
An Advanced 3D Frame Buffer Memory Controller

Alex Makris, Martin White, Paul Lister

Centre for VLSI and Computer Graphics, School of Engineering, University of Sussex,

Falmer, Brighton BNl 9QT, UK, Email: M.White@sussex.ac.uk

Abstract

This paper details the design of an advanced 32
bit 3D frame buffer memory controller for a 3D
Graphics Raster Processor called TAYRA [1].
This memory controller is designed to provide a
performance of 33 MPixelsls for read and write
cycles, 4 GPixelsls for block write, and 16.5
MPixelsls for read, modify, write cycles (with a
pixel size of4 bytes). This performance is without
any interleaving. It has several control modes:
S3 shared frame buffer protocol compatibility
[2], stand alone 3D buffers, multiplexed 2DI3D
buffers, and others. Further, our 3D memory
controller is designed to control DRAM, VRAM
and WRAM, and EDO versions of these
memories. Also, we support up to 4 screen
buffers, 16 MBytes of screen memory, and many
combinations of memory organisations up to
1600x1280.

1. Introduction

T A YRA is a 3D Graphics Raster Processor which
is designed to operate in a mixed 2D/3D
rendering environment. This has posed
considerable compatibility problems in the design
ofTAYRA's colour buffer interface. At the start
of the design it was decided for various reasons

that a VRAM interface would be the most
appropriate solution. However, the advent of
WRAM gave us the opportunity to design a
colour buffer interface which could support both
VRAM and WRAM. The design of this memory
interface is quite complicated due to a number of
factors, not least because of the, as already
mentioned, 2D compatibility problems, but also
because of, the asynchronous nature of these
memory technologies, and the added complexity
of designing the serial video refresh logic. This
can best be appreciated when contrasting the
design of this VRAMlWRAM interface with the
design of TA YRA' s depth and texture interface
which controls single port SGRAM and SDRAM.
The single port and synchronous nature of the
depth and texture buffer memory made these
interfaces somewhat easier to design (although by
no means trivial). Of course, one could ask the
question why not use SGRAM or SDRAM or
even FBRAM for the colour buffer. At the time
FBRAM was not available, however we have now
started on an FBRAM interface, and we decided
that performance would be impacted without dual
port memories which ruled out the synchronous
memories for colour buffer use. Figure 1
illustrates the type of system architecture TA YRA
may be expected to work in.

mailto:M.White@sussex.ac.uk
http://www.eg.org
http://diglib.eg.org

Shared Frame Buffer System Separate 2D and 3D Buffers

Figure 1 System Configurations

2. Memory Controller
Architecture

The memory controller is implemented with six
major modules. These modules are: Arbiter
module (AM), Main Memory Controller module
(MMCM), Timing Generator module (TGM),
Microprogram module (MM), Block-Write
module (BWM), Serial Interface module (SIM)
(see Figure 2).

We describe in detail this architecture and its
interfaces in sections 3 and 4.

3. Memory Controller
Interfaces

The memory controller has five interfaces:
graphics pipeline interface, PCI interface, shared
frame buffer interface, memory chip interface,
and a video interface.

3.1 Graphics Pipeline Interface

The pipeline signals (see Figure 2) associated
with this interface are:

• 	 PIPE_read-port&control: 24-bit
address bus and a 32-bit data bus for
memory read operations. It also
includes all the necessary control
signals for communication with the
Graphics Pipeline

• 	 PIPE_write-port&control: 24-bit
address bus and a 32-bit data for
memory write operations. There is
also a 4-bit 'byte write enable signal'
(as a mask to the 32-bit data). This
signal is also supported by the PCI
protocol.

• 	 Block_writccontrol: Signals to
control for filling a rectangular area of
the screen (buffer clear).

