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Abstract 

Interactive volume visualization of unstruc.tured grid 
data is a much sought after, but as yet elusive, goal in 
many scientifie visualization applieations. We present 
an architecture that ean possibly bring this goal within 
reaeh. In this architecture we eombine the recently 
identified method of using texture mapping for volume 
rendering[5, 2] with anti-aliased voxelization. We show 
how the proposed architecture can be implemented with 
simple extensions to existing high-end graphics systems, 
using the SGI Reality Engine as an example. The ar­
ehitecture has the advantage of providing both direct 
volume rendering and polygon based rendering at high 
performance levels on the same hardware platform. We 
present some simulation results that demonstrate the 
validity of our arehitecture. 

Introduction 

Volume visualization has become indispensable to the 
computational sciences in recent years. The sources for 
volume data, both computed and acquired, have be­
come diverse: medical, molecular, geological, astronom­
ieaI, to name a few areas. However, there has not been 
eommensurate growth in the hardware support for vol­
ume rendering. The current high-end graphics systems 
are all tuned to provide support for polygon-based ren­
dering. With one exception, volume rendering is imple­
mented using one of the following methods: 

• 	 Extract a polygonal representation from the vol­
ume data and use the polygon-rendering hardware 
to render it. 

• 	 Use direct volume rendering methods in software, 
making use of any hardware support for image com­
positing, if available. 
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The former approach loses the benefits of direct vol­
ume rendering, like transparency, presentation of in­
ternal structure etc., while the latter suffers from long 
rendering times forcing the application to become non­
interactive, or at best provide very low interaction rates. 
In this paper we focus on architectures for direct volume 
rendering. 

Several research efforts are underway to provide hard­
ware support for volume rendering. A survey of these 
architectures is presented in [19]. The CUBE architec­
ture [6] and related work described in [19] are based on 
the supposition that it is time for volume graphics [1:3] 
to supersede surface graphics, just as surface graphics 
replaced vector graphics in the seventies. The long­
term prospects for such an approach are quite promis­
ing. However, in the near-term such an approach will 
not be competitive with the volume rendering meth­
ods, listed above, using polygon-rendering hardware. 
The only hardware support for volume rendering that 
is available on current commercial workstations is the 
texture mapping hardware of the RealityEngine (RE) 
system of Silicon Graphics [1]. The use of this texture 
mapping hardware is to provide rapid volume rendering 
as described in [11]. However, for this method, it is as­
sumed that the data is available as a regular :3D scalar 
grid. Most applications in the computational sciences 
generate unstructured grids of data. 

Volume rendering of unstructured grids has recently 
received mueh attention. The two most common meth­
ods are Cell Projection (see [15,24] and the references 
therein.) and Ray Ca.<;ting (for example [10, 24, :3]). 
Both methods have been found to be extremely costly. 
There are several research efforts c.urrently underway to 
provide rendering of unstructured grids at interaetive 
rates [9, 25]. These methods are faster but compromise 
on the quality and, more important, on the accuracy of 
the rendered images. 
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None of the above methods have been implemented 
in hardware. In this paper we propose an architecture 
for the interactive visualization of unstructured grids. 
This architecture is based on a voxelization-based ap­
proach to the rendering of unstructured grids proposed 
in [18]: Voxelization, the process of converting a ge­
ometrically represented :3D object into a voxel model, 
is the :30 extension of the conventional scan-conversion 
process. Graphics hardware exists for scan-conversion, 
but we know of no commercial hardware that provides 
voxelization in hardware. We show that this architec­
ture provides a seamlessly integrated hardware solution 
for voxelization and volume rendering that makes inter­
adive volume visualization of unstructured grids feasi­
ble with current hardware. We indicate how this archi­
tedure can be implemented as a simple extension of an 
existing high-end system so that the resulting solution is 
highly competitive. We have chosen the Silicon Graph­
ics RealityEngine(RE) ar('.hitedure as an example, since 
it is the most popular high-end system and also because 
details of the architecture have been readily available. 
However, we note that the proposed architecture could 
be implemented by extending other high performance 
triangle rendering architectures. 

The major features of the proposed architecture are: 

• 	 Supports both polygon-based rendering and voxel­
based rendering in the same platform 

• 	 Requires simple extensions of the existing RE ar­
chitecture 

• 	 Supports anti-aliased voxelization 

• 	 Enables interactive volume visualization of un­
structured grids. 

We consider volume visualization of unstructured 
grids as a two-step process: anti-aliased voxelization 
of the unstructured grid to generate a regular scalar 
grid, followed by direct volume rendering of the result­
ing scalar grid. We note that in several applications, like 
eFO, stress analysis, etc., The scalar values of the grid, 
or the geometry of the grid or both are time variant 
and hence voxelization has to be in the inner render­
ing loop. We enhance the voxelization step by the use 
of an anti-aliasing method called the 3D accumulation 
volume buffer (AVB) method. 

