
Super Resolution Volume Rendering Hardware 
Marco Bosma, Jaap Smit and Jeroen Terwisscha van Scheltinga 

University of Twente 

Department of Electrical Engineering EF9250 


POBox 217, 7500AE Enschede, The Netherlands 

e-mail: jaap@nt.el.utwente.nl 


Abstract 
The resolution obtained in volume rendering is greatly increased 
over known methods through the introduction of super resolution 
techniques which make it possible to enlarge the view of the dataset 
without the introduction of unnecessary positional, gradient and 
opacity errors. In this paper our "Super Resolution" technique will 
be introduced along with a corresponding hardware design. 

1 Introduction 
Renderings of a 3D volume using volume rendering techniques 
get blurred when an inappropriate color is rendered at the sample 
position, which occurs when the opacity at the sample position is 
incorrect or when the local volume gradient, derived from the 
gradient calculation, is incorrect. 

Figure 1. Brain image generated using the 
super resolution technique. 

Very high resolution images, like the brain image shown in Figure 
1, can be achieved however when color and opacity are correct at 
all locations on the rays along which the (brain-)image is observed. 

The software implementation of the super resolution technique 
made it possible for us to review the existing algorithms and 
methods, as we could visualize the errors made. In this paper we 

present 20 analogies of the 3D visualization process, to show the 
distinction between the methods used in the literature, substituting 
contrast for opacity, and cross sections for full 3D views. 

Figure 2 shows the reconstruction from sample values of the 
original circular object, shown in figure 2(a), sampled at a 16 x 16 
grid shown in Figure 2(b), using two approaches. The first 
approach first applies a threshold to calculate the boundary of the 
object, shown in figure 2(c), and then uses a (Iinear-) interpolation 
filter to obtain boundary values at arbitrary locations in the plane as 
shown in Figure 2(d). Figure 2(e) shows the effect of the approach 
in which (pre-) calculated opacity values [1] are used to compute 
opacity values at the sample location, on the rendition of a cone 
dataset with slits of 1, 0.5 and 0.25 voxel distance, sampled at 323 

locations. 

The problem with this approach is that opacity values should not 
be (pre-) calculated on voxel positions, instead the grey-value 
should be interpolated and the non-linear threshold should be 
applied after the interpolation step. Figure 2(f) shows the 
(linearly-) interpolated grey-values, which can be ideally 
reconstructed from the samples using Nyquists sampling theorem 
[5]. The reconstructed contour of the object, shown in Figure 2(g), 
is very accurate, due to the correct order in which the resampling 
and the threshold operator are applied. Figure 2(h) shows the effect 
of this approach when applied to render the cone with slits. 

Color and opacity are combined in the composition step to obtain 
the final image within a volume renderer. A perfect image quality 
depends hence as well on the ability to calculate the gradient at 
arbitrary sample locations and finally the color from this 
calculated gradient. In existing volume rendering implementations, 
a lot of approaches are used to either calculate the color from 
precomputed colors at voxel locations, or to compute the gradient 
from precomputed gradients at voxel locations [2],[3]. None of 
these methods is accurate, as the color should be calculated from 
the gradient, which in tum should be calculated from the 
grey-values, without going back to values calculated at voxel 
positions. The main difference between the approaches commonly 
used, and the approach proposed in this paper, is related to the 
improved frequency response of the overall gradient interpolation 
scheme, which not only has excellent high frequency properties, it 
is as well free from folding due to the fact that grey-values used in 
the gradient interpolator are taken from voxel locations just one 
voxel distance apart, as opposed to gradients calculated with the 
traditional central gradient algorithm. 

The application of correct algorithms to compute the opacity value 
at sub-voxel locations and gradient algorithms which calculate the 
color at sub-voxel locations as well, makes an arbitrary 
magnification of a rendition of a 3D dataset possible without the 
introduction of unsharpness. This is what we call Super resolution. 

.l17 

mailto:jaap@nt.el.utwente.nl
http://www.eg.org
http://diglib.eg.org


Figure 3(b) shows the gradients calculated with our new gradient 
interpolator at the edge of the reconstructed object shown in figure 
3(c). Figure 3(d) shows the object and the corresponding gradients 
in combination. 

Figure 3. Accurate gradient calculation. 

In Figures 4(a) and 4(b), renderings of an enlarged brain image are 
shown. Just the color computation is different in both approaches. 
The image of Figure 4(a) is rather vague and incorrect due to 
interpolation of precomputed colors stored at voxellocations. The 
direct calculation of colors, using Phong shading techniques [4], 
from gradients at the sample location, based on grey-values at the 
voxel grid leads to the crisp image of Figure 4(b), which can be 

magnified without getting blurred. 