2()

~___

Figure 2 Memory Controller Architecture

PCCread...J>Ort&control

PCCwrite...J>Ort&col1trol

PIPE-,ead...J>Ort&control

PIPE_write...J>Ort&control

Block_wrltccOllfrtll

CoUelL.write...J>OTt&control

Mask_wriIeJK)rt

POl1...J-'Ommands

SerlaC'idccOllfro/

Mlilliple..lRdfers&control

Shared_frame...buffeuontrol

Memnry...J-'()njigurallon­

MenwryJe[resh&control

Clock&reset­

~emory_read--port

Memory_,vrite...J>O:

Memory_control.

• 	 CoLreg...write_port&control: Signals
for writing colour data to the memory
chip's colour registers.

• 	 Mask_write...,port: This 32-bit signal
provides the option to mask any data
that is stored in memory.

• 	 Multiple_buffers&control: Signals
which indicate the organisation of the
frame buffers (number of buffers,
offset addresses etc.)

3.2 PCI Interface

The memory controller's pcr interface has to
interface with TAYRA's chip level PCI interface.
Therefore, from now on when we refer to the PCI
interface we imply the memory controller PCI
interface, i.e. the memory controller
communication ports.

The PCI interface is very similar to the Graphics
Pipeline interface. The main groups of signals
associated with it (see Figure 2) are:

• 	 PCCread_port&control: 24-bit
address bus and a 32-bit data bus for
memory read operations.

• 	 PCCwrite_port&control: 24-bit
address bus and a 32-bit data bus for
memory write operations. There is
also a 4-bit "byte write enable signal"
(as a mask to the 32-bit data). This
signal is coming directly from the
TAYRA's external PCI interface
signals.

3.3 Shared Frame Buffer Interface

The memory controller supports a shared frame
buffer interface. An SVGA chip such as those
supplied by S3 will be the shared frame buffer
bus master. There is only one group of signals
associated with the shared frame buffer, this is:

• 	 Shared_frame_buffeccontrol: There
are two signals in this group (see

27

Figure 3). Together they support a
simple request-acknowledge protocol.

3.4 Memory Chip Interface

The memory controller supports a variety of
memory buffer configurations. The memory
controller is able to access different memory
chips, e.g. DRAM, VRAM, WRAM, with a wide
variety of different sizes and data bus widths.
The groups of signals that are mainly used from
the memory chip interface are:

• 	 Memory_configuration: These signals
provide information such as: memory
size, addressing mode, type of
memory, memory characteristics
(speed, data bus width), etc. Most of
these signals do not change during
normal operfltion, and they have to be
set after power-up.

• 	 Memory_read-port: This is the
memory controller's internal data bus
for memory read :·operations. The
memory controller has being designed
to support both 32-bit and 64- bit data
bus.

• 	 Memory_write-port: This is the
memory controller's internal data bus

for memory write operations.
• 	 Memory_control: Signals for

controlling the memory chips (RAS,
CAS, DSF, OE, WE, QSF).

3.5 Video Interface

The memory controller video interface has to
interface with an external video display
controller. When the memory controller works in
'shared frame buffer' mode the functionality of
the video display controller can be provided by
the master chip (S3 graphics chip):

• 	 Video_signals: These are the common
video signals (Hsync, V sync, Blank),
and they are all input signals.

• 	 SeriaLside30ntrol: Registered signals
coming from the Graphics Pipeline.
Th~se' signals' provide information
about screen configuration, memory
serial size registers, etc ..

4. Memory Controller Logic
Modules

The memory controller consists of six mam

~

1.2 us or iarger .~....;'j' .'

....

"*'
/

r+­

\

~ $500lls

\

15ns

\

~
\

_ _·c~;::60ns

.... 	$)40ns...
I

IOns minimum

I

/
'\

Figure 3 Shared Frame Buffer Protocol

28

• 't •

A : PCl read request
B : pcr write request
C : G.P. read or write request

D : pcr read maximum time reached
E : PCI write maximum time reached
F : G.P. read and write maximum time reached

Figure 4 A simple state machine model for the arbitration scheme

modules. These logic modules provide the
functionality needed to control the frame buffer.

4.1 Arbiter Module (AM)

This module arbitrates the accesses between the
Graphics Pipeline and PCI interface. Each of
these ports can access the memory controller for a
certain amount of time, which is determined by
the Port_time_slices registers. The state machine
diagram in Figure 4 explains how this priority
scheme works.

