
An array based design for Real-Time Volume Rendering

Michael Doggett*

School of Computer Science and Engineering

The University of New South Wales 11

Abstract

This paper describes a new algorithm and hardware design
for the generation of two dimensional images from volume
data using the ray casting technique. The algorithm is part of
an image generation system that is broken down into three
subsystems. The first subsystem stores the input data in a
buffered memory using a rearrangement of the original ad
dress value. The second subsystem reads data points from
the buffered memory and shifts the data to computational el
ements in order to complete the viewing calculations for the
image synthesis process. The final stage takes the results
of the viewing calculations combined with the original input
data to complete the surface rendering and pixel compositing
to create the final image.

This paper focusses on the second subsystem which con
sists of two, two dimensional arrays of processing elements.
The first array performs a limited angle, single dimension ro
tation by shifting the data. The second array performs a two
dimensional ray casting operation where viewing rays are as
signed to each processing element. The first stage is outlined
in this paper and the final rendering stages are the subject of
previous work. The hardware design associated with these
algorithms is described and tested. It is estimated that this ar
chitecture is capable of producing 384 x 384 pixel images at
speeds of 15 frames per second for 2563 data sets. Real time
generation of images of volume data is important in scientific
applications of volume visualization and computer graphics
applications which use volume graphics.

Additional Key Words and Phrases: volume visualization,
graphics hardware, image generation, volume graphics

1 Introduction

New custom architectures for graphics systems are required
to process the large amounts of data associated with volume
data at video rates rIO]. Custom hardware architectures have
been proposed that are capable of generating real-time im
ages from volume data [8, 16, 5, 7, 11, 15]. Volume data
is a large data space made up of discrete points which typi
cally lie on a three dimensional grid where each discrete point

"Email: miked@vaslunsw.edu.au

tSydney 2052. AUSTRALIA

tWWW: http://www.vast.unsw.edu.aurmikedlindex.html

holds a data value commonly called a voxel. The synthesis
of video rate images from large volume data is used in var
ious applications of visualization such as medical imaging,
and video rate image generation is essential in computer in
terface technologies such as virtual reality.

The generation of two dimensional images from volume
data using transparency techniques, such as volume render
ing, is essential for Volume Visualization. Examples of vol
ume data which are sampled include, magnetic resonance
imaging (MRJ) and computed tomography (CT) data. Vol
ume data can also be synthesized from traditional computer
graphics primitives such as triangles. The generation of im
ages from synthetic data is referred to as Volume Graphics.
As hardware processing power increases Volume Graphics
has the potential to replace polygon based graphics and place
real-time 3D computer graphics on every computer [9]. This
can be achieved by replacing two dimensional frame buffers
with three dimensional frame buffers that can work with vox
elized polygons stored as volume data.

2 Previous Work

Previous work on the system [2, 1] has concentrated on shad
ing which occurs in the final stages ofimage generation. This
paper details the design of part of the front end, being two
arrays that shift input data to perform a partial rotation and
processing elements that calculate the path of viewing rays
through the volume data. The memory subsystem that enters
the data into the first array is briefly outlined in this paper and
is the subject of continuing investigation.

The design presented in this paper aims to describe a scal
able and adaptable architecture for real-time volume visual
ization systems. To achieve this, a rotation and ray casting
algorithm which uses arrays of processing elements to cre
ate a parallel pipelined subsystem was designed. The com
plete system uses an initial subsystem for volume data stor
age and a final subsystem for rendering. The array based al
gorithm was implemented and tested in software. A hard
ware description language was used to describe, simulate and
verify the hardware functionality and calculate performance
estimates for the array processing elements. The hardware
description was then translated into the LSI gate array design
environment in order to estimate the characteristics of a gate
array implementation. Using the gate array results, the per

93

http://www.vast.unsw.edu.aurmikedlindex.html
http://www.eg.org
http://diglib.eg.org

formance is estimated to achieve a video rate of 15 frames
per second (f/s) for images of volume data.