(a) Colors calculated from precomputed color (b) Colors calculated from gradients which are di-
values stored at voxel-Iocations rectly calculated at sample locations 

Figure 4. Visualizations using different rendering techniques. 

118 



Remarkable features of the images of Figure 4 (b) and Figure J (h), 
are the sharp edges, the fine details, the true depth and the fact that 
noise, if present in the dataset, is visualized as appropriately shaded 
local blots, with approximately the size of the voxel distance inion 
the surface of the object visualized. All these properties are 
preserved when the image is magnified to the limits of the 
precision of the addressing capabilities of the underlying hardware. 

2 The calculation of accurate gradients 

The best possible way to calculate the derivative of a function is to 
differentiate this function. For instance, the differentiation of the 
function y(x)=sin(f' x) results in y'(x)=f' cos (f· x). This implies 
that the amplitude response of the differentiation function is 
IH(f)I=f, and that its phase is 90 degrees. The problem with volume 
rendering is however that the function which should be 
differentiated is only known on the voxel locations. A simple 
(normalized) subtraction is frequently chosen to be the basis for the 
calculation of the gradient 

of the voxel values in a 3D dataset. 

The six-neighborhood voxel gradient at voxellocation x = (Xl> X2, 
X3) is typically calculated in each of the directions XJ, x2. x3, using: 

with ~Xl the voxel distance in XI. 

This calculation has as major disadvantage that the distance 
between the samples, from which the gradient is calculated, is twice 
the voxel distance. This effect is reflected in the distance of 2~x I 

between the discrete value of 0.5 and -0.5 in the impulse response 
of this operator. 

This sampling at a distance of 2~xl is unacceptable, as the 
sampling theorem [5] states that the highest frequency which can 
be reconstructed has a period which is twice the sampling distance. 

Figure S. Voxels and intermediate values used for the 
calculation ofgradients. 

The improved gradient algorithm used in our "super resolution 
hardware" design is defined for arbitrary non-integral locations in 
the dataset, as opposed to fixed locations on the voxel grid. The 
gradient is calculated from a 12 voxel neighborhood of the sample 
location p. by interpolating four one-dimensional gradients, ~O, 
~l, ~2, ~3. calculated on the edges of a pair of unit volumes. 

These edges extend in the direction of differentiation, shown in 
bold in Figure 5. 

Figure 6. Gradient calculation unit. 

The hardware used to calculate the gradient at the fractional 
position °<iAl. < 6.x I, in the x 1 direction, from three consecutive 
voxellocations, vox_O, vox_I and Ax, is shown in Figure 6. 

Figure 7(a) shows the discrete impulse response h (x) in the 
direction x in which the gradient is taken of the traditional methods 
which calculate gradients at voxel positions. Figure 7(b) shows the 
continuous impulse response h (x) designed for use in the super 
resolution implementation. A simpler, piecewise linear, curve is 
shown in Figure 7(c). 

1.0 r----,--.,..---,-~-,-----.,.-_,._---,r-----, 
h (x) 

0.5 I---+----,j~-+-"-I-

~~ x 
-2 -1.5-1.0-0.50.0 0.5 1.0 1.5 2.0 

Figure 7. Impulse responses of three distinct gradient 
calculation techniques. 

The auxiliary functions f (x), used in the realization of the gradient 
unit, make h (x) either continuous in its function values and its 
derivative, this corresponds with Figure 7(b) and 8(b), or just 
continuous in its function value, this corresponds with Figure 7(c) 
and 8(c). 

119 




1.00 :----,---...,.----;---::;;;_ri 

0.75! .. \UI / ...I' 

0.50 i .r 

0.251 Y f 

x .... 
0.50 0.75 1.00 

Figure 8. Two possiblefunctionsf(x) to be used in the 
gradient calculation unit. 

Figure 9 shows the amplitude response for each of the three 
impulse responses shown in Figure 7, together with the ideal 
response IH(f)I=f. 

Q) 
"0 
:::I 

:t::: 
0. 
E « 

0.5 1.5 2 2.5 3 3.5 4 
frequency --tJoo. 

Figure 9. Amplitude response o/the three distinct 
gradient calculation techniques. 

An implication of the super resolution gradient algorithm is that the 
gradient calculated is centered at a location which does not 
coincide with the voxel grid. The fraction iAJ.,. used for the 
calculation of the intermediate gradients !LO ... &..3, is for this 
reason either 112 voxellocation shifted up or down. Eight of the 12 
voxels, named vox_O ... vox_7, used in the calculation of the 
gradient, are normally used as well to calculate the sample point 
grey-value from the grey-values in the dataset. The other four 
voxels, named Ax ... Dx, are either located at lower or at higher 
addresses. Which side is actually chosen depends on the actual 
offset, either -0.5 or 0.5, used. 