In the next section we describe the voxelization al­
gorithm that we use, followed by the anti-aliased vox­
elization algorithm in Section :3. A brief outline of us­
ing texture mapping for rendering regular volumes is 
presented in Section 4. The hardware architecture for 
implementing the above steps is described in Section 5. 
This section details the extension needed to the Real­
ityEngine architecture to implement the proposed ar­
chitecture. Results of simulations that demonstrate the 

validity of the proposed architecture are given in Sec­
tion 6. We conclude by indicating possible extensions 
of this work. 

2 Voxelization 

In this section we tackle the issue of voxelization of un­
structured grids. The most well known algorithms for 
voxelization are due to [14] that voxelize a polyhedron 
using a scan-plane method. The scan-plane is used to 
obtain the polygon of intersection and the polygon is 
filled to get the voxels which lie on the scan-plane. A 
set of scan-planes from top to bottom gives all the voxels 
in the polyhedron. In the following we present a recent 
algorithm ([18]) which will be used as the basis for the 
hardware implementation. This voxelization algorithm 
assumes the unstructured grid to consists of arbitrary 
convex polyhedra. For the hardware implementation 
however, we restrict the input cells to be tetrahedral. 
The need for this restriction are dealt with in Section 
2.2.2. 

2.1 Two-Buffers approach 

We use a two-buffer approach to voxelization. The use 
of two buffers for graphics algorithms is not new. Two 
buffers have been used to integrate the scalar value 
within a cell [16, 23]. Our work extends the two-buffer 
idea for voxelization and volume rendering of unstruc­
tured grids. 

Since the input cells are tetrahedra, the faces are all 
triangular. A given cell has four triangular faces of 
which some are facing the viewer 'known as the front 
faces' and the other faces are back faces which face away 
from the viewer. If the front faces are sean converted 
into one buffer and the back faces into a separate buffer, 
then for eaeh pixel, the values at the corresponding lo­
cation in the two buffers are used to interpolate the 
scalar values of all voxels which lie between the front 
and back faces of the cell. The depth buffer stores the 
corresponding one-dimensional buffers one for the left 
and another for the right extent of the polygon. The 
X, Z and Scalar values are stored in the left and right 
buffers. These values are used in the scan-conversion 
and depth-conversion of the polygon into front and back 
framebuffersjz-buffers. The different buffers used to 
voxelize a tetrahedron are shown in Fig. 1. The overall 
voxelization procedure is described in the next section. 

2.2 Voxelization 

This section describes the coherent voxelization tech­
nique. The voxel is a unit cube and each voxel has a 
scalar value associated with it. The voxel volume con­
sists of closely stacked < Nz , Ny, N;: > voxels in the 
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Fig. 1. Voxelization of a tetrahedron 



< x, y, z > direction respectively. The voxelization is 
done in cell-order. For each cell in the unstruc.tured grid 
we need to compute the voxels which lie within the cell. 
Each cell is organized as a collection of polygonal faces. 
The front faces are projected into the front framebuffer 
and the back faces into the back framebuffer. The depth 
of the front and back polygonal faces are stored in the 
front and back z-buffers respectively. Since we maintain 
two buffers the order in which the faces arrive is imma­
terial. The next step is to compute the scalar values for 
voxels which lie between the front and back faces of the 
cell. The z-buffers give the extents of voxels within the 
cell along the projected pixel. The framebuffers contain 
the scalar value of the front and bac.k voxel of the cell 
at that pixel. The summary of the algorithm is given 
below: 

II VOXELIZATION of unstructured grid 

voxelize_all_cells() 

{ 

for ( All Tetrahedral Cells in the Volume) { 


for ( Each Triangular Face of the Cell){ 
form_buffers (current_triangle) 
if(Front Face){ 

Iiscan convert into front buffer 
scan_convert(current_triangle) 

} 
else if(Back Face){ 

/Iscan convert into back buffer 
scan_convert (current_triangle) 

} 

} 
voxelize_betveen_tvo_buffers() 

} 
} 

The form_buffersO procedure incrementally com­
putes the extents of a triangle for each scan-line. The 
extents of each scan-line are used in the scan-conversion 
process. The scan_convertO procedure computes the 
scalar values and depth for all pixels in the projection 
of the triangle. The voxelizc_between_ two_buffersO 
procedure interpolates the scalar values for all voxels 
within the cell. 

2.2.1 	 Incremental voxelization between Two~ 
Buffers 

This section describes the incremental estimation of 
scalar values for all voxels which lie between the front 
and back voxels. The scalar values for the front and 
back voxels are obtained from the respective frame­
buffers at the corresponding pixel locations. 

