REFERENCES

1. S. D. Jordan, "High-performance image processing on the desk­
top", Medical Imaging 1996: Image Display, Yongmin Kim Ed.,
SPIE Proc. Vol. 2707, May 1996.

2. R. J. Rost, "Using OpenGL for Imaging",Medicallmaging 1996:
Image Display, Yongmin Kim Ed., SPIE Proc. Vol. 2707. May 1996.

3. D. A. Desormeaux, "The secrets of high-performance image dis­
play", Medical Imaging 1996: Image Display, Yongmin Kim Ed.,
SPIE Proc. Vol. 2707, May 1996.

45