3 	 Related Work

TheCube-3 architecture [15] is estimated to be capable of
processing a 5123 data set at 30 f/s. The Cube architecture
uses a bus between input volume data and a set of buffers
where data is stored before the image generation process be
gins. The transfer of data using this bus involves a template
of values being calculated which determine the correct stor
age addresses for the data held in the buffers. The buffers
store the data for the next stage of processing. The purpose
of the bus transfer operation is to transfer data representing
one row of one slice of a volume data cube in one transfer
operation. The bus transfer operation is the projection calcu
lation for parallel or perspective viewing of the data set.

The array based design reported in this paper differs from
the Cube-3 architecture by having a simpler parallel transfer
method between memory and the second subsystem for pro
cessing. The simplified addressing then requires the intro
duction of the two array designs to calculate arbitrary screen
projections.

The Knittel system [11] is able to render images of 2563

data sets at 2.5 fls, and uses a VLSI pipeline for the calcula
tion ofsurface normals and Phong shading. The performance
of this architecture is improved by using a distributed vol
ume data memory and sending packets between processing
elements to represent the traversal of rays through the data
space. This parallel implementation is capable of 20 fls for
5123 data sets using a 64 processing element array.

The architecture presented here eliminates the need for a
network of processing elements and packets containing ray
traversal information. The ray casting operation is performed
within one array that aligns the volume data with the correct
ray for image generation.

Results from algorithms capable of speeds ofa few frames
per second for data sets of 1283 to 2563 using supercomput
ers [17] and standard workstations [12] have also been re
ported. These real time results are dependent on either large
supercomputer systems or sparse data sets. For higher frame
rates and larger data sets, increased processing power is re
quired.

4 	 Image Generation from Volume
Data

4.1 Introduction

The synthesis of images from volume data is referred to as
volume rendering [13, 3]. There are several approaches to
this rendering process, one being ray casting [13], Ray cast
ing is similar to ray tracing, except that in ray casting rays
travel through the data set once without creating reflection

rays. The ray casting used in this system is based on dis
crete increments along each ray similar to discrete ray trac
ing [18]. As the rays travel through the data, sample points
are extracted and used to calculate local gradients surround
ing the sample point which is used in opacity calculations to
combine the sample points to create the final pixel value. The
shading of the surface is calculated using either the diffuse
shading or Phong shading equations [4].

Ray casting and ray tracing are examples of image synthe
sis that is based on a pixel by pixel calculation. The standard
ray casting algorithm allows rays to travel from any view
point through the data space. This requires that all data points
in the memory are available to each processor that calculates
the traversal of a ray. This creates a bottleneck at the in
put memory for a single processor calculating all ray traver
sals. A solution for parallel systems is to pass data packets
containing ray traversal information from one parallel pro
cessing element to another. This passing of ray packets re
quires a network and adds overheads to the ray casting algo
rithm. The objective of the ray casting algorithm presented
in this paper is to create a parallel algorithm that passes data
in the correct order to a set of processing elements without
the memory or network bottlenecks. To achieve this the algo
rithm presented uses a limited range of possible viewpoints
for the ray casting algorithm. Arbitrary viewing is accom
plished by adding two preprocessing stages. The first stage is
called coordinate swapping, and the second. X axis rotation.
The final stage requires a modified ray casting algorithm in
the X, Z plane.

The data that enters the first stage are voxel values, Va,
which are represented using a right handed coordinate sys
tem called the world coordinate system. In the same coordi
nate system a viewing direction is specified using a cylindri
cal coordinate system represented by the values (J and <p. The
coordinate value for one of the eight corners of the volume
data set is equal to the origin of the world coordinate system
and the data set increases in size along the positive x, y and
z axes.

4.2 Coordinate Swapping

The coordinate swapping stage of the image generation pro
cess involves the rearrangement ofcoordinate values for each
voxel which reorders the input data in terms of the new co
ordinate system. The world coordinate system used for in
put voxel data is changed to the new coordinate system and
called the limited view coordinate system and changes all
possible viewing angles in the range of (0 < (J < 360,0 <
<p < 180) to (225 < (J < 315,90 < <p < 180). This
mapping is accomplished by swapping and/or inverting the
x, y, z coordinates ofthe input voxels depending on the view
point represented by the cylindrical coordinate values, (J and
<p. The new coordinates are used in the X axis rotation. The
required coordinate swapping for each view angle are shown
in Table 1.