Since the' projections of the cells are known, it is 
enough to compute scalar values for all voxels bet.ween 
the front and back projections of the cell. The vox­
ds which belong to a cell lie between the depth values 

stored in the front and back z-buffers. An incremen­
tal value is computed from the scalar values available 
in the front and back framebuffers for each projected 
pixel. This value is added to the voxels incrementally 
along that projected pixel to get the scalar voxels within 
the cell. The following proeedure shows the incremen­
tation of voxel values from the framebuffer values. 

II voxelize_between tva buffers 
\\to get scalar value of VOXELS 
voxelize_betveen_two_buffers() 
{ 
for(Cell Ymin to Ymax){ 

for(Cell Xmin to Xmax){ 
if(The cell projects on this pixel){ 

Get scalar value from front Fbuf 
Ilfrom front and back Fbuf 
Compute Incr_scalar 
II betveen front and back Zbuf 
for (All voxels ){ 

V[x][yJ [zJ =transfer_fn(scalar); 
scalar += Incr_scalar; 

} 
} 

} 
} 

} 

By adding a 0.5 to the first voxel[14] a close round­
ing to the voxels is obtained. The scalar value for the 
front voxel gets the value from the front framebuffer. 
A more accurate method would be to interpolate from 
the neighboring pixels to obtain the scalar value of the 
start voxel. The scalar value is scaled to fit the voxel 
size (8, 16 or 32 bits). However, the transfer function 
allows non-linear or piecewise linear functions within a 
cell with trilinearly interpolated sealar values. 

The main advantages of this algorithm over other al­
gorithms for converting an unstructured grid composed 
of tetrahedral cells into a regular voxel grid are: 

1. 	 Uses a cell-order approach for voxelization (Com­
pletes all the voxels within a tetrahedral cell before 
marching to the next cell). 

2. 	 Each cell is accessed only once, each triangle in a 
cell only once and each edge of the triangle only 
once. 

:3. 	 Handles one cell at a time. Information about other 
cells on the grid is not required. Hence there is no 
need to store the entire grid and no extra conneetiv­
ity information is required. Therefore it is suitable 
for hardware voxel-engines with small buffers. 

4. Easy 	to implement in hardware: No complicated 
data structures. 
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,5. 	 This is an accurate method for rendering unstruc­
tured grids (since depth information is properly ac­
counted for) and helps to interpret the data in an 
unambiguous way. 

6. 	 Voxelization of 3D grids is decomposed into an one­
dimensional problem. Linear interpolation is done 
along the edge, along the scan-line, and along the 
depth. 

7. 	 The algorithm is incremental where all the compu­
tations are reduced to incrementations (additions). 

2.2.2 Tetrahedral cells 

Even though our method works for any c.onvex cell, we 
restrict the implementation to handle tetrahedral cells 
due to the following reasons: 

• 	 Tetrahedron has triangle faces only and the number 
of inputs are constant, viz, x, y, z, color for three 
vertices 

• 	 For polygons with more than :3 vertices it is diffi­
cult to ensure that all points lie on the same plane 
whereas triangles are planar. 

• 	 Interpolation on a polygon is dependent on the di­
rection of scan conversion. In a triangle interpola­
tion is not direction dependent. 

3 Anti-aliased voxelization 

Just as aliasing is a problem for the scan conversion of 
2D primitives, the voxelization of tetrahedra is a dis­
cretization process and hence suffers from aliasing ef­
fects. This has been the focus of recent work especially 
in the context of volume graphics (see [21,22, 17]). We 
have developed a new anti-aliasing algorithm for vox­
elization, called the 3D accumulation buffer method[17]' 
that is highly suitable for hardware implementation. 

This method is an extension of the accumulation 
buffer method [12] used for anti-aliasing 2D polygons. 
The Accumulation buffer accumulates/ integrates mul­
tiple point samples taken in the region of each pixel. 
The Point Sampling hardware is used to render mul­
tiple images, each with the sample point jittered by a 
specific amount. These images are then integrated to 
form the final, anti-aliased result. The method was first 
proposed by [8]. It uses accumulation to create anti­
aliased images by rendering the scene repeatedly with 
subpixel offsets. 

The 3D accumulation buffer is a straightforward ex­
tension of the above method: accumulate the voxel val­
ues sampled at multiple sub-voxel sample points located 
within a voxel. 

