
Design of a Fast Voxel Processor for

Parallel Volume Visualization

Jan Lichtennann

University of Kaiserslautern

Germany

Abstract

The basics of a parallel real-time volume visualization architecture
are introduced. Volume data is divided into subcubes that are dis­
tributed among multiple image processors and stored in their pri­
vate voxel memories. Rays fall into ray segments at the subcube
borders. Each image processor is responsible for the ray segments
within its assigned subcubes. Results of the ray segments are
passed to the image processor where the ray continues. The enu­
meration of resampling points on the ray segments and the interpo­
lation at resampling points is accelerated by the voxel processor.
The voxel processor can additionally compute a normalized gradi­
ent vector at a resampling point used as a surface normal estima­
tion for shading calculations. In the paper the focus is on operation
and hardware implementation of this pipeline processor and the
organization of voxel memory. The instruction set of the voxel pro­
cessor is explained. A performance of 20 images per second for a
2563 voxel volume and 16 image processors can be achieved.
CR Descriptors: C.l.2 [Processor Architectures]: Multiple Data
Stream Architectures- Parallel Processors, Pipeline Processors;
1.3.1 [Computer Graphics]: Hardware Architecture - Graphics
processors; 1.3.2 [Computer Graphics]: Graphics Systems - Dis­
tribu1edlnetwork graphics; 1.3.7 [Computer Graphics]:Three­
Dimensional Graphics and Realism Animation - Ray tracing; 1.4.10
[Image Processing]; Image Representation - Volumetric.

1. Introduction
In medicine, modern imaging techniques such as computer tomog­
raphy, magnetic resonance imaging, positron emission tomogra­
phy, and others produce enormous amounts of two-dimensional
data. By stacking the 2D cross sections and interpolating between
them. volumetric data sets can be obtained. A volumetric data set
can be imagined as a large rectilinear 3D grid of voxels. Voxels are

University of Kaiserslautern, Department of Computer Science,
Postfach 3049, D-67653 Kaiserslautern, Germany,
emaillichterm@informatik.uni-kl.de.

unit volume elements or cells, each voxel carrying either a scalar,
vector, or tensor volume. Rendering volume data helps in under­
standing complex structures, i.e. anatomy in medical applications.
Different rendering techniques can be applied to produce images
from the data sets [4].
We use a pixel order approach for non-binary voxels similar to the
one published by Levoy [8). It is a raycasting approach enumerat­
ing each pixel in 2D image space and using a ray to determine the
influence of each voxel prOjected on the examined pixel.
The visualization process is supported by 3D segmentation [11] of
the volume data, As a result of the segmentation step each voxel
carries a segment number besides its scalar value. The segment
number in combination with a segment lookup table enables the
assignment of a color, opacity, and specular highlight coefficient
for shading calculations to a voxel. Opacity is a value between 1.0
meaning fully opaque and 0 meaning fully transparent material.
Therefore several semi-transparent voxels on a ray may contribute
to a single pixel resulting in a very expensive computation.
Three ways to accelerate image computation are reported in the lit­
erature.
The first approach is the use of software techniques, like adaptive
refinement [9]. It is also possible to decompose the general view­
ing transformation matrix into matrices describing simple shear
and scale operations and to exploit object and image coherence [7).
But with today's workstation technology it seems to be impossible
to reach real-time rendering rates.
The second approach makes use of commercially available parallel
computers. The visualization process is partitioned and the compu­
tation is distributed among the nodes of the computer. Because
volume data sets are very large, simple data replication of the vol­
ume data set on all parallel nodes must be avoided. Two partition­
ing schemes have evolved in literature.
Image space partitioning assigns regions of the image to a node. A
node has to get access to the voxels of the volumetric data set that
influence the pixels in the region assigned to it.
In object space partitioning, parts of the volumetric data set are
assigned to each node and each node has to compute a subimage of
the voxels it can access. A final composing step of the subimages
is necessary at the end.
Both partitioning schemes cause communication between compu­
tational nodes. A comparison of the communication costs can be
found in [12]. It is the authors's opinion that use of commercially
available parallel machines is inadequate for widespread use of
volume visualization, e.g. in medicine, because of the high costs
for this kind of computers.
The third approach makes use of dedicated architectures for vol­
ume rendering.
The Silicon Graphics Reality Engine is a commercial machine that