94

! Region
1
2
3
4
5
6
7
8

Viewing Angles Axes Change
X+,Y+,Z+

Z-,Y-,X
Y+,Z-,X
Z+,Y+,X
Y-,Z+,X
X+,Y-,Z
X+,Z-,Y+
X+,Y+,Z+
X+,Z+,Y-

Table 1: Input data rearrangements required for ranges of
viewing angles.

4.3 X axis rotation

The second stage of the image generation process involves
a two dimensional array which effectively performs a small
rotation of the voxel data values. The rotation is about the
X axis of the limited view coordinate system. The com
plete rotation calculation involves a translation to the origin,
a three dimensional rotation, and a translation back to the
original position. Using a homogeneous coordinate system
[4], the translation and rotation operations result in the fol
lowing equations:

Rz =x

Ry = Ycos(Oz) - Z sin(Oz) - ::2 cos(Oz) + :: sin(Oz) + ::
2 2

Rz =ysin(Oz) + zcos(Oz) - ::2 sin(Oz) - :: cos(Oz) + ::
2 2

where

=world coordinate values
= rotated coordinate values in the limited
view coordinate system
=angle of rotation about the X axis calcu
lated from the 0 view point angle

n =size of the data set

To reduce the calculation complexity involved in perform
ing this calculation for every coordinate an incremental cal
culation is used. The coordinates of a data point in the first
plane and the last plane of the volume data set are rotated us
ing the above equations. The rotated coordinates of the first
plane point are used as the starting point and incremental val
ues are added for each new point. The incremental value is
calculated using the following equations:

Yz=n - Yz=oYinc = "---.:...--=~..:.
n

Zz=n - Zz=oZine = -'--.:...-..;;;.....:.
n

where

Yine, Zinc = incremental values for y, z coordinates
respectively

Yz=n, Zz=n =rotated y,z coordinates for points on the
z = n plane

Yz=o, zz=o =rotated y,z coordinates for points on the
z = 0 plane

n =size of the data set

Once all initial and incremental values for coordinate ro
tation are calculated they are used in an algorithm for the
X axis rotation. The algorithm is based on a two dimen
sional array data structure W (x, y). Each element of the ar
ray stores the voxel data Va, the voxel y value Vy and three
boolean values eq, gt and Lt. A comparison is made between
the Vy value and the y value stored in each array element and
the results stored in the three boolean values. The voxel data
is also shifted along the x axis of the array. As data is shifted
along the x axis the boolean values indicate whether the data
moves to the adjacent array element or a row above or below
the adjacent element. The x dimension of the array is n and
the y dimension is In in order to handle up to 45 degree ro
tations. The input into the array is from the volume data and
proceeds in a plane-by-plane, column-by-column processing
order. For each column ofeach plane the data is input and ro
tated using the following algorithm :

for (y =1 to ~n)
{

W(n,y).vy = Yz=o + (y X Yine)

W(n,y).Va = y{ze,y,zc}

for (x =1 to n J{

{

W(x,y).eq:= (W(x,y).Vy equal to W(x,y).Ype)

W(x,y).gt:= (W(x,y).Vy greater than
W(x, y).Ype)

W(x,y).lt := (W(x, y).Vy less than W(x, y).Ype)
ifW(x,y).eq then W(x -l,y) = W(x,y)
ifW(x,y).gt then W(x -l,y) = W(x,y -1)
ifW(x,y).lt then W(x -l,y) = W(x,y + 1)

}
}

where

eq =boolean value for equal y coordinates
gt =boolean value for voxel Y coordinate greater than

array Y coordinate
It = boolean value for voxel y coordinate less than

array y coordinate

xc = current column

zc =current plane

4.4 Ray Casting

The final stage of the new image generation process is a mod
ified ray casting algorithm that uses an array of rays that tra

95

http:ifW(x,y).lt
http:ifW(x,y).gt
http:ifW(x,y).eq
http:W(x,y).lt
http:W(x,y).Vy
http:W(x,y).gt
http:W(x,y).Vy
http:W(x,y).eq
http:W(n,y).Va
http:W(n,y).vy

verse through the volume data in the X, Z plane. A two di~
mensional array, R(x, y), stores voxel values, voxel coordi~
nates, and ray coordinates in each array element. The ray co~
ordinates, Rz and Rz represent the current location of the ray
in the x, Zplane. The dimensions of the R(x, y) array are ~n
in both x and y dimensions.