3.1 	 Accumulation Volume Buffer 
(AVB) 

The Accumulation Volume Buffer (AVB) method is in­
dependent of the voxelization algorithm used. What is 
required is to voxelize each object multiple times, each 
time providing an offset to the object, and then accu­
mulating the partial voxel values generated by the vox­
elization step. For example, to voxelize a tetrahedron 
with anti-aliasing, the tetrahedron is transformed by 
sub-pixel offsets and voxelized for each offset position. 
The average scalar value is accumulated to the existing 
voxel value. To voxelize unstructured grids, all the cells 
in the grid are offset by sub-voxel positions, and the net 
effect is same as mentioned above for a tetrahedral cell. 
The standard way to generate these offsets is to have 
2 x 2 x 2 offset points within a voxel, where each offset 
is the center of the octant within the voxel. When the 
voxel has eight sub-samples, positioned at 8 sub-voxel 
locations, then the effective volume buffer resolution is 
eight times the original resolution. The next higher 
version in our method uses 3 x :3 x :3 offset points(ie 27 
sample points within the voxel). We have also gener­
ated antialised voxelizations with 4 x 4 x 4 and 5 x 5 x 5 
sample points (ie 64 and 125 samples within a voxel). 
The pseudocode for the AVB method is as follows: 

voxel_accumulation_buffer() 
{ 

for(each offset point within the voxel) 
{ 

II 	tet is the tetrahedron 
translate(tet, offset, new_tet) 
voxelize(new_tet) 

} 

} 


From a programming standpoint, all that is required 
is multiple passes through the grid data base, each pre­
ceded by a small translation of the voxel offset. No 
change is necessary to the data base or to the process 
of its traversal. Even though we have used a n x n x n 
super-sampling in our work, there is no reason to be 
confined to regular n x n x n sample points. A possi­
ble method would be to have N random sample points 
within the voxel. The random function can be a Gaus­
sian as used by [12]. Several experiments were done and 
we have found that our antialising method improves the 
quality of voxelization as measured by some new error 
measures that have also been proposed in [17]. 

The same accumulation technique may be extended 
to other voxelization methods: In the case of the scan 
plane method[14]' the scan plane is translated to sub­
voxel positions and intersected with the grid. The val­
ues of each pixel in the scan-plane are then accumulated 

. to obtain the anti-aliased scan-plane. An alternative 
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method is to translate the entire grid to sub-voxel posi­
tions and then do the scan-plane intersec.tion. Multiple 
passes for the entire grid is done for the required num­
ber of sub-voxel sample points. The same technique can 
be used for the octree based voxelization [20] to support 
anti-aliasing. 

4 	 Volume rendering with tex­
ture mapping 

A conceptually simple way of rendering a voxel volume 
is to treat each plane of the volume as a 2D texture and 
then to apply the texture to a rectangle. For example 
to render a 128x128x128 volume, we can consider the 
volume to be an array of 128 textures of size 128x128. 
This volume can be rendered from any view point sim­
ply by defining 128 rectangles and mapping successive 
elements of the array of textures on to the rectangles. If 
the texture mapping and rendering is done using com­
position of the overlapping textured rectangles then the 
resulting image is very close to a direct volume ren­
dered image. Alternately, we can consider the volume 
as a 3D texture array and apply the texture during the 
rendering stage onto a stack of polygons which inter­
sect the volume in an orientation perpendicular to the 
view-position. Such an approach has been proposed by 
Akeley [1] [7], who uses the texture mapping hardware 
of the Silicon Graphics Reality Engine to render volume 
data. A similar approach using the Kubota Pac.ific De­
nali hardware is used in [11]. 

5 	 Architecture for unstructured 
grid volume visualization 

Our objective is to develop a hardware architecture 
for the two-step volume visualization of unstructured 
grids described above. The two steps are, voxelization 
with anti-aliasing, and texture-mapped volume render­
ing. Clearly, the texture mapping step has already been 
well implemented in hardware ([I] and [11]). Thus we 
need not re-invent the wheel, but simply use the texture 
mapping hardware of any RE-like hardware. What is 
not obvious is that most of the computations required 
for the voxelization and anti-aliasing, are already being 
performed in an RE-like architecture. Thus it will be 
seen that with simple modifications to an RE-like ar­
chitecture, the two steps can be seamlessly integrated 
in hardware. We take the RE architecture as the base 
arc.hitecture since more information is available on this 
architecture than any other c.omparable system. We be­
lieve that the extension similar to the one we propose 
below can be made to any high end graphics system 
that supports texture mapping in hardware. 

5.1 	 RealityEngine architecture 

The board-level block diagram of the RE architecturep] 
is shown in Fig. 2. Details of the Fragment Genera­
torFG) and Image Engine(IE) (from [1]) are given be­
low: 

Each Fragment Generator is responsible for 
the rasterization of 1/5, 1/10, or 1/20 of the 
pixels in the framebuffer, with the pixel assign­
ments finely interleaved to ensure that even 
small triangles are partially rasterized by each 
of the Fragment Generators. Each Fragment 
Generator computes the intersection of the set 
of pixels that are fully or partially covered 
by the triangle and the set of pixels in the 
framebuffer that it is responsible for, generat­
ing a fragment for each of these pixels. Color, 
depth, and texture coordinates are assigned to 
each fragment based on the initial and slope 
values computed by the Geometry Engine. A 
subsample mask is assigned to the fragment 
based on the portion of each pixel that is ('.Ov­
ered by the triangle. The local copy of the tex­
ture memory is indexed by the texture coordi­
nates, and the 8 resulting samples are reduced 
by linear interpolation to a single color value, 
which then modulates the fragment's color. 

