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Abstract 

This paper details the design of an advanced 32 
bit 3D frame buffer memory controller for a 3D 
Graphics Raster Processor called TAYRA [1]. 
This memory controller is designed to provide a 
performance of 33 MPixelsls for read and write 
cycles, 4 GPixelsls for block write, and 16.5 
MPixelsls for read, modify, write cycles (with a 
pixel size of4 bytes). This performance is without 
any interleaving. It has several control modes: 
S3 shared frame buffer protocol compatibility 
[2], stand alone 3D buffers, multiplexed 2DI3D 
buffers, and others. Further, our 3D memory 
controller is designed to control DRAM, VRAM 
and WRAM, and EDO versions of these 
memories. Also, we support up to 4 screen 
buffers, 16 MBytes of screen memory, and many 
combinations of memory organisations up to 
1600x1280. 

1. Introduction 

T A YRA is a 3D Graphics Raster Processor which 
is designed to operate in a mixed 2D/3D 
rendering environment. This has posed 
considerable compatibility problems in the design 
ofTAYRA's colour buffer interface. At the start 
of the design it was decided for various reasons 

that a VRAM interface would be the most 
appropriate solution. However, the advent of 
WRAM gave us the opportunity to design a 
colour buffer interface which could support both 
VRAM and WRAM. The design of this memory 
interface is quite complicated due to a number of 
factors, not least because of the, as already 
mentioned, 2D compatibility problems, but also 
because of, the asynchronous nature of these 
memory technologies, and the added complexity 
of designing the serial video refresh logic. This 
can best be appreciated when contrasting the 
design of this VRAMlWRAM interface with the 
design of TA YRA' s depth and texture interface 
which controls single port SGRAM and SDRAM. 
The single port and synchronous nature of the 
depth and texture buffer memory made these 
interfaces somewhat easier to design (although by 
no means trivial). Of course, one could ask the 
question why not use SGRAM or SDRAM or 
even FBRAM for the colour buffer. At the time 
FBRAM was not available, however we have now 
started on an FBRAM interface, and we decided 
that performance would be impacted without dual 
port memories which ruled out the synchronous 
memories for colour buffer use. Figure 1 
illustrates the type of system architecture TA YRA 
may be expected to work in. 
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Shared Frame Buffer System Separate 2D and 3D Buffers 

Figure 1 System Configurations 

2. Memory Controller 
Architecture 

The memory controller is implemented with six 
major modules. These modules are: Arbiter 
module (AM), Main Memory Controller module 
(MMCM), Timing Generator module (TGM), 
Microprogram module (MM), Block-Write 
module (BWM), Serial Interface module (SIM) 
(see Figure 2). 

We describe in detail this architecture and its 
interfaces in sections 3 and 4. 

3. Memory Controller 
Interfaces 

The memory controller has five interfaces: 
graphics pipeline interface, PCI interface, shared 
frame buffer interface, memory chip interface, 
and a video interface. 

3.1 Graphics Pipeline Interface 

The pipeline signals (see Figure 2) associated 
with this interface are: 

• 	 PIPE_read-port&control: 24-bit 
address bus and a 32-bit data bus for 
memory read operations. It also 
includes all the necessary control 
signals for communication with the 
Graphics Pipeline 

• 	 PIPE_write-port&control: 24-bit 
address bus and a 32-bit data for 
memory write operations. There is 
also a 4-bit 'byte write enable signal' 
(as a mask to the 32-bit data). This 
signal is also supported by the PCI 
protocol. 

• 	 Block_writccontrol: Signals to 
control for filling a rectangular area of 
the screen (buffer clear). 
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Figure 2 Memory Controller Architecture 
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• 	 CoLreg...write_port&control: Signals 
for writing colour data to the memory 
chip's colour registers. 

• 	 Mask_write...,port: This 32-bit signal 
provides the option to mask any data 
that is stored in memory. 

• 	 Multiple_buffers&control: Signals 
which indicate the organisation of the 
frame buffers (number of buffers, 
offset addresses etc.) 

3.2 PCI Interface 

The memory controller's pcr interface has to 
interface with TAYRA's chip level PCI interface. 
Therefore, from now on when we refer to the PCI 
interface we imply the memory controller PCI 
interface, i.e. the memory controller 
communication ports. 

The PCI interface is very similar to the Graphics 
Pipeline interface. The main groups of signals 
associated with it (see Figure 2) are: 

• 	 PCCread_port&control: 24-bit 
address bus and a 32-bit data bus for 
memory read operations. 