The ray at each array location moves through the data in an
incremental fashion detecting intersections with data values
as it progresses. The starting point and incremental values
for each ray need to be calculated for each image. The view
ing ray is determined by taking an initial value at the screen
plane and a terminating value on the opposite side of the vol
ume data. A line is created between the two values and the
initial point of intersection with the volume data set is found.
The incremental values are found using these initial and final
values for each ray.

The view plane is the x, y plane at Z = - i in the view co~
ordinate system. This view plane has to be translated to the
same coordinate system that the X axis rotation uses so that
coordinate intersections can be found between rays and the
voxel values stored in the W (x, y) array. The transformation
of the ray coordinate values to the correct coordinate system
requires a translation to the origin, then rotation, and then an
other translation back to volume data coordinates. The equa~
tions for the calculation of x, Z values in the X axis rotation
coordinate space are :

Rz = xcos(8y) + zsin(8y) + ~ - ~ cos(9y) - ~ sin(9y)

Rz = zcos(8y) - x sin(9y) + ~ - ~ cos(9y) + ~ 8in(Oy)

where

x,z = original coordinate values
Rx,Rz =rotated coordinate values

8y =angle of rotation about the Y axis calcu
lated from the </> view point angle

n = size of the data set

The points on the viewing plane at z = - i are trans
formed to the correct coordinate space with the viewing an
gle </>. Another x, y plane at z = 5:, which represents the
plane where rays terminate, is also transformed. Using the
two planes as initial and final values for each ray the inter
section point between the ray and the voxel data space is cal
culated. This intersection is found by finding the intersection
between the line connecting the corresponding point on the
two rotated planes and the faces of the cube which defines
the voxel data space. This intersection point is then the ini
tial value for each ray. The increment values for each ray are
calculated using the corresponding points of the two planes
and the following formula:

R -~ -Rx==fz_ 4

Xinc = n

R -~ -Rz==.!1:.z- 4 4

Zinc = n

where

Xinc, Zinc =incremental values for x, z ray co
ordinates respectively

xz=~,zz=~ =rotated x, z coordinates for points
on the z = 5: plane

,Zz=~n =rotated x, z coordinates for points
on the z = -t plane

n = size of the data set

A two dimensional array, R(x, V), stores at each array ele
ment three voxel values, the coordinates for the current plane
voxel value, and the coordinates of the ray associated with
the array element. The array element also stores a series of
boolean values. The x = 1 column of the W (x, y) array con
tains the voxel values and associated coordinates which are
assigned to the n = ~n column of the R(x,y) array. The
columns of data effectively move across the W(x, y) array
and into the R(x,y) array. The R(x,y) array is driven by
the same data processing as the W (x, y) array and uses the
following algorithm to complete the ray casting operation:

jor (y = 1 to ~n)
{

R(in,y).Vz =xc
R(In,y).vz = zIR+ (y X Zinc)
R(In,y),V4 = W(1,y),V4
R(~n,y).vb = R(1,y),V4
R(2n,y).vC =R(l,y).ltb
jor (X =1 to ~n)
{

R(x, y).eq = (R(x, y).Rx equal to R(x, y).vx)
and (R(x, y).Rz equal to R(x, y).Vz)

R(x,y),V4 =R(x + 1,y).Va
R(X,y).Vb = R(x + 1,y).Vb
R(x, y).Vc = R(x + 1,y).vc
R(x,y).vx =R(x + 1, y).vx
R(x, y).Vz = R(x + 1, y).vz
R(x,y).v1 =R(x + l,y).vl
ifR(x, y).eq then

if(R(x,y).vl used) then
R(x,y).pv2 = R(x,y).Rxf, R(x,y).RzJ
R(x,y).R:z =R(x,y).Rz