The resulting fragments, each comprising a 
pixel coordinate, a color, a depth, and a cov­
erage mask, are then distributed to the Im­
age Engines. Like the Fragment Generators, 
the Image Engines, are each assigned a fixed 
subset of the pixels in the framebuffer. These 
subsets are themselves subsets ofthe Fragment 
Generator allocations, so that each Fragment 
Generator communicates only with the 16 Im­
age Engines assigned to it. Each Image Engine 
manages its own dynamic RAM that imple­
ments its subset of the framebuffer. When a 
fragment is received by an Image Engine, its 
depth and color sample data are merged with 
the data already stored at that pixel, and a 
new aggregate pixel c.olor is immediately com­
puted. Thus the image is complete as soon as 
the last primitive has been rendered; there is 
no need for a final framebuffer operation to re­
solve the multiple color samples at each pixel 
location to a single displayable color. 

5.2 	 Hardware voxelization - the compu­
tational requirements 

The voxelization algorithm presented in Section 2.2 con­
sist of the following steps: 
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• 	 Determine the front and the back faces of the tetra­
hedron. 

• Scan convert the front triangles to the front frame­
buffer and the front Z-buffer. 

• Scan-convert the back triangles to the back frame­
buffer and back Z-buffer. 

• 	 Interpolate all the voxel values between corre­
sponding pixels in the front and the back frame­
buffers and store the results in the volume buffer. 

Clearly, the first three st~ps are the same as what the 
RE does for rendering triangles except that we need 
two pairs of frame- and z-buffers. However, the RE can 
already configure the bitplanes into two frame buffers, 
the front and the back. Thus the only additional re­
quirement is the back z-buffer. In the RE architecture, 
the Image Engine.s directly manipulate the bit-planes. 
Each IE can configure up to 1024 bits for each pixel. 
If the IE is enabled to split the available bitplanes into 
two pairs of buffers, the above can be realized without 
the need for additional bitplanes. 

The last step in the voxelization process, namely the 
interpolation of the voxel values and writing to the vol­
ume buffer is not handled by the present RE architec­
ture. 

The computation necessary for the interpolation step 
involves increment scalar estimation and scalar incre­
mentation. Along the depth (volume) of each cell, the 
scalar value increment is given by 

-"iner_volume = (Sjront - o5baek:)/(Zfront - Zback) 

where sfront, Sback: are the scalar values in the front 
and back framebuffer for the projected pixel. The Zfront 

and Zbad: are the front and back Z values available in 
the zbuffers for the projected pixel. This computation 
is performed once for each projected pixel of the cell. 

Given the value o5i-1, the scalar incrementation of 
the adjacent voxel along the depth o5i is computed as 
follows: 

o5i =o5i -1 + .5incr...edge 

A total of (Zjront - Zback:) scalar incrementations are 
done for each projected pixel. The above computations 
are simple linear interpolation computations. 

Since we will be using the texture mapping hardware 
of the RE to perform the volume rendering, the obvi­
ous destination for the output of the interpolation step 
should be the texture memory. 

5.3 The proposed architecture 

The extended RE architecture is to perform the follow­
ing steps in order to generate a volume rendered image 
of an unstructured grid: 

1. 	 The CPU outputs tetrahedral data to the Geome­
try Engine. 

2. 	 For all the tetrahedral cells in the unstructured grid 
the voxelization step below is performed. 

• 	 Triangle faces of tetrahedron classified as front 
and back faces( with respect to observer) ­
done by Geometry Engine 

• 	 Transformation to volume buffer coordinates 
- done by Geometry Engine 

• 	 Generate fragments for the back faces- done 
by Fragment Generator 

• 	 Merge fragments into back frame buffer and 
back z-buffer - done by the Image Engines 

• 	 Communication of a pixels depth and color 
from both front and back buffers 
by Image Engines to the corresponding Frag­
ment Generators 

• 	 Interpolation - by Fragment Generator for 
each projected pixel and update of texture 
memory with generated voxel values (Note 
that a FG update.s only all the interleaved lo­
cations in texture memory corresponding to 
the IEs associated with the FG). 

:3. 	 After the voxelization step is over it is necessary 
to merge texture memory from different FGs to 
generate a consistent copy of the texture for all the 
FGs. This can be done using one of the following 
techniques: 

• 	 Broadcast of all the affected texels to the 
other FGs. 

• 	 Read textures from FGs into CPU IG E and 
accumulate to a new texture. 