• 	 PCCwrite_port&control: 24-bit 
address bus and a 32-bit data bus for 
memory write operations. There is 
also a 4-bit "byte write enable signal" 
(as a mask to the 32-bit data). This 
signal is coming directly from the 
TAYRA's external PCI interface 
signals. 

3.3 Shared Frame Buffer Interface 

The memory controller supports a shared frame 
buffer interface. An SVGA chip such as those 
supplied by S3 will be the shared frame buffer 
bus master. There is only one group of signals 
associated with the shared frame buffer, this is: 

• 	 Shared_frame_buffeccontrol: There 
are two signals in this group (see 
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Figure 3). Together they support a 
simple request-acknowledge protocol. 

3.4 Memory Chip Interface 

The memory controller supports a variety of 
memory buffer configurations. The memory 
controller is able to access different memory 
chips, e.g. DRAM, VRAM, WRAM, with a wide 
variety of different sizes and data bus widths. 
The groups of signals that are mainly used from 
the memory chip interface are: 

• 	 Memory_configuration: These signals 
provide information such as: memory 
size, addressing mode, type of 
memory, memory characteristics 
(speed, data bus width), etc. Most of 
these signals do not change during 
normal operfltion, and they have to be 
set after power-up. 

• 	 Memory_read-port: This is the 
memory controller's internal data bus 
for memory read :·operations. The 
memory controller has being designed 
to support both 32-bit and 64- bit data 
bus. 

• 	 Memory_write-port: This is the 
memory controller's internal data bus 

for memory write operations. 
• 	 Memory_control: Signals for 

controlling the memory chips (RAS, 
CAS, DSF, OE, WE, QSF). 

3.5 Video Interface 

The memory controller video interface has to 
interface with an external video display 
controller. When the memory controller works in 
'shared frame buffer' mode the functionality of 
the video display controller can be provided by 
the master chip (S3 graphics chip): 

• 	 Video_signals: These are the common 
video signals (Hsync, V sync, Blank), 
and they are all input signals. 

• 	 SeriaLside30ntrol: Registered signals 
coming from the Graphics Pipeline. 
Th~se' signals' provide information 
about screen configuration, memory 
serial size registers, etc .. 

4. Memory Controller Logic 
Modules 

The memory controller consists of six mam 
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Figure 3 Shared Frame Buffer Protocol 
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A : PCl read request 
B : pcr write request 
C : G.P. read or write request 

D : pcr read maximum time reached 
E : PCI write maximum time reached 
F : G.P. read and write maximum time reached 

Figure 4 A simple state machine model for the arbitration scheme 

modules. These logic modules provide the 
functionality needed to control the frame buffer. 

4.1 Arbiter Module (AM) 

This module arbitrates the accesses between the 
Graphics Pipeline and PCI interface. Each of 
these ports can access the memory controller for a 
certain amount of time, which is determined by 
the Port_time_slices registers. The state machine 
diagram in Figure 4 explains how this priority 
scheme works. 

From Figure 4 we can see that the Graphics 
Pipeline read and write ports share the same 
amount of time. This is because these two ports 
can read from memory and immediately write to 
memory data taking advantage of the Read­
Modify-Write memory cycles. 

The time that each port is permitted to access the 
memory controller can change at run time by a 

software driver. This effectively can change the 
priority between the four ports depending on the 
needs of the current application. 

4.2 Main Memory'Controller 
Module (MMCM) 

This module controls many tasks: 

• 	 Translates GP's 24 bit physical 
address (x,y) into memory row and 
column. 

• 	 Serves as a communication interface 
between four other modules (TGM, 
SIM, BWM, MM). 

• 	 Decides what memory mode to use, 
e.g. (non-page, page) and memory 
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cycles (such as Read data, Write data, 
Block write, Load colour register, 
refresh, serial transfer). 

• 	 Selects which memory cycle the TGM 
is going to use. The next memory 
cycle used depends on the following 
factors: 

• 	 The previous memory cycle 
executed 

• 	 The new physical address of 
the data 

• 	 The kind of operation 
requested 

If the I/O ports cannot provide data when the 
TGM requests them, there can be two possible 
cases: 

• 	 When the previous memory cycle can 
be continued, e.g. page mode, the 
MMCM has two options: 

• 	 Assert wait states. 
• 	 Execute an idle cycle. 