+R(X,y).Xinc
R(x,y).Rz = R(x,y).Rz

+R(X,y).Zinc
else

R(x,y).pv1 = R(x,y).Rx,R(x,y).Rz
R(x,y).vl = true

}
}

96

http:R(x,y).vl
http:R(x,y).Rx,R(x,y).Rz
http:R(x,y).Rz
http:R(x,y).Rz
http:R(x,y).Rz
http:if(R(x,y).vl
http:R(x,y).v1
http:R(x,y).vx
http:R(X,y).Vb
http:R(2n,y).vC
http:R(~n,y).vb
http:R(In,y).vz
http:R(in,y).Vz

eq = boolean for ray intersection with data value
vI = boolean for when first passed value is used

pv1 = first set of passed ray intersection values
pv2 = second set of passed ray intersection values

Vb =previously processed plane of voxel values
Vc = plane of voxels processed before the Vb plane

The output from the R(x, y) array is the intersection points
and associated voxel values which are used in surface shad
ing and image compositing. When an intersection is found
the fractional parts of the current ray location are passed
through the array to the the n = 1 column where they are
used in the shading calculations. If more than one intersec
tion is found at a particular voxellocation a second set of in
tersection values are passed for shading calculation. When a
ray intersects a voxel value, the coordinates of the ray are in
cremented and the ray isn't incremented again until the next
intersection. The distance between the sample points that a
ray takes is equal to the distance between voxel values in the
data set to ensure that no more than two samples are ever
taken at one voxellocation.

4.5 Surface shading and image compositing

The voxels values in the column R(1, y) are used to calculate
values for the pixels in the final image. The y value of the
voxel in the R(x, y) array is the screen y value for the pixel.
The x pixel value is stored with the voxel in the R(x, y) ar
ray. A window of 33 voxel values is taken from the R(I, y)
column one 3 x 3 plane for each iteration of the complete
algorithm. The gradient at the centre of the window of val
ues is calculated and used as a surface gradient for the centre
point. The surface gradient is used in a diffuse lighting equa
tion to calculate the light intensity and hence pixel value at
the location of the centre voxel in the window. The complete
description for surface shading and image compositing used
in this system is described in [2, 1]. Alternative algorithms
for surface shading and image compositing, that are imple
mented in real-time systems, are outlined in [11, 15].

5 Hardware Design

The architecture ofthe system into which the new image gen
eration algorithm fits is shown in Figure 1. The system is
broken into several major components including two custom
hardware arrays of processing elements based on the algo
rithms described in the previous section outlining the new
image generation algorithm. The system is capable of ac
cepting input from a real-time data acquisition device and
storing it in the memory system. The specialised memory
represents the first stage and is a double buffered memory
with each buffer holding one copy of the volume data. As
data is entered into the double buffer the coordinate swap
ping operation is performed. The output from the memory
subsystem is connected to the warp array, which performs

~ f- Double ~

Buffered

Warp Array Ray Array r;;;;l ... Input

Memory
~

~~

f- i'"Frame RenderingScreen fE- Buffer Pipeline
f- I-

Figure I: System level organisation

the X axis rotation described in Section 4.3. The warp array
function is similar to a shear warp operation, but is a rota
tion and not a shear. The output from the warp array is con
nected to the input of the ray array, which performs the mod
ified ray casting algorithm described in Section 4.4. The last
stage performs the surface shading and image compo siting
and is broken into several rendering pipelines and a screen
buffer.

5.1 Double buffered memory

The first stage of the system is a double buffered memory
which performs the coordinate swapping operation described
in Section 4.2. A double buffered memory is used so that
data can enter the system at the same time as data is read into
the warp array without conflicting accesses. The address of
voxel data is altered as it is written into the double buffered
memory.

An incrementor starting at the origin pointofthe voxel val
ues and incrementing to the. last row and column of the fi
nal plane of the voxel data is used to calculate the address of
input data. The incrementor value represents the X, Y and
Z coordinates with 8 bits for each coordinate to accommo
date a 2563 data set. The coordinate values are then recalcu
lated according to the view point with coordinate swapping
described in Section 4.2. Three multiplexors and inverters
are used to create the new address where the data is stored in
the acti ve buffer for input data. Once the incrementor reaches
the maximum value the buffer switch is changed and the pro
cess repeats. The buffer switch is used to select between the
input data buffer and the buffer where values are read into
the warp array. The design of the double buffer is shown in
Figure 2.