4. 	Texture mapping onto polygons in back-to-front or­
der - GL hardware 

The necessary modifications to the RE are: 

1. 	 FGs receive pixel information from the IEs for all 
projected pixels. 

2. 	 FGs perform interpolation and incrementations for 
each projected pixel. 

3. FGs write voxel values into texture memory for the 
run of voxels between front and back z-buffers. 

4. FGs Broadcast texture memory updated by the FG 
after voxelization of all the cells. 

5. 	The IE needs to perform the following actions: Af­
ter the scan conversion of front and back triangles 
is c.ompJete, each IE needs to examine all the pix­
els managed by it to determine which ones have 
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been affected by the projection of the triangles. 
The front and back frame- and z-buffer values of 
all such pixels need to be transferred to the FG. 
The time involved in this sequential search can be 
minimized by making use of the fact that we are 
dealing only with convex polygons (triangles in this 
case) 

We note that the interleaved organisation of pixels on 
an IE helps load balancing and that with the addition 
of more RMs each IE and FG needs to handle fewer 
pixels. We point out that the above design is based on 
incomplete knowledge of the RE-architecture. Various 
alternate designs could be possible. For example, the 
IEs can voxelize directly into their frame buffer and 
transfer the result into the texture memory. 

5.4 Anti-aliasing in hardware 

Next we examine the hardware architecture for the ac­
cumulation buffer anti-aliasing algorithm. The only ad­
ditional facility needed to implement the above is the 
ability to update a texture memory location with a new 
value which is a linear combination of the present value 
and an inc.oming value. With this facility, anti-aliased 
voxelization is implemented by repeated voxelization of 
a given cell with sample offsets. 

The hardware support for 20 sub-pixel positioning, 
accumulation buffer and area sub-sampling helps to 
generate an anti-aliased polygon projection. When 
these options are turned on, the quality of projec­
tion/scan conversion is much better than the normal 
scan-conversion. The impact of this on the voxelization 
is not known currently. However the error measures 
proposed in [17] helps to study the difference between 
two voxel volume buffers. 

5.5 Extension to OGL 

We propose the following new routines to be added to 
the Open GL to facilitate the use of the extended hard­
ware capabilities: 

• 	 vox_pre}sizeO 

• 	 vox..orthoO 

• 	 vox_bgntetraO and vox_endtetraO 

With these routines, the OGL programmer can visualize 
unstructured grids in real-time, in addition to rendering 
of polygonal data. 

The vox_prej.<;izeO function specifies the dimensions 
for the resulting voxel volume. This is analogous to the 
GL function prejsizeO used to specify screen pixels. 
The vox_orthoO function specifies the user dimensions 
for the input volume. This is analogous to the G L func­
tion orthoO used to specify a 3D user volume. The 

two functions vox_pre/.c;izeO and vox_orthoO, helps 
to eompute the scaling required to transform the user 
space to the volume buffer. In our implementation we 
transform the user spaee into the uniformly scaled voxel 
volume whieh lies totally inside the volume buffer spec­
ified by vox_pre/size(). For example the user space 
is < 100,20,60 > and the volume buffer specified is 
< 100,100,100 >, then the actual volume buffer is 
< 100,20,60 >. This helps to maintain a uniformly 
scaled object in the voxel volume and also reduces the 
data handled by eliminatIng empty voxels. The pseudo­
code for the hardware based voxelized volume rendering 
is given in Appendix I. 

6 Simulation studies 

To validate the above algorithms and to demonstrate 
the feasibility of the proposed architecture we resorted 
to some hardware-assisted simulation. This has been 
necessary since we do not have access either to the de­
tails of the RE implementation (other than the cited 
references) nor to any simulator of the RE internals. We 
implemented our algorithm on an SGI ONYX VTX sys­
tem with hardware support for texture mapping. The 
VTX Graphics board performs all the operations of a 
RE with 1 Raster Manager. The system has 128 Mb of 
CPU memory and 2 R4400 150MHz CPUs. 

6.1 Simulation set-up 

The implementation has the following steps: 

1. 	 Hexahedron as input - done in the CPU 

2. 	 Polygon faces of hexahedron classified as front and 
back faces(with respect to observer) - done by CPU 

:J. 	 Scan convert back faces into frame buffer and 
zbuffer - VTX hardware 

4. 	 lise the GL lrectreadO function to read both 
framebuffer and zbuffer for back faces - VTX hard­
ware 

5. Sean 	 convert front faces into frame buffer and 
zbuffer - VTX hardware 

6. 	 Use the GL lrectreadO function to read both 
framebuffer and zbuffer for front faces - VTX hard­
ware 

7. Interpolation done by CPU 

8. 	 Load volume as texture - VTX hardware 

9. 	 Texture mapping onto polygons in back-to-front or­
der - VTX hardware 
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6.2 Experiments 

Two data sets were studied: the staircase data set con­
taining 23 cells and the Bluntfin data set with 37479 
cells. The staircase data set is a regular grid and the 
Bluntfin model is a curvilinear grid. 