83

mailto:emaillichterm@informatik.uni-kl.de
http://www.eg.org
http://diglib.eg.org

Ps l' II {

can be used for that purpose. Its 3D texture hardware can acceler­
ate volume visualization. A performance of 10 frames per second
for a 128x128x64 voxel dataset and 2.5 frames per second for a
256x256x64 voxel dataset is reported in (13). A new generation of
high end graphics machines with improved texture mapping hard­
ware may lead to better frame rates for large data volumes.
During the last year, three dedicated volume visualization architec­
tures were published. A good overview about more recent
approaches can be found in [3].
The Cube-3 Architecture is designed as a real-time architecture for
high-resolution volume visualization. A performance of about 30
frames per second for a 5123 16 bit voxel volume is estimated in
[14), but some technical challenges are left to the hardware imple­
mentation.
VlRIM is another approach to real-time volume rendering using
the Heidelberg Rayttacing Model. A performance estimate of 10
frames per second for a 256x256xl28 voxel dataset is given in [2].
A Voxel Engine for Real-time Visualization and Examination
(VERVE) is proposed in [5). A single voxel engine is designed for
2.5 frames per second for a 2563 voxel dataset. Eight voxel engines

can work in parallel and result in a performance of 20 frames per

second.

We think that the third approach may lead to rendering accelerators

used in conjunction with an off-the-shelf workstation at moderate

costs.

Our goal is to perform the image computation with a parallel archi­

tecture at a rate of 20 images per second for a volume of 2563 vox­

els. This allows a human observer tu choose the observation point

interactively or even to rotate the whole volumetric data set in real­

time.

2. The Distributed Volume Visualization Architecture

2.1 Volume rendering with raycasting

As stated in the introduction a raycasting method is used. The vol­
ume data consists of sampling points on an isotropic grid. Each
sampling point carries a scalar value and a segment number. The
segment number can be transformed into voxel color, opacity, and
highlight coefficient for shading. Raycasting is a pixel order
approach.
So each pixel in the image plane is enumerated and at least one ray
through each pixel is initiated. On the rays resampling points are
enumerated. All resampling points are equidistant and it is possible
to advance from one resampling point to the next by simply adding
an incremental vector. Normally the resampling points on the rays
do not match the voxellattice. Therefore the values at the res am­
pling points are computed from the surrounding voxel values by
trilinear interpolation. Figure 2.1 shows trilinear intexpolation at
the resampling point P.

P7

P3

Figure 2.1 Trilinear Interpolation.

At the resampling points light emission computations are per­

formed. The computations consider energy emission due to lurni­

ous gas or particles and energy emission due to reflection on

surfaces. Both energy terms are mixed by a term called surface

probability which is a value between 0 and 1.0. For shading calcu­

lations a surface normal is estimated by gradient computation.

Emitted light on a resampling point is attenuated by the material

between the resampling point and the pixel.

If we find fully opaque material between a resampling point and a

pixel or accumulated opacity reaches a certain level the resampling

point is invisible. This observation may be exploited to speed up

computation [9]. We stop computation for rays with such a point

(early ray termination) because everything behind this point is

obscured.

Most datasets contain almost empty regions surrounding the object

that was sampled. The voxel values in. these regions are smaller

than a typical threshold value representing air plus a certain noise

level of the sampling device. So initially all resampling points with

values below the threshold can be skipped until a resampling point

with a value above the threshold is reached. We call this speed-up

technique previewing. Previewing dramatically reduces the

number of points where light emission computations have to be

performed. To our experience up to 80% of a volume dataset (e.g.

the well known UNC head) is traced in previewing mode. For

resampling points in these regions we only have to perform trilin­

ear intexpolation.

The gain of both speed-up techniques, early ray termination and

previewing, is of course derending on the data set. We can exploit

both techniques in the DN -Architecture.

1\vo design goals are pursued in the design of the DN2-Architec­

ture:

The first design goal is to achieve good load balancing between the

processors. This implies that equal portions of the image computa­

tion task are given to each processor.

The second design goal is to keep communication as low as possi­

ble and as local as possible. Keeping communication low saves

communication time and bandwidth on the communication net­

work. Keeping communication local simplifies the communication

network and facilitates the use of hardware links between neigh­

boring processors. The total communication traffic distributes

among the links in the architecture.

2.2 Parallel rendering on DIIflA

To speed up computation the task of computing one image is sub­
divided into smaller tasks and these tasks are scheduled on multi­
ple processors. Therefore we partition our data cube into small
subcubes of equal size. To achieve good load balancing we assign
a set of subcubes to each processor and store the subcubes data
within the processors local memory. Each processor gets equal
numbers of subcubes from the inner and outer parts of the data vol­
ume. A ray through the data cube typically intersects multiple sub­
cubes. We call the part of a ray through one subcube a ray segment
Each processor is responsible for the computation of the ray seg­
ments within its subcubes. A ray message for a processor consists
of the first resampling point on a ray segment, the incremental vec­
tor between two resampling points, the intermediate result of light
emission computation up to but excluding the first resampling
point on the ray segment, and the pixel address within the image
the ray is belonging to. When a processor receives a ray message it
is its task to construct all further resampling points on that ray seg­
ment and perform light emission calculation until calculation stops
due to opacity or the ray segment is expired. In the case the ray
leaves the data cube and hits background computation of that ray
stops, too. If ray computation stops, the final value is sent together
with the pixel address to a frame buffer unit where the computed