The input data value addresses are calculated sequentially.
To improve the performance of the address calculation pro
cess multiple address calculations units can run in parallel.
Data set sizes of 5123 and 10243 would require parallel ad
dress calculation units.

97

data

N

P

U

T

Incrementor

address, "

Figure 2: Input data double buffer for data rearrangement

lnililliAti(M'JA ~ y

cakulawrs

Double

lMr_ Ray

~ An"<y
Memory

-o~'J_"
".J::::..... " :

:/"- /v:v~~\ ,',

:~/

'~'i "'''':,/ .

, " ",. VtIVyAt;/
-.... "';.' '
 ~
Figure 3: The Warp Array organization

5.2 The Warp Array

The warp array is an array ofprocessing elements which per
form the viewing rotation described in Section 4.3. The orga
nization of the warp array is shown in Figure 3. Initialisation
calculations are required for the coordinate data used in the
warp array. The incremental calculations require one addi
tion operation for each voxel value. The projection initiali
sation operations are more complex and require a dedicated
digital signal processor (DSP) to calculate the initial values
once per frame. The initial value for each row and an incre
mental value are loaded into two registers which, combined
with an adder, can calculate the Y value input for each row
of the warp array.

Va 8 bit

Figure 4: Warp Array processing element

Va Original voxel data value
Vx , Vy , Vz X, Y and Z coordinates of data value after

X axis rotation
Ype Y-position of processing element from top

of warp array
Rxi, Rx/ Integer and fractional components of the X

coordinate of the ray
Rzi, Rz/ Integer and fractional components of the Z

coordinate of the ray

Table 2: Notation for Warp and Ray Array processing ele
ments.

5.3 The Warp Array processing element

The warp array processing element takes one set of inputs
from three possible sets and sends the input to one of three
possible outputs depending on the data's associated Y value.
The entire array acts as a large shift register where data is
stored and shifted towards its correct position within the ar
ray. Each processing element has a Ype register which holds
the y value of the array element. The Ype value and the Vy
value are compared and the voxel data and y value are passed
to a processing element in the next column which is either
above, below or adjacent to the current element.

The processing element uses two flip flops as registers to
store the voxel value and its Y coordinate. The input to the
registers is selected from the outputs of the adjacent process
ing elements. There are two select lines to the multiplexers
which are driven by the comparator output of the adjacent
processing elements. The output of the register values are
passed to the adjacent processing elements on the output side.
A comparator is used for the Y coordinate comparison. The
layout for the warp processing element can be seen in Figure
4 and the values are described in Table 2. The output of the
final column of the warp array is connected to the input of the
first column of the ray array.

98

~.>,~
-D~O~fC}:I[J;f" ~ OCI-..

+ -- ,

== 6~1i[\

~.. .."

, r-------~
~ .. ~
~>~

Figure 5: Ray Array organization

5.4 The Ray Array

The ray array is a two dimensional array of processing el
ements which perform the operation of ray casting as de
scribed in Section 4.4. The initial values for the ray coordi
nates are calculated by a dedicated digital signal processor
(DSP) chip and passed through the ray array to the correct
processing element. The DSP chip calculates the initialisa
tions described in Section 4.4, which are performed once per
frame. The coordinates of the ray are stored in each process
ing element using a register with both an 8-bit integer and
8-bit fractional component. The integer component of the
ray and the coordinates of the voxel data are compared to de
termine intersections with the data and when an intersection
occurs the fractional component of the intersection is passed
through the remainder ofthe array. Each ray array processing
element accepts a set ofvalues that contain intersection infor
mation from previous processing elements. After the inter
section calculation is performed the result is combined with
the input intersection data and sent to the following process
ing element. The output data is used by the shading operation
in the surface rendering and image compositing stage. The
organization of the ray array is shown in Figure 5.