We have used tetrahedron in our algorithm descrip­
tion. This is because in a given hexahedral description 
the order of the vertices and connectivity information 
are additional input required. In addition, even if the 
above information are available and accurate, interpola­
tion of voxel values at the interior using the vertex scalar 
values is dependent on the direction of voxelization. In 
the two cases considered, the accurate hexahedral infor­
mation is available. In addition for the staircase data 
all the vertices have the same scalar value and hence the 
interpolation problem does not arise. For the blunt-fin 
data, the original computational grid is a curvilinear 
grid with hexahedral cells. A unique tetrahedralization 
of the grid is not possible and hence we have used the 
hexahedral grid itself. Hence there could be variation 
in the interior voxel scalar values. However as described 
in [17] this is a problem general to all tri-linear interpo­
lation based approaches. 

6.3 Results 

Our simulation setup concentrated on three aspects 
of the hardware implementation namely, voxelization, 
anti-aliased voxelization and hardware texture mapped 
volume Rendering. The results obtained are described 
in the next few paragraphs. 

6.3.1 Voxelization 

Fig. :3a. shows the stair case voxelized using software 
and BOB for rendering[4]. Fig. 4a. shows the stair 
case voxelized using the VTX hardware and BOB for 
rendering. 

6.3.2 Allti~aliased Voxelization 

Fig. :3b. shows the antialiased voxelization of stair case 
using software and BOB for rendering. Fig. 4b. shows 
the stair case using the VTX hardware for antialised 
voxelization and BOB for rendering. 

6.3.3 Hardware Texture Mapped Rendering 

Fig. 5a. shows the stair case voxelized using the VTX 
hardware and volume rendered using hardware texture 
mapping. Fig. 5b. shows the stair case using the VTX 
hardware for antialised vQxeJization and rendered using 
hardware texture mapping. 

6.3.4 Voxelized curvilinear grids 

The algorithm has been tested on the Bluntfin curvi­
linear grid. This curvilinear grid has hexahedral cells. 
The density of gas flow over a blunt fin is visualized 
as a scalar value. Fig. 6a. shows the voxelization of 
bluntfin using software and BOB for rendering. Fig. 6b. 
shows the bluntfin voxelized using the VTX hardware 
and BOB for rendering. Fig. 6c. shows the bluntfin 
voxelized using the VTX hardware and rendered using 
hardware texture mapping. 

7 Summary 

We have presented an architecture that combines anti­
aliased voxelization with volume rendering using tex­
ture mapping to provide a high performance visualiza­
tion of unstructured data. The attractive aspect of the 
architedure is that it can be implemented on a high-end 
polygon rendering architecture with simple extensions. 
The other advantage is that rendering time does not 
depend on the displayed image size. Since we use the 
hardware for scan-conversion, the full frame-buffer can 
be used for voxelization. 

There are however some drawbacks to this approach. 
The largest voxel volume that can be rendered is t.ied 
to the size of the texture memory. The texture memory 
currently supported on commercial systems is 4 to 16 
Mb. But to support 1024 x 1024 x 1024 voxels with 8 
bits per voxel we need 1 GB of texture memory. The 
quality of the rendered images is not as good as those 
from raycasting based approaches (for example using 
Volvis[6]). However for rapid interaction with the vol­
ume data these images are adequate. The other limita­
tion to our approach is that our algorithm works only on 
convex cells. But in reality this is not a serious limita­
tion because most of the successful graphics hardware 
works only on lines and triangles. And efficient algo­
rithms for tetrahedralizationof arbitrary polyhedra are 
available [25]. Another problem is the uniform vox­
elization of all the cells of the unstructured grid. This 
will result either in the loss of detail, if the resolution 
is low, or in data explosion, if the resolution is high. 
Hierarchical voxelization methods and their hardware 
voxelization are the topics of ongoing research. 

We have also not dwelt on the expected performance 
of the voxelization step. We can only surmise that the 
exc.ellent polygon rendering rate of the RE will be avail­
able to the voxelization step and this in eombination 
with the interleaved interpolation performance by the 
FGs will provide rapid voxelization. Sinee we do not 
have access to the internal details of the RE implemen­
tation, any attempts to provide more specific numbers 
will be speculation on our part. Further refinements to 
this architecture can only be done by system designers 

ca L et-{c,/-t-e Ii J ( j 

112 




Fig. 3. 

Fig. 4. 

Fig. 5. 

(a) (b) 

113 



(0) 

(q) 

('e ) 



who have access to the implementation details of the 
RE. 

References 

[1] 	 AKELEY, K. Realityengine'graphics. Computer 
Graphics (SIGGRAPH 93 (Aug 199:3), 109-116. 

[2] 	 CABRAL, CAM, AND FORAN. Texture mapped vol­
ume rendering. Proc. of IEEE Visualization 1994 
(October 1994). 