• 	 When the previous memory cycle can 
not continue (non page-mode) or 
already been in an idle state 

• 	 Execute the idle state. 

In the shared frame buffer case the memory 
controller (slave) can use the bus only if the 
bus~ot signal is low. When the bus~ot signal 
goes high the controller has to tristate all the 
external signals to the memory chips (control, 

data, address busses). The Mode Selector senses 
this bus---,ot signal before starting any memory 
cycle (or continuing one, e.g. page-mode), and if 
its high it then brings bus_rq high (active low) 
and tristates every external signal that goes to the 
memory chips. 

The next request of the bus can be asserted after 
60 ns, provided that the memory controller is 
ready to access the memory. In that case the 
MMCM brings bus_rq low and keeps that low 
until the Master request the bus again. When the 
frame buffer is used exclusively by the T A YRA 
chip the bus~nt signal can be set low. 

An important interface of the MMCM is the 
'Porccommands' group of signals. All of these 
signals are connected to T A YRA' s register set. 
These registers inform the MMCM what low 
level memory operation (command) is allocated to 
each access port. The command registers can be 
re~programmed at run time. Table I shows the 
low level operation for each different command 
(cmd) value. 

The MMCM includes an Address Translation 
scheme. The basic function of this module is to 
use the 24 bit physical address coming from the 
graphics pipeline and produce memory row, 
column addresses, even/odd bank selection 
ev/odd signal, Bmsb signal (selects between 2 
sets of even or odd banks), byte select signals. 

cmd 3-bit value memory cycle (state name) 

Qage mode_write 

001 a e mode_read 

010 a e_ffiode_block_write 

a e modcR_M_W =startinLwith_read 

a e mode R_M W _startin with_write 

load_colour_register 

load mask_re ister 

Table 1 Command to memory operation translation 
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Figure 5 shows one of the eight different memory 
address configurations, it also illustrates the 
address translation scheme for that configuration 
by using a reduced 23-bit address space. 

Figure 6 shows an 8 MB memory configuration 
implemented with 256Kx 16-bit VRAM chips. 
This figure also illustrates the way that the 
memory control signals are connected to the chips 
(without including the serial port of the VRAM 
chips) and the ability to work with a 64-bit data 
bus. 

4.3 Timing Generator 
Module(TGM) 

This module uses the microprogram data and 
generates the control signals for the memory 
chips. The control signal generation depends on 
the data fetched from the microprogram and 
signals from the 'Memory_configuration' group. 

When the TGM is ready to start a memory cycle it 
requests the microprogram address from the 
MMCM Controller module. The MMCM then 

23-bit Physical address... 1m 121 1,,1 "I "I "I "I "I ,'I '1 

"'"'""'1"'"' '""'" ,~"'" 

1 I I I I I I I I I 

sends this address (if the graphics pipeline is not 
ready then the address for an idle memory cycle is 
sent) so that the memory cycle execution can 
start. 

4.3.1 Control Signal Generation 

Bearing in mind that the basic memory control 
signals (RAS, CAS, DSF, TRG or OE, WE) are 
provided by the microprogram data, the only 
function needed for controlling the memory chips 
is to extend them (in number 2 RAS, 8 CAS, 1 
DSF, 2 TRG, or OE, 2 WE ), and send them only 
to the chips that are going to be accessed. Here 
follows an example for determining the Boolean 
logic equations of the control signals. 

All the signals coming from the MM start with an 
M (MRAS, MCAS etc.). The signal generation 
depends on the address· translation scheme 
described in Figure 5 (all the memory 
configuration schemes of the VIP [3] chip are 
supported plus others) . 

RAS(O) <= MRAS OR Bmsb, RAS(I) <= 

1121ll1FII .. 1MI i'61 ~I .. I m 

Column 12:4J Even/Odd 


bank 

o I I 

I 0 0 

I 0 , 

I I 0 

I I I 

............~v~~,~(~~:~~ :o·).....~..'.'.:.... :::::...::.';· :.": ~ ,.. .:a.,;' ... ~ve.n b:'nk (~v/odd:: '.0:)............... . 