The voxel data value Va from the warp array is placed di
rectly into the adjacent processing elements in the ray array.
The voxel y coordinate, Vy • is not passed on to the ray array
as it is no longer needed for computation. Each ray array el
ement stores a voxel value from the current plane. Va and the
two previous planes, Vb and Ye.

Figure 6: Ray Array processing element

5.5 The Ray Array processing element

Initialisation values are loaded into each ray array processing
element using the a load bit and the registers that pass the in
tersection data. The load bit is used to switch multiplexors
that input the initialisation data into the appropriate registers
in the processing element. Each ray array processing element
stores data using flip flops as data registers. The ray coordi
nate is incremented through the array using two 16-bit carry
look ahead adders. An intersection is detected using a com
parator to detect when the coordinates of a voxel and a ray
are equal. At each intersection point, the fractional compo
nents of the ray location. RzJ and RzJ are output to the next
processing element.

Once an intersection is detected by the comparator the in
tersection data in the input register is checked to see if a value
already exists, ifso the intersection data from the current pro
cessing element is placed in the second location. In Figure 6
the layout for a ray processing element is shown with the val
ues explained in Table 2.

6 Results

The viewing and shading operations of the system were im
plemented in software and results were obtained. The pro
cessing elements in the warp and ray array were implemented
in a hardware description language (HDL) and tested for
functionality and performance. The viewing and shading op
erations were tested on both artificial and real data sets. Only
the real data set results are discussed in this paper. The artifi
cial data sets showed that all arbitrary viewing angles worked
correctly.

99

6.1 Software Simulation

The results from the software simulation for a 403 sized data
set containing several spheres is shown in Figure 7 (a). In Fig
ure 7(a) the viewpoint is set to () = 45 degrees and ¢ = 45
degrees showing the performance of both the ray and warp
arrays.

To test the two arrays on real sampled data an MRI of a
human heart was used. Figure 7(b) shows the data set with
no rotation.

6.2 Hardware Simulation

To test hardware functionality and to estimate the process
ing speeds of the warp and ray array, the processing elements
were defined in an HDL and simulated using a switch level
simulator [6]. The simulator takes account of gate delays
and fan-in and fan-out conditions. Both processing elements
functioned as described, with the warp array processing ele
ment operating at 38MH Z, and the ray array processing el
ement at 25MHz.

6.3 System Performance

To estimate the performance of the complete system the re
sults from the hardware simulations were used. A conserva
tive clock rate of 20MH z will produce a pixel result every
lOOns. To estimate the requirements ofa real time system, an
example data set ofsize 2563 was used to generate 3842 sized
images. This was found to require 32MB of 8-bit data in the
double buffered memory. Assuming IOns memory is used
then 3 parallel read and write lines are required to perform at
15!/ s. The warp array requires an array of size 256 x 384
and the ray array requires an array of 384 x 384. The tech
nology used for simulating the gate array layout is LSI logic's
0.6-micron LCA300K [14]. The maximum number of gates
on one chip is 300,000. The hardware description was trans
lated to the description language used by the LSI toolset and
a gate array schematic generated to determine the number of
gates that each processing element required.

Using these details the warp array requires a set of25 chips
configured in a 5 x 5 array. The larger ray array is imple
mentable using a similar set of 5 x 5 chips, but only con
tains a 384 x 40 ray array. This reduced size requires that the
ray array be reused approximately 10 times per frame. The
following calculation estimates the time required to generate
one frame in this system :

lOOns x 256 x 256 x 10 = 65ms

The frame time translates to a performance of 15 f/s.

7 Conclusion

This paper has presented a new algorithm and hardware de
sign for the visualization of volume data. The warp array
and ray array store the data as it is'processed and perform the

viewing and ray casting operations required for volume visu
alization. The reduction of the three dimensional ray casting
algorithm to two dimensional is a direct result of the coor
dinate swapping process and the X axis rotation. The sepa
ration of ray casting from data storage and rendering allows
these aspects to be customized for particular applications.
The system is designed to allow flexibility in the sizing of
both the warp and ray arrays to cost and performance consid
erations. The system utilises a high level of both pipelining
and parallelism to provide real time frame rates for volume
data sets. The system design is scalable and therefore allows
it to be used to process larger data sets at higher frame rates.