84

~
~

image is assembled.
In the third case the ray continues in a neighboring subcube. So the
processor has to send a ray message to continue ray tracing with the
actual data to the responsible processor of the neighboring sub­
cube. So far we have a object space partitioning scheme. In con­
trast to [1] we do not need a final composing step of intermediate
images because computation on a ray proceeds strongly from front
to back and the composing step is implicitly performed when a
message with the intermediate result is passed from one processor
to its successor. This is the reason why we can exploit early ray ter­
mination due to opacity.
To start ray tracing the rays of one image must be initiated. Rays
are originated in subcubes that compose the faces of the large data
cube. So all processors responsible for these subcubes test visibil­
ity of these subcubes and initiate rays. This computation is per­
formed independently by all processors. So we have a image space
partitioning scheme, too. The assignment of processors to pixels
for ray initiation is not static but depends on the visualization
parameters, like the position of the image plane, the observers
position, and the kind of projection to be performed.

2.3 Architectural Overview

The Distributed Volume Visualization Architecture is shown in fig­
ure 2.2. A Unix workstation is used to store volume data on disk
and hosts the user interface. DIV2A-hardware is connected to the
workstation via an interface card. The hardware consists of the
central processor, multiple image processors, and a communication
network.

Bus

Link

Image Processor

Central Processor

Display Unit

Figure 2.2 DIV2-Architecture.

The central processor connects to all image processors via a bus.
This bus is used to transfer volume data from the central processor
to the image processors. The data of terminated rays is sent from
the image processors to the central processor via the bus. A spe­
cialized unit in the central processor assembles these ray messages
to the final image which is stored for display in a frame buffer.
The image processor (figure 2.3) consists of three subprocessors,
which are the ray tracing processor, the liD processor, and the
voxel processor.

The raytracing processor initiates rays for image computation,
conducts raytracing, and performs shading operations. It consists
of a Texas Instruments floating-point DSP TMS320C40.
Image processors send ray messages to other image processors.
For this kind of communication the image processors are arranged

85

..-...........
.... ~ ,
. ,. ,
: .", "," ."' '". ~! ·..>«< . ·1: ?~~7 .,

~·1

.~

. ~

Pi.1 ~~...___~~~~~lrO-~I.~.e~o~II"'II.,......,...,.....,...,.....,...,.....,...,...-1 P i+1

,

..............................-Bus

Figure 2.3 Image processor of DIV2A.

in a ring. '!\vo neighbors in a ring are connected by a bidirectional
link allowing message transfer in two directions simultaneously.
Network hardware supports message routing across image proces­
sors. Communication is not restricted to neighboring processors.
The links do not build a ring network in the classical sense because
all processors can exchange messages with their neighbors at the
same time. Communication is handled by the 110 processor.
Voxel data is stored in the voxel processors memory. The instruc­
tion set of the voxel processor enables the user to retrieve a voxel
value together with segment information and an estimated surface
normal at given non lattice coordinates. Additionally the voxel
processor is able to generate the resampling points on ray segments
from the first resampling point on a ray segment and the incremen­
tal vector between two resampling points. The voxel processor will
be discussed in detail in section 3.
The number of image processors must be a power of two to sim­
plify address calculations.

2.4 Assignment of image processors to subcubes

Voxels are set up in a three-dimensional orthonormal x,y,z-coordi­
nate system. Coordinates range from 0 to 255 for a 2563 voxel data
volume. We denote the length of the data cube with clen which is
256 in our example. Each resampling point on a ray within the data
volume can be described with global coordinates
(x ,y , z), x , y , Z E [0,255]. We denote the number of g g g g g g

processors in the DIV2-Architecture withp. An image processor in
the ring has number Pi' i E {O,... , p - I}. We can determine its

left and right neighbor by

p(. 1+)ifi-l<O
lefCneigbor (P i) = I - P

{
Pi_l else

righCneigbor (p i) = p (i + 1) mod p

The directed distance ddist between two processors Pi and Pj is the
shortest distance between them along the ring. It indicates whether
to travel clockwise or counterclockwise along the ring to get with
minimal steps from Pi to Pj­

Pj -Pi if IPj -Pi! $~

'f Pddist (Pi,Pj) = Pj-Pi+P1 Pj- Pi<-'2

Pj -Pi -P 1'f Pj -Pi >'2P

We divide the data cube into subcubes such that the number of sub­
cubes along a random axis is P multiplied by a power of two. We
call the power of two the interleaving factor ilv because it
describes how many subcubes are assigned to the same image
processor along one axis. Thus the edge length of a subcube is
sclen = clenl (p . ilv) .
To describe subcubes we define subcube coordinates "se' Ysc' Zsc

with x ' y se' zsc E {O, ... , p . ilv -I}. Given a point (xg, Yg'sc
Zg) we can find the subcube containing this point by

(x set Y se' zsc) = (Xg I selen, y g/sclen, zg/sclen) .