3 Accurate calculation of grey-values 
A tri-linear interpolation may be used, using the voxel values 
vox_O '" vox_7, to calculate the grey-value at an arbitrary 
non-integral location in the dataset. The grey-value is ideally 
registered with the gradient when the procedure for the calculation 
of the gradient just described is used. 

4 Calculation of opacity and color 

The application of the opacity function or table is done in the 
'super resolution' design at the sample location, i.e. after 
interpolation of the grey-value from the surrounding 8 voxels 
when a tri-linear interpolation is used, or from the surrounding 64 

120 

voxels when a 3D spline interpolation is used. The color is as well 
calculated at the sample position. The new gradient algorithm 
makes this technique, which calculates the color from the gradient 
and the position of the light sources on sample positions. as 
opposed to voxel positions, possible. An efficient tabular approach 
for the calculation of the color from the gradient vector using an 
on--chip reflectance map as a look-up table is described in [6). The 
colors and opacities are used in the composition unit, which uses a 
front to back technique to calculate the final screen image. 

5 Problems with traditional methods 

The problem with the traditional method used in [1). based on an 
intermediate color and opacity dataset, is that the calculation of the 
color on the sample position from interpolated colors on the voxel 
grid is not the same as the calculation of the color at the sample 
position from an accurately generated gradient. The interpolation 
of colors is a linear process, whereas the calculation of the color 
from the gradient is a non-linear process. These operations cannot 
be permuted without the introduction of substantial errors. The 
errors related to this permutation give rise to blurred edges, as 
colors of edges at sub-voxellocations are calculated from gradients 
at voxellocations, where the edge is either not present or not sharp. 
It may be clear that this effect results in a blurred image. 

Another problem with the traditional method used in [I], based on 
an intermediate color and opacity dataset. is that the calculation of 
the opacity on the sample position by interpolation of opacities on 
the voxel grid is not the same as the calculation of the opacity at the 
sample position from grey-values. The interpolation is a linear 
process, whereas the calculation of the opacity from the grey-value 
is a non-linear process. These operations cannot be permuted 
without the introduction of substantial errors. The errors related to 
this permutation give rise to vague and notched images. 

(a) 
(b) 

Figure 10. Observations using (a) the partial volume effect 
and (b) the incorrect partial opacity effect. 

In Figure 10. this effect is shown for an elementary voxel. In the 
left image, the opacities are determined correctly at all sample 
locations in the cube, resulting in a sharp transition between the 
opaque and the transparent region. In case the opacities at the voxel 
locations are interpolated, all locations are made more or less 
opaque. resulting in a vague transition area. as shown in the right 
image. 

Methods that calculate the gradient from linearly interpolated voxel 
values. like the rendering technique presented by Knittel [7] as a 
fast alternative, give low quality images due to the fact that 
differentiation of a piece-wise linear function, resulting from the 
linear interpolation, will result in piece-wise constant colors. 



6 The super resolution algorithm 

Super resolution as presented in this paper can only be obtained 
when the non-linear operations of the assignment of opacities and 
the computation of the color, from the volume gradient and the 
position of the light sources, is done at the sample locations. The 
gradients however should be calculated from the original values at 
voxellocations. This can be done by a differentiating digital filter, 
which has an amplitude response which grows linearly with the 
frequency and a phase which is 90 degrees. 

As mentioned, such a filter cannot be derived from a linear 
interpolator, as the derivative of its triangular impulse response is a 
piecewise constant function. Better results can be obtained by 
computing the derivative from voxel values using a function 
derived through the differentiation of the impulse response of a 
higher order interpolation function. The alternative, used in this 
paper, uses a gradient calculator which can calculate gradients at 
arbitrary locations in the central region of the voxel dataset 
surrounded by 12 neighboring voxels. 

7 Hardware design 

Although the presented method results in very high quality images, 
this method is more expensive as well, compared to the frequently 
used methods which were primarily optimized for speed. 
Implementation of the algorithm in software indicated that the 
rendering process requires about 110 clock cycles per sample point 
on a RISC CPU for the old method and 164 clock cycles for the 
new method. 

In practical cases, this results in an average total rendering time of 
5.5 seconds for super resolution images of size 750x750, like the 
ones shown in this paper, on an HP735 workstation. These images 
where generated using multiple depth sample locations per 
elementary voxel cube. Special hardware, which can process one 
sample point in one clock cycle, will provide a speed improvement 
of a factor 100 to 150. This means that volume rendering of sparse 
datasets can be done in practical cases at a speed of over 20 images 
per second, using a single coprocessor chip. 

To obtain this high volume rendering speed from one single chip, 
many parallel multipliers are needed for the gradient calculators 
and the tri-linear interpolator used to calculate grey-values. This 
means that much effort has to be spent to optimize the multipliers 
in tertns of power dissipation and size. 