From Figure 4 we can see that the Graphics
Pipeline read and write ports share the same
amount of time. This is because these two ports
can read from memory and immediately write to
memory data taking advantage of the Read­
Modify-Write memory cycles.

The time that each port is permitted to access the
memory controller can change at run time by a

software driver. This effectively can change the
priority between the four ports depending on the
needs of the current application.

4.2 Main Memory'Controller
Module (MMCM)

This module controls many tasks:

• 	 Translates GP's 24 bit physical
address (x,y) into memory row and
column.

• 	 Serves as a communication interface
between four other modules (TGM,
SIM, BWM, MM).

• 	 Decides what memory mode to use,
e.g. (non-page, page) and memory

29

cycles (such as Read data, Write data,
Block write, Load colour register,
refresh, serial transfer).

• 	 Selects which memory cycle the TGM
is going to use. The next memory
cycle used depends on the following
factors:

• 	 The previous memory cycle
executed

• 	 The new physical address of
the data

• 	 The kind of operation
requested

If the I/O ports cannot provide data when the
TGM requests them, there can be two possible
cases:

• 	 When the previous memory cycle can
be continued, e.g. page mode, the
MMCM has two options:

• 	 Assert wait states.
• 	 Execute an idle cycle.

• 	 When the previous memory cycle can
not continue (non page-mode) or
already been in an idle state

• 	 Execute the idle state.

In the shared frame buffer case the memory
controller (slave) can use the bus only if the
bus~ot signal is low. When the bus~ot signal
goes high the controller has to tristate all the
external signals to the memory chips (control,

data, address busses). The Mode Selector senses
this bus---,ot signal before starting any memory
cycle (or continuing one, e.g. page-mode), and if
its high it then brings bus_rq high (active low)
and tristates every external signal that goes to the
memory chips.

The next request of the bus can be asserted after
60 ns, provided that the memory controller is
ready to access the memory. In that case the
MMCM brings bus_rq low and keeps that low
until the Master request the bus again. When the
frame buffer is used exclusively by the T A YRA
chip the bus~nt signal can be set low.

An important interface of the MMCM is the
'Porccommands' group of signals. All of these
signals are connected to T A YRA' s register set.
These registers inform the MMCM what low
level memory operation (command) is allocated to
each access port. The command registers can be
re~programmed at run time. Table I shows the
low level operation for each different command
(cmd) value.

The MMCM includes an Address Translation
scheme. The basic function of this module is to
use the 24 bit physical address coming from the
graphics pipeline and produce memory row,
column addresses, even/odd bank selection
ev/odd signal, Bmsb signal (selects between 2
sets of even or odd banks), byte select signals.

cmd 3-bit value memory cycle (state name)

Qage mode_write

001 a e mode_read

010 a e_ffiode_block_write

a e modcR_M_W =startinLwith_read

a e mode R_M W _startin with_write

load_colour_register

load mask_re ister

Table 1 Command to memory operation translation

30

Figure 5 shows one of the eight different memory
address configurations, it also illustrates the
address translation scheme for that configuration
by using a reduced 23-bit address space.

Figure 6 shows an 8 MB memory configuration
implemented with 256Kx 16-bit VRAM chips.
This figure also illustrates the way that the
memory control signals are connected to the chips
(without including the serial port of the VRAM
chips) and the ability to work with a 64-bit data
bus.

4.3 Timing Generator
Module(TGM)

This module uses the microprogram data and
generates the control signals for the memory
chips. The control signal generation depends on
the data fetched from the microprogram and
signals from the 'Memory_configuration' group.

When the TGM is ready to start a memory cycle it
requests the microprogram address from the
MMCM Controller module. The MMCM then

23-bit Physical address... 1m 121 1,,1 "I "I "I "I "I ,'I '1

"'"'""'1"'"' '""'" ,~"'"

1 I I I I I I I I I

sends this address (if the graphics pipeline is not
ready then the address for an idle memory cycle is
sent) so that the memory cycle execution can
start.