8 Acknowledgements

The author would like to thank Professor Graham
Hellestrand for his supervision and essential feedback,
Dr Jayasooriah, Mr Gunter Knittel and Mr Stephen Avery
for their helpful discussions with regard to this work, and
Dr Jiirgen Hesser for the MRI data set of a human heart.

References

[1] 	DOGGETT, M., AND HELLESTRAND, G. A hardware
architecture for video rate shading of volume data. In
International Symposium ofCircuits andSystems (May
1995), IEEE.

[2] 	 DOGGETT, M. C., AND HELLESTRAND, G. R. A
hardware architecture for video rate smooth shading of
volume data. In EuroGraphics Workshop on Graphics
Hardware (September 1994). EuroGraphics, pp. 95
102.

[3] DREBIN, 	R., CARPENTER, L., AND HANRAHAN, P.
Volume rendering. Computer Graphics 22, 4 (August
1988),51-58.

[4] 	FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND
HUGHES, J. F. Computer Graphics: Principles and
Practice. Addison Wesley, 1989.

[5] GUNTHER, 	 T., POLIWODA, C., REINHART, C.,
HESSER, J., MANNER, R., MEINZER, H.-P., AND
BAUR, H.-J. Virim: A massively parallel proces
sor for real-time volume visualization in medicine.
In Eurographics workshop on Graphics Hardware
(September 1994), pp. 103-108.

[6] 	 HELLESTRAND, G. R. Modal: A system for digital
hardware description and simulation. Journal ofDigi
tal Systems 4,3 (1980),241-303.

[7] 	 JUSKIW, S., AND DURDLE, N. G. Interactive render
ing of voumetric data sets. In Eurographics workshop
on GraphiCS Hardware (September 1994), pp. 86-94.

100

[8] 	 KAUFMAN, A., AND BAKALASH, R. Memory
and processing architecture for 3d voxel-based im
agery. IEEE Computer Graphics and Applications 8,
II (November 1988), 10-23.

[9] 	 KAUFMAN, A., COHEN, D., AND YAGEL, R. Volume
graphics. IEEE Computer 26,7 (July 1993),51-64.

[10] 	 KAUFMAN, A., HOHNE, K. H., KRUGER, W.,
ROSENBLUM, L., AND SCHROEDER, P. Research
issues in volume visualization. IEEE Computer
Graphics and Applications 14, 2 (March 1994), 63-67.

[11] 	KNITTEL, G. A scalable architecture for volume ren
dering. In Eurographics Workshop on Graphics Hard
ware (September 1994), pp. 58-69.

[12] 	LACROUTE, P., AND LEVOY, M. Fast volume ren
dering using a shear-warp factorization of the viewing
transformation. In Computer GraphiCS (July 1994),
ACM SIGGRAPH, pp. 451-458.

[13] 	LEVaY, M. Display of surfaces from volume data.
IEEE Computer Graphics and Applications 8, 5 (May
1988),29-37.

[14] 	LSI LOGIC CORPORATION. LCA300K Gate Array 5
Volt Series Products Databook, October 1993.

[15] 	PFISTER, H., KAUFMAN, A., AND CHIVEH, T.-C.
Cube 3: A real-time architecture for high resolution
volume vizualization. In ACMIlEEE Symposium on
Volume Visualization (October 1994).

[16] 	STYTZ, M. R., AND FRIEDER, O. Volume-primitive
based three-dimensional medical image rendering:
Customized architectural approaches. Computers and
Graphics /6,1 (1992),85-100.

[17] 	VEZINA, G., FLETCHER, P. A., AND ROBERTSON,
P. K. Volume rendering on the maspar mp-l. In A CM
Workshop on Volume Visualization (October 1992),
pp.3-8.

[18] 	 YAGEL, R., COHEN, D., AND KAUFMAN, A. Dis
crete ray tracing. IEEE Computer Graphics and Appli
cations 12, 5 (September 1992),19-28.

(a)

(b)

Figure 7: (a) A data set comprised of spheres at an arbitrary
view point. (b) MRI heart Scan with no rotation

101