. "",' -'"' ..""1 "" ,[ "'"'I'" "00': i 1ffiI·. :"'"" ".".,'" '''''' ""' """" " "00' , 

: Byte I Addr[2.0]='iX)I' ByteS Addr[2.0]='IOt'!! ····,i,BYte! Addr[2:0J='001' ByteS Addr[2:0] '101': 

i Bank select = '0:': 
Byte 2 Addr[2:0] ='010' B,1e 6 Addr[2:0] '110'1 (Bmsb = 'O') ~ IByte 2 IAddr[2:0] ='OW' Byte 6 Addr[2:0] '110': 

. ::-C "",. i 

Byte3 Addr[2:0] ='01 I' Byte7 Addr[2:01='llli: i[:BYte3IAddr[2:0] 'OIl"Byte7 Addr[2:0J='III'j 

.Cid~~~;k,(~~i~_d_;;,',i;,',_-'''_·''..·''.·''''.·'''·.·''.·.·''........ ','.'f. 

Byte 0 Addr[2:0) '000' Byte 4 

Byte I Addr[2:0J = '00 I' Byte 5 

Byte 3 Addr[2:0J = '011' BVle 7 

Addr[2:0) = 'lOO'j 

; Bank select=" I" 
Addr[2:0] '" ' I 0 I': (Bms\r-"I") ::... ...: 
Addr[2:0J = '110': 

Addr[2:0) '111': 

Addr[2:0J 

: 

'100': 

Addr[2:0] = . 101': 

Byte 2 Addr[2:0] '010' Byte 6 Addr[2:0] = '110': 

Byte 3 Addr[2:0] = '011'1 Byte 7 Addr[2:0J 'III': 

Figure 5 8 MByte configuration, 256Kx16, parallel (confa == '1') addressing 
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MRAS OR NOT(Bmsb); 

CAS(O) <= MCAS OR «byte_select(2) OR 
byte_select(l) OR byte_select(O» AND 
access_mode='OO') OR «byte_select(2) OR 
byte_select(l» AND access_mode='Ol') OR 
(byte_select(2) AND access_mode='lO'); 

CAS(l) <= MCAS OR «byte_select(2) OR 
byte_select(l) OR NOT(byte_select(O))) AND 
access_mode='OO') OR «byte_select(2) OR 
byte_select(l» AND access_mode='Ol') OR 
(byte_select(2) AND access_mode='lO'); 

and so on up to CAS(7) 

DSF <= MDSF, WE(O) <= MWE OR ev/odd, 
TRG(O) <= MTRG OR ev/odd; 

The access_mode effects the generation of the 
CAS signals in such a way that for 8 bit memory 
access 1 CAS line will be enabled (1 out of 8, 
chosen by the 3 byte_select bits). 

For 16 bit memory access 2 CAS lines will be 
enabled (2 out of 8, chosen by the 2 msb of 
byte_select). 

For 32 bit memory access 4 CAS lines will be 
enabled (4 out of 8, chosen by the msb of 
byte_select). 

For 64 bit memory access all the CAS lines will 
be enabled and the byte_select data will be 
ignored. 

Dala Bus [63:0] 
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CASi 
15m 
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ill 
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156K CAS5 , 1m! 
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WEi 16 bit WEi 
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lSI odd, 2 MB bank : SCI A I,:OJ SCI AI':OJ 

RAsii DIll.l6J RA'So DI614HJ 

CAS2 CAS6 
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16 
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•.•...................... "y'---' 

D115:0J ~I I D147:12J 
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DEli x 
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D111:16J 

1 
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1 
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0Ei DEI I 
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SEI SEI I 

I I A I':OJ 

DI61A'J 
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1 

SCI _.....~[~:OJ...........•.~CI. ~ J ~':': ~. r~ ~. _) 

2nd even, 2 MB bank 

2nd odd, 2 MB bank 

Address Bus [8:0] 
I Meg, 2 chip block 

Figure 6 8 MByte, 256Kx16 Configuration 
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4.3.2 Refresh, 'RAS low', 'CAS low' 
timers 

There are some mechanisms partly implemented 
in the TGM that check: 

• 	 How long it has been since the last 
memory refresh cycle. 

• 	 How long it has been since RAS 
signal brought low (and still remains 
low). 

• 	 How long it has been since CAS 
signal brought low (and still remains 
low). 

The TGM has 3 timers (refresh, cas low, ras low) 
that start counting (in terms of clock cycles) at 
proper times in order to prevent any memory 
timing violations. 

When the refresh timer reaches a predetermined 
value a refresh request is sent to the MMCM 
which has to finish the current memory cycle and 
execute a memory refresh cycle. After that the 
memory controller continues its operation 
normally. 