4.3.1 Control Signal Generation

Bearing in mind that the basic memory control
signals (RAS, CAS, DSF, TRG or OE, WE) are
provided by the microprogram data, the only
function needed for controlling the memory chips
is to extend them (in number 2 RAS, 8 CAS, 1
DSF, 2 TRG, or OE, 2 WE), and send them only
to the chips that are going to be accessed. Here
follows an example for determining the Boolean
logic equations of the control signals.

All the signals coming from the MM start with an
M (MRAS, MCAS etc.). The signal generation
depends on the address· translation scheme
described in Figure 5 (all the memory
configuration schemes of the VIP [3] chip are
supported plus others) .

RAS(O) <= MRAS OR Bmsb, RAS(I) <=

1121ll1FII .. 1MI i'61 ~I .. I m

Column 12:4J Even/Odd

bank

o I I

I 0 0

I 0 ,

I I 0

I I I

............~v~~,~(~~:~~ :o·).....~..'.'.:.... :::::...::.';· :.": ~ ,.. .:a.,;' ... ~ve.n b:'nk (~v/odd:: '.0:)............... .

. "",' -'"' ..""1 "" ,["'"'I'" "00': i 1ffiI·. :"'"" ".".,'" '''''' ""' """" " "00' ,

: Byte I Addr[2.0]='iX)I' ByteS Addr[2.0]='IOt'!! ····,i,BYte! Addr[2:0J='001' ByteS Addr[2:0] '101':

i Bank select = '0:':
Byte 2 Addr[2:0] ='010' B,1e 6 Addr[2:0] '110'1 (Bmsb = 'O') ~ IByte 2 IAddr[2:0] ='OW' Byte 6 Addr[2:0] '110':

. ::-C "",. i

Byte3 Addr[2:0] ='01 I' Byte7 Addr[2:01='llli: i[:BYte3IAddr[2:0] 'OIl"Byte7 Addr[2:0J='III'j

.Cid~~~;k,(~~i~_d_;;,',i;,',_-'''_·''..·''.·''''.·'''·.·''.·.·''........ ','.'f.

Byte 0 Addr[2:0) '000' Byte 4

Byte I Addr[2:0J = '00 I' Byte 5

Byte 3 Addr[2:0J = '011' BVle 7

Addr[2:0) = 'lOO'j

; Bank select=" I"
Addr[2:0] '" ' I 0 I': (Bms\r-"I") ::... ...:
Addr[2:0J = '110':

Addr[2:0) '111':

Addr[2:0J

:

'100':

Addr[2:0] = . 101':

Byte 2 Addr[2:0] '010' Byte 6 Addr[2:0] = '110':

Byte 3 Addr[2:0] = '011'1 Byte 7 Addr[2:0J 'III':

Figure 5 8 MByte configuration, 256Kx16, parallel (confa == '1') addressing

31

MRAS OR NOT(Bmsb);

CAS(O) <= MCAS OR «byte_select(2) OR
byte_select(l) OR byte_select(O» AND
access_mode='OO') OR «byte_select(2) OR
byte_select(l» AND access_mode='Ol') OR
(byte_select(2) AND access_mode='lO');

CAS(l) <= MCAS OR «byte_select(2) OR
byte_select(l) OR NOT(byte_select(O))) AND
access_mode='OO') OR «byte_select(2) OR
byte_select(l» AND access_mode='Ol') OR
(byte_select(2) AND access_mode='lO');

and so on up to CAS(7)

DSF <= MDSF, WE(O) <= MWE OR ev/odd,
TRG(O) <= MTRG OR ev/odd;

The access_mode effects the generation of the
CAS signals in such a way that for 8 bit memory
access 1 CAS line will be enabled (1 out of 8,
chosen by the 3 byte_select bits).

For 16 bit memory access 2 CAS lines will be
enabled (2 out of 8, chosen by the 2 msb of
byte_select).

For 32 bit memory access 4 CAS lines will be
enabled (4 out of 8, chosen by the msb of
byte_select).