7.1 The gradient calculation unit 

An important aspect of the improved image quality of the method 
presented in this paper, is the improved calculation of the gradient. 
Figure 5 shows how the x-direction component of the gradient 
vector can be determined at the sample location p. This sample 
point is surrounded by the cube vox_O ... vox_7, which is needed 
for the opacity calculation as well. The four voxels Ax ... Ox have 
to be fetched specifically for the calculation of the x direction 
component of the gradient vector. 

A special gradient calculation unit, shown in Figure 6, is used to 
calculate the intertnediate gradient values in Xi at the locations !LO, 

121 

!Ll, g_2 and g_3 on the bold edges, after which an ordinary 20 
interpolator is used to find the desired gradient value !Lx at an 
arbitrary location somewhere in the center of the 12 voxel 
neighborhood. 

Figure 11. The 3D gradient calculation units 
for the x- and y-direction. 

In a similar way, another eight gradient units are needed to 
calculate g-y and !Lz at sample location p. In Figure 11, the 
datapath for the calculation of !Lx and g-y, containing eight 
gradient units and two 20 interpolators, as used in the full 30 
gradient calculation unit, is depicted. 

7.2 The opacity, shading and composition units 

Using the sample location grey-values and gradients, the value of 
the corresponding screen pixel has to be calculated. To do so, first 
the opacity and color have to be calculated at the sample location. 

The sample location opacity can easily be calculated by applying a 
look-up table on the sample location grey-value. 

As mentioned, a special shading/coloring unit, can be used to 
calculate the sample location color based on the sample location 
gradient vector. 

A composition unit is used to calculate the color of the screen pixel 
based on the sample color and opacity. 

In Figure 12, a block scheme for calculating the pixel color, based 
on the sample location voxel value (v(i,j,k» and the sample 
location gradient vector (g_x(i,j,k), U(i,j,k), g_z(i,j,k» as used in 
the super resolution hardware, is depicted. 



value(i,j,k) grad_x(i,j,k) grad_y(i ,j,k) grad_z(i ,j,k) 
I 	 I 

8..16 	 8 .. 16 8..16 8 .. 16 

Opacity 
LUT Shading / coloring unit 

8 opacity(i ,j, k) B lR B lG BlB color(i ,j,k) 
i i 

Composition unit 

color(i,j) 

External RAM 

Figure 12. Units for calculation ofopacity and color and the 
composition ofthe final image. 

8 	 Conclusions 

A new rendering technique, called "Super Resolution Volume 
Rendering", which provides renditions which are accurate and 
sharp within sub-voxel distances has been introduced. Moreover, 
the design of a volume rendering accelerator, able to generate high 
resolution images, was presented. The Super Resolution technique 
makes it possible obtain an arbitrary enlargement of the rendition 
of a dataset without the introduction of classical errors. 

One of the observations made is that linear and non-linear 
operations should not be permuted to achieve a low computational 
complexity. Moreover an improved gradient calculation scheme is 
introduced, which calculates accurate gradients even at high spatial 
frequencies, without noticeable folding artefacts as opposed to 
previous methods. 

The presented hardware design is able to generate high quality 
images with sharp sub-voxel edges, which are accurately shaded. 
Noise, if present in the dataset, is visualized as a hammer scale 
effect on the surface. This noise can be eliminated by applying an 
additional pre-filtering step on the dataset, which results in 
extremely sharp and smooth images like the one shown in Figure 
1. 

9 	 References 
(I] 	 M. Levoy. "Display of surfaces from volume data", IEEE 

Computer Graphics and Applications, 8(3). 1988, pp. 29-37. 

[2] 	 D. S. Goodsell et a!., "Rendering volumetric data in molecular 
systems", Journal of Molecular Graphics, March 1989, pp. 
35-36,41-47. 

[3] 	 K. J. Zuiderveld, Visualization of Multimodality Medical 
Volume Data using Object-Oriented Methods, Koninklijke 
Bibliotheek, Den Haag. 1995, ISBN 90-393-0687-7. 

[4] 	 B. T. Phong. "Illumination for computer generated pictures", 
Communications of the ACM, 18(6), June 1975, pp. 311-317. 

[5] 	 A.V. Oppenheim and R.w. Schafer, Digital Signal Processing, 
Prentice Hall International Editions, 1975, ISBN 
0-13-214107-801. 

[6] 	 J. Terwisscha van Scheltinga, J. Smit and M. Bosma, "Design of 
an On-Chip Reflectance Map", Proceedings of the tenth 
Eurographics Workshop on Graphics Hardware, 1995. 

[7] 	 G. Knittel, "A Scalable Architecture for Volume Rendering", 
Proceedings ofthe ninth Eurographics Workshop on Graphics 
Hardware, Sept 12-13. 1994,pp.58-69. 

C(~?('~~ 1 t'Vz.r'~< ,6t~! 


122 