If the RAS low timer has reached its maximum 
value the RAS signals have to go high and 
therefore the current memory cycle has to finish. 
If the request becomes from the CAS low timer it 
then depends on the current memory cycle 
whether the MMCM will finish it or not. When 
one of these two timers goes the corresponding 
RAS or CAS signal will also go high as soon as 
possible. 

4.4 Microprogram Module (MM) 

This provides the control signals of a memory 
cycle to the memory chips, when to read, write 
(and what to write) from the address translate 
module and some extra information, e.g. how 
many times a memory cycle can be executed 
before a memory refresh occurs. The MM is 
about 128 bytes. 

The module of the memory controller that utilises 
the microprogram's data most is the TGM. When 
the TGM makes a decision about which memory 
cycle to use it sends the start address of the 
memory cycle to the address bus of the MM and 
the execution of the memory cycle begins. The 
MM then sends the 16-bit data to the TGM. The 
significance of this data is shown in 

Figure 8 

The 5 most significant bits of the microprogram 
address (32 addresses) represent the memory 
cycle that is going to be executed (read cycle, 
write cycle, enhanced page mode read cycle, and 
generally every possible memory cycle up to 32 
types). The 4 least significant bits of the 
microprogram address can access up to 16 
memory locations where the data for the selected 
memory cycle is stored. Some memory cycles 
(such as write, R-M-W, page-mode write, page­
mode R-M-W, block write, page-mode block 
write) have different variations. For example, the 
page-mode R-M-W cycle [4] (page 5-292) of 
TMS55166 has 4 variations: 

All 4 variations have to do with the write part of 
the cycle but all necessary data that indicate 
which variation to use are sent to the memory at 
the beginning of the page-mode R-M-W cycle. 
Fortunately, all possible variations happen to be 
at the beginning of a memory cycle which means 
that they can all be st~red. in.~ide a memory cycle 
space (16 locations). . ­

The 5 most significant bits of the MM address 
represent the requested memory cycle and the 4 
least significant ones the offset of the requested 
variation. The page-mode R-M-W memory cycle 
has 4 variations, where each of them needs 2 
address locations. The data of the first variation 
are stored in address locations represented by 
offset addresses '0000', '0001', the second 
variation's data are stored in offset addresses 
'0010', 'OOll',etc. 
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The example in Figure 7 illustrates how the 
microprogram's data can be interpreted and how 
the microprogram's flow mechanisms work. 

Microprogram address 
01"1,,1 0 1 1,1+1 01' 

10 1"1,, I, 1·1" 1010I· 
04'" 1 I " I" I" I. I" I0 I. I0 I 

'1,,1010101.10101.1.1 
,,1 010 10 I. 10III ~ 3 

"1,,1 01,,1 01'1" I' I 0I' ~lol'lol'lol· 
0"I" 1 I" 1'1 0 1'1 I ~I'I'I'I'I'I· 

0I0 I" I. I ' I' 1 I' I, I' ~lol'I'I'I'lo 
01 j 1111} 10 ~ 

~ 

2 : masked. Read pan of 
non persi~~ R-M-W cycle .. 

00 

ro'" IlXIlurnn I".,xwrol I 1.rhbt< I Ad4If($1i 

os, 
TIm 
;r 

I mSOO>.! I kutlf< I "HUlk: 1111~ INlIdl'l»\1 d,. 

~ 
----, 

1.,.,llIR'II'Ilcolwn& Ilriu* I 

~"nd ll'I»4ind IM.ij in't~ I tflmk" !...,.,t III,lwl 

3 : masked. Read pan of 
persistent .. R-M-W cycle .. 

""I ..rLJL..rLrLSL. 
iffil ----, 
00 

AddJ;:u I """111M ICollII'ntI1 trii~ I 
os, 
"i'iUj 

WE 

.... IUi,tahl Ilrisllliol I !"flake 11MI1t.r IlVllf.l:nowl 

Figure 7 Microprogram Data Flow and Basic Signal Generation 

Microprogram address Microprogram data 

[8 
~-------------------------------------~------~ 

6 J l II 5 I 4 I I I I 1/,1/1'108[8 
Start address Offset address for Where to jump 

RAS ~ nSF ~ wtof the memory variations of the (inside current 
CAS TRGcycle memory cycle memory cycle) 


when finished with 

current address 


~ .~
I ~ Delayby 

When this bit1 clock CYcll 
is high the 

It informs the memory cycle 
Address Translator to: has finished 
"00" : tristate address bus 
"01" : send column 
"10" : send row 
"11" : send block address 