For 64 bit memory access all the CAS lines will
be enabled and the byte_select data will be
ignored.

Dala Bus [63:0]

: RAS1i
rASii
CASi
15m
WEli
ill
sco

1~lcvcll.2MHbilnk

RASii
Gm
r:m
OEO
WEO
m
SCO

DII5QJ RAS1i
CA$4

156K CAS5 , 1m!
16 bit WEn

m
AI,OJ seo

DI1Jl6J RASo
CAS6

256K om
x 5Eo"

16 bil WEii
m

A IS OJ SCO

iiASo D II5.0J iiASo
D147:)2J

rASii o:s.
CAs! 25liK 00s 256K

5Ei x OEI
WEi 16 bit WEi
ffi ill

lSI odd, 2 MB bank : SCI A I,:OJ SCI AI':OJ

RAsii DIll.l6J RA'So DI614HJ

CAS2 CAS6
c::m 256K CA§"7 256K
0Ei x 0Ei
WEi 16 bit WEi
SEI SEI
SCI AI'O] SCI A IHOJ

D{lS OJ RAST
o:s.

25liK I c::m

16
X

bit
1m!
wro
SEO

AI':OJ seo

D{JJl6J RAST
CAS6

256K I CAS7

'/bit 5Eo"
WEli
SEO

AI':OJ SCO

•.•...................... "y'---'

D115:0J ~I I D147:12J

CAS4

256K I ~~ 256K

16
X

bit
DEli x

WEi' 16 bit

AI'-OJ

D111:16J

1
SEl I
SCI I

1

1

RAs1
CAsi
CAsl

0Ei DEI I

WEi WEI:
SEI SEI I

I I A I':OJ

DI61A'J

256K
x

16 bit

1

SCI _.....~[~:OJ...........•.~CI. ~ J ~':': ~. r~ ~. _)

2nd even, 2 MB bank

2nd odd, 2 MB bank

Address Bus [8:0]
I Meg, 2 chip block

Figure 6 8 MByte, 256Kx16 Configuration

32

4.3.2 Refresh, 'RAS low', 'CAS low'
timers

There are some mechanisms partly implemented
in the TGM that check:

• 	 How long it has been since the last
memory refresh cycle.

• 	 How long it has been since RAS
signal brought low (and still remains
low).

• 	 How long it has been since CAS
signal brought low (and still remains
low).

The TGM has 3 timers (refresh, cas low, ras low)
that start counting (in terms of clock cycles) at
proper times in order to prevent any memory
timing violations.

When the refresh timer reaches a predetermined
value a refresh request is sent to the MMCM
which has to finish the current memory cycle and
execute a memory refresh cycle. After that the
memory controller continues its operation
normally.

If the RAS low timer has reached its maximum
value the RAS signals have to go high and
therefore the current memory cycle has to finish.
If the request becomes from the CAS low timer it
then depends on the current memory cycle
whether the MMCM will finish it or not. When
one of these two timers goes the corresponding
RAS or CAS signal will also go high as soon as
possible.

4.4 Microprogram Module (MM)

This provides the control signals of a memory
cycle to the memory chips, when to read, write
(and what to write) from the address translate
module and some extra information, e.g. how
many times a memory cycle can be executed
before a memory refresh occurs. The MM is
about 128 bytes.

The module of the memory controller that utilises
the microprogram's data most is the TGM. When
the TGM makes a decision about which memory
cycle to use it sends the start address of the
memory cycle to the address bus of the MM and
the execution of the memory cycle begins. The
MM then sends the 16-bit data to the TGM. The
significance of this data is shown in

Figure 8

The 5 most significant bits of the microprogram
address (32 addresses) represent the memory
cycle that is going to be executed (read cycle,
write cycle, enhanced page mode read cycle, and
generally every possible memory cycle up to 32
types). The 4 least significant bits of the
microprogram address can access up to 16
memory locations where the data for the selected
memory cycle is stored. Some memory cycles
(such as write, R-M-W, page-mode write, page­
mode R-M-W, block write, page-mode block
write) have different variations. For example, the
page-mode R-M-W cycle [4] (page 5-292) of
TMS55166 has 4 variations:

All 4 variations have to do with the write part of
the cycle but all necessary data that indicate
which variation to use are sent to the memory at
the beginning of the page-mode R-M-W cycle.
Fortunately, all possible variations happen to be
at the beginning of a memory cycle which means
that they can all be st~red. in.~ide a memory cycle
space (16 locations). . ­

The 5 most significant bits of the MM address
represent the requested memory cycle and the 4
least significant ones the offset of the requested
variation. The page-mode R-M-W memory cycle
has 4 variations, where each of them needs 2
address locations. The data of the first variation
are stored in address locations represented by
offset addresses '0000', '0001', the second
variation's data are stored in offset addresses
'0010', 'OOll',etc.

33

The example in Figure 7 illustrates how the
microprogram's data can be interpreted and how
the microprogram's flow mechanisms work.

Microprogram address
01"1,,1 0 1 1,1+1 01'

10 1"1,, I, 1·1" 1010I·
04'" 1 I " I" I" I. I" I0 I. I0 I

'1,,1010101.10101.1.1
,,1 010 10 I. 10III ~ 3

"1,,1 01,,1 01'1" I' I 0I' ~lol'lol'lol·
0"I" 1 I" 1'1 0 1'1 I ~I'I'I'I'I'I·

0I0 I" I. I ' I' 1 I' I, I' ~lol'I'I'I'lo
01 j 1111} 10 ~

~

2 : masked. Read pan of
non persi~~ R-M-W cycle ..

00

ro'" IlXIlurnn I".,xwrol I 1.rhbt< I Ad4If($1i

os,
TIm
;r

I mSOO>.! I kutlf< I "HUlk: 1111~ INlIdl'l»\1 d,.

~
----,

1.,.,llIR'II'Ilcolwn& Ilriu* I

~"nd ll'I»4ind IM.ij in't~ I tflmk" !...,.,t III,lwl

3 : masked. Read pan of
persistent .. R-M-W cycle ..

""I ..rLJL..rLrLSL.
iffil ----,
00

AddJ;:u I """111M ICollII'ntI1 trii~ I
os,
"i'iUj

WE

.... IUi,tahl Ilrisllliol I !"flake 11MI1t.r IlVllf.l:nowl

Figure 7 Microprogram Data Flow and Basic Signal Generation

Microprogram address Microprogram data

[8
~-------------------------------------~------~

6 J l II 5 I 4 I I I I 1/,1/1'108[8
Start address Offset address for Where to jump

RAS ~ nSF ~ wtof the memory variations of the (inside current
CAS TRGcycle memory cycle memory cycle)

when finished with

current address

~ .~
I ~ Delayby

When this bit1 clock CYcll
is high the

It informs the memory cycle
Address Translator to: has finished
"00" : tristate address bus
"01" : send column
"10" : send row
"11" : send block address

These bits infonn the
When this bit goes high Address Translator to:
the Address Translator "00" : tristate data bus

reads data from "0 I " : send write mask
memory to TAYRA "10" : send column mask

"1 1" : send tayra_data

Figure 8 Microprogram address and data

34

All the memory timings stored in the
Microprogram Module can be found in [4] for the
TMS55166 Multiport VRAM chip. Although the
memory cycles from this data book are given in
an asynchronous way they had to be synchronised
with the clock (by using states) before they could
be stored as a microprogram.

4.5 Block Write Module (BWM)

This is the most complex module of the memory
controller. This is the part that initiates the Block
Write memory cycles for filling a rectangular area
of the screen with a colour value (buffer clear
operations). Most of the signals necessary for this
module are coming from the Block_writccontrol
group and most of them belong to the register ~et
of the TAYRA chip. When using the Block WrIte

------11...... ~ ... djjjOne row of512 =
Block Columns ... 0 I 2 3 0 I 2 3 0 I 2 3 o 1 2 3'

Memory columns ... 0 I 2 3 4 5 6 7 8 9 10 II 508509510511

memory cycle for storing data to the memory
chips the bandwidth of the memory bus can be
improved by a great factor. Typical values are 4
for VRAM, 8 for WRAM [5]. This is because the
memory chip can write a colour data value to 4 or
8 locations at the same time. Figure 9 shows an
example of the functionality of the Block Write
memory operation for 512 rows x 512 columns
and a 16-bit word memory chip (such as
TMS55165, TMS5166 memory chips from Texas
Instruments).