[3] 	 CHALLINGER, .J. Scalable parallel volume raycast­
ing for nonrectilinear computational grids. Proc. 
of Parallel Rendering Symposium 1993 (Oct 199:3), 
81-88. 

[4] 	 CHIN-PURCELL, K. BOB - Brick Of Bytes. Min­
nesota Supercomputer Center, Inc (199:3). 

[5] 	 CRAWFIS, R. A., AND MAX, N. Texture splats 
for 3D scalar and vector field visualization. Proc. 
of Visualization 93, San Jose (Oct 1993),261-266. 

[6] 	 FRASER, R. Interactive volumme rendering us­
ing advanced graphics architectures. SGI Devel­
oper News (Dec 1994), 5-9. 

[7] 	 FUCHS, H. Fast spheres, shadows, texture, trans­
parencies and image enhancements in pixel-planes. 
Computer Graphics, (SIGGRAPH '85 Proc.) 19 
(July 1985), 111-120. 

[8] 	 GELDER, A. V., AND WILHELMS, .J. Rapid ex­
ploration of curvilinear grids using direct volume 
rendering. Proc. of IEEE Visualization 93 (1993), 
70-77. 

[9] 	 G IERTSEN, C., AND PETERSEN, J. Parallel vol­
ume rendering on a network of workstations. IEEE 
CGf1A (Nov 1993), 16-23. 

[10] 	 GUAN, S.-Y., BLEIWERS, A., AND LIPES, R. Par­
allel implementation of volume rendering on Denali 
graphics systems. Proceedings of the International 
Parallel Processing Symposium (1995). 

[11] 	 HAEBERLI, P., AND AKELEY, K. The accumu­
lation buffer: Hardware support for high-quality 
rendering. Computer Graphics 25, 4 (Aug 1990), 
309-:318. 

[12] 	 KAUFMAN, A., COHEN, D., AND YAGEL, R. Vol­
ume graphics. IEEE Computer (1993), 51-64. 

[1:3] 	 KAUFMAN, A., AND SHIMONY, E. :30 scan­
conversion algorithms for voxel-based graphics. 
Proc. of ACM Workshop on Interactive 3D Graph­
ics, Computer Graphics, Chapel Hill, NC (October 
1986),45-75. 

[14] 	 KAUFMAN, A. E. Towards a comprehensive vol­
ume visualization system. Proc. Visualization 92 
(Oct 1992),37-44. 

[15] 	 MAX, N., BECKER, B., AND CRAWFIS, R. Flow 
volumes for interactive vector field visualization. 
Proc. of Visualization 93, San Jose (Oct 1993), 
19-24. 

[16] 	 MAX, N., HANRAHAN, P., AND CRAWFIS, R. 
Area and volume coherence for efficient visual­
ization of :3D scalar functions. Proc. of San 
Diego Workshop on Volume Visualization, Com­
puter Graphics 24, 5 (Nov 1990),27-:3:3. 

[17] 	 PRAKASH, C. E., AND MANOHAR, S. Error mea­
sures and 3D anti-aliasing for voxel data. Pacific 
Graphics 95 (1995). 

[18] 	 PRAKASH, C. E., AND MANOHAR, S. Voxeliza­
tion of unstructured grids. to appear in Comput­
ers and Graphics also available as Technical Report 
lISc-CSA-94-04, Department of Computer Science 
and Automation, lISc, Bangalore-560 012, INDIA 
(1995 ). 

[19] 	 STYTZ, M. R., FRIEDER, G., AND FRIEDER, O. 
Volume rendering and visualization for scientific 
data. ACM Computing Surveys 23, 4 (Dec 1991), 
421-499. 

[20] 	 TAUBIN, G. Rasterizing algebraic curves and sur­
faces. IEEE CG f:f A (March 1994), 14-23. 

[21] 	 WANG, S. W., AND KAUFMAN, A. Volume sam­
pled voxelization of geometric primitives. Proc. of 
IEEE Vi.sualization 93 (Oct 199:3),78-84. 

[22] 	 WANG, S. W., AND KAUFMAN, A. Volume sam­
pled :30 modeling. IEEE CG fj A J4, 5 (Sep 1994), 
26-32. 

[2:3] 	 WILHELMS, J. A coherent projection approach 
to direct volume rendering. Computer Graph­
ics(SIGGRAPH '91 Proceedings) 25,4 (July 1991), 
275-284. 

[24] 	 WILHELMS, .J. Pursuing interactive visualization 
of irregular grids. The Visual Computer 9 (199:3), 
450-458. 

[25] 	 WILLIAMS, P. L. Interactive direct volume ren­
dering of curvilinear and unstructured data. PhD 
thesis, Dept. of Computer Science, University of 
Illinois at Urbana-Champaign (1992). 

115 