These bits infonn the 
When this bit goes high Address Translator to: 
the Address Translator "00" : tristate data bus 

reads data from "0 I " : send write mask 
memory to TAYRA "10" : send column mask 

"1 1" : send tayra_data 

Figure 8 Microprogram address and data 
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All the memory timings stored in the 
Microprogram Module can be found in [4] for the 
TMS55166 Multiport VRAM chip. Although the 
memory cycles from this data book are given in 
an asynchronous way they had to be synchronised 
with the clock (by using states) before they could 
be stored as a microprogram. 

4.5 Block Write Module (BWM) 

This is the most complex module of the memory 
controller. This is the part that initiates the Block 
Write memory cycles for filling a rectangular area 
of the screen with a colour value (buffer clear 
operations). Most of the signals necessary for this 
module are coming from the Block_writccontrol 
group and most of them belong to the register ~et 
of the TAYRA chip. When using the Block WrIte 

------11...... ~ ... djjjOne row of512 = 
Block Columns ... 0 I 2 3 0 I 2 3 0 I 2 3 o 1 2 3' 


Memory columns ... 0 I 2 3 4 5 6 7 8 9 10 II 508509510511 


memory cycle for storing data to the memory 
chips the bandwidth of the memory bus can be 
improved by a great factor. Typical values are 4 
for VRAM, 8 for WRAM [5]. This is because the 
memory chip can write a colour data value to 4 or 
8 locations at the same time. Figure 9 shows an 
example of the functionality of the Block Write 
memory operation for 512 rows x 512 columns 
and a 16-bit word memory chip (such as 
TMS55165, TMS5166 memory chips from Texas 
Instruments). 

Since the colour data value has been loaded into 
the memory's colour register the Block Write 
operations can start (masked or non-masked). For 
this operation one of the 512 row addresses is 
selected and then one of 128 possible block 
addresses (in this row) can be accessed. Each. 
block consists of 4 words (4 columns of the row) . 

Dala bils 
DQO·OOI5 

DQ15: I 

0014= I 

0013= I 

0012 {) 

0011 0 

0010= 0 

DQ9= I 

DQ8= I 

007= I 
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002: I 

001: 0 

DQO= ! 

Write mask 
bits 
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I 


{) 

I 

I 

I 
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I 

I 

I 

I 

I 
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I 

I 

Block writes, internal organisation 

Figure 9 Block Write Memory Operation 
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Chip2 
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Figure 10 A block write example using four memory chips 

and therefore 4 words are stored simultaneously 
in the memory. The write mask data simply says 
to the memory which bits of the input data are to 
be stored. An example of how the column mask 
works in combination with the write mask is 
illustrated in the previous figure. 

The BWM module has to provide the column 
mask, the row address and the block address for 
each chip that has to be accessed (the write mask 
is not important for the operation of this module). 
The basic factors to have in mind for the design of 
a BWM module are: 

• 	 A horizontal line of the display usually 
is not stored sequentially to a memory 
chip but each pixel's data can be 
stored from one up to four memory 

chips (depending on the chip's data 
bus size). 

• 	 Support of different memory 
configurations and address translation 
schemes 

• 	 Support of chips with different data 
sizes, different column mask 
functionality 

A simplified example of how the memory 
controller fills a small block is shown in Figure 
10. 

In the example of Figure 10 the display memory is 
shared between four memory chips. Each chip 
has 512 rows, 512 columns and 16-bit words. 
The possible block addresses for each row are the 
number of columns divided by four (128 block 
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addresses). In order to simplify the example we 
assume that the size of each pixel is 16·bits. 

4.6 Serial Interface Module (SIM) 

This part of the memory controller provides the 
necessary interface for communication with the 
video signals coming from the video display 
controller (Hsync, Vsync, Blank). The SIM also 
uses the 'SeriaLside30ntrol' signals. These are 
hardwired to the T A YRA's register set and 
provide necessary information to both SIM an 
MMCM. A part of the SIM identifies the time 
periods where the scan line has reach the 
rightmost point of the active display, or the last 
pixel of the frame. This information is used by 
the MMCM for programming the serial register of 
the memory chips, execut~ refresh operation 
during horizontal or vertical blank periods, swap 
to a different memory buffer (double, triple, 
quadruple buffering). 
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