Since the colour data value has been loaded into
the memory's colour register the Block Write
operations can start (masked or non-masked). For
this operation one of the 512 row addresses is
selected and then one of 128 possible block
addresses (in this row) can be accessed. Each.
block consists of 4 words (4 columns of the row) .

Dala bils
DQO·OOI5

DQ15: I

0014= I

0013= I

0012 {)

0011 0

0010= 0

DQ9= I

DQ8= I

007= I

DQ6= I

005 0

DQ4= I

DQ3= I

002: I

001: 0

DQO= !

Write mask
bits

I

I

{)

I

I

I

I

I

I

I

I

I

0

1

I

I

Block writes, internal organisation

Figure 9 Block Write Memory Operation

Column mas:k
bilS

o

o
{)

()

o
o

35

Chip2

\
\ \ ---­

512 columnsl4 =~128 ~Iock addresses
\ \ "',I '," I! I I! 'J 'S, (jll! , 0.'"/' first l!pe-- -
\ \
\ \

\ \
'\ \

'\ \

\ " " \ ,/

'\
------',

Chip I "

" " "­

..... _-­

"­

--­

I..- " ... ,/
;'

... -­

Figure 10 A block write example using four memory chips

and therefore 4 words are stored simultaneously
in the memory. The write mask data simply says
to the memory which bits of the input data are to
be stored. An example of how the column mask
works in combination with the write mask is
illustrated in the previous figure.

The BWM module has to provide the column
mask, the row address and the block address for
each chip that has to be accessed (the write mask
is not important for the operation of this module).
The basic factors to have in mind for the design of
a BWM module are:

• 	 A horizontal line of the display usually
is not stored sequentially to a memory
chip but each pixel's data can be
stored from one up to four memory

chips (depending on the chip's data
bus size).

• 	 Support of different memory
configurations and address translation
schemes

• 	 Support of chips with different data
sizes, different column mask
functionality

A simplified example of how the memory
controller fills a small block is shown in Figure
10.

In the example of Figure 10 the display memory is
shared between four memory chips. Each chip
has 512 rows, 512 columns and 16-bit words.
The possible block addresses for each row are the
number of columns divided by four (128 block

36

addresses). In order to simplify the example we
assume that the size of each pixel is 16·bits.

4.6 Serial Interface Module (SIM)

This part of the memory controller provides the
necessary interface for communication with the
video signals coming from the video display
controller (Hsync, Vsync, Blank). The SIM also
uses the 'SeriaLside30ntrol' signals. These are
hardwired to the T A YRA's register set and
provide necessary information to both SIM an
MMCM. A part of the SIM identifies the time
periods where the scan line has reach the
rightmost point of the active display, or the last
pixel of the frame. This information is used by
the MMCM for programming the serial register of
the memory chips, execut~ refresh operation
during horizontal or vertical blank periods, swap
to a different memory buffer (double, triple,
quadruple buffering).

5. Acknowledgements

TA YRA is part of the ESPRIT Monograph
project funded by the European Commission. We
are grateful to our Monograph partners (IBM
Germany, Universitat Ttibingen and Caption), for
their contributions to this project.

6. References

[1] TA YRA 1.0 Functional Specification,
February 1996

[2] Vision964 Graphics Accelerator, January
1995, S3 Incorporated.

[3] VIDEO INTEGRATION PROCESSORTM­
Hardware Specification, Program Reference
Versions 1.2, February 17, 1995

[4] MOS MEMORY-Data Book, TI, 1995

[5] GRAPHIC MEMORY-Data Book,
SAMSUNG, April 1995

37