We define a processor function Pro c which assigns a processor to a

subcube:

proc (xse ' Yse ' zsc) = (xsc + y.c + zsc) mod P .

Each sub cube (Xsc, Ysc, Zsc) except those at the border of the large

data cube is surrounded by 26 other subcubes. Six of them with

coordinates (Xsc±1, Ysc' Zsc). ("se' YSC±l. Zsc). and (xsco Ysc' ZsC±l)

share a common face with the subcube. We call them face neigh­

bors. Twelve with coordinates ("sC±l, ysC±l, Zsc),

(xsC±!. Ysc' ZsC±l), and (xsc' YsC±l, Zsc±1) share a common edge

with the subcube. We call them edge neighbors. Eight with coordi­

nates (xSC±l, YSC±l, ZsC±l) share a common vertex with the sub­

cube. We call them vertex neighbors. We will refer to this again in

section 3.4.

In table 2.1 we show the directed distances between the processors

of ("sc' Ysc' Zsc) and the processors assigned to the neighbors

face nbrs

edge nbrs

vertexnbrs

:E

6

12

8

-3

0

0

1

-2

0

3

0

-1

3

0

3

0

0

6

0

+1

3

0

3

+2

0

3

0

+3

0

0

1

Table 2.1: directed communication distance for face, edge, and
vertex neighbors

Each of the 26 neighbors is a potential candidate for a ray to pro­
ceed if a ray segment in a subcube is expired. 'The table shows that
in no cases distance is larger than 3. Because in most cases a ray
continues in a face neighbor a communication distance of 1 is most
probable. Our processor assignment restricts ray message commu­
nication to local communication (design goal) and permits the use
of point-to-point communication on the links between neighbors
on the ring. Figure 2.4 shows the subcube distribution for a 16
processor architecture with ilv= 1. Processor numbers are coded by
different gray levels.

3. The Voxel Processor
The voxel processor (figure 3.1) supports ray tracing. The instruc­
tion set of the voxel processor enables the user to retrieve a voxel
value together with segment information and an estimated surface
normal at given non lattice coordinates. Additionally the voxel

Figure 2.4 Example of a 16 processor architecture.

processor is able to construct the resampling points on ray seg­
ments from the first resampling point of a ray segment and the
incremental vector between two resampling points. Operations to
be performed are additions to compute the coordinates of resam­
piing points, trilinear interpolations to retrieve voxel values at non
lattice points, and normalized gradient computation for surface
normal estimation. Because trilinear interpolation and normalized
gradient computation are complex operations, they are subdivided
into smaller sUbcomputations and they are pipelined. Pipelining
substantially increases throughput.

address
generator

. segment
mterpolator

Figure 3-1 DW2A voxeI processor.

The voxel processor is a large pipeline. It consists of the address
generator, voxel memory, the voxel interpolator, and the segment
interpolator. The pipeline is fed with operations and operands from
the raytracing processor through the ports PO and Pl. To decouple
the voxel processor from the ray tracing processor, operations and
operands are stored in FlFOs. A scheduler contained in the voxel
processor puts operations on the pipeline if resources become
available. Results of pipeline operations are stored in FlFOs in the
voxel and segment interpolator. From there they can be read by the
ray tracing processor. Decoupling the voxel processor from the
ray tracing processor enables them to work in parallel.

3.1 Processor interface

The voxel processor is memory mapped into the address space of
the ray tracing processor. Two interfaces PO and PI are imple­
mented to increase bandwidth. This enables us to profit from mod­
ern DSPs with two independent busses in the ray tracing processor.
Operands for pipeline operations are successively written into spe­
cial register locations. If all operands for an operation are written,
these values are copied together with the instruction code into the
FIFO. The FIFO realizes an instruction queue where the instruc­
tions wait for being scheduled. Results of a pipeline instruction are
stored in FlFOs. A result of a pipeline instruction may consists of
several values, e.g. the three components of the gradient vector

86

together with the value at the resampling point. Values belonging
to one resampling point are stored in parallel in the FIFOs. If an
instruction generates multiple resampling points, the results at
these resampling points are stored in sequence in the FIFOs. The
first entry of the FIFO can be read by the ray tracing processor
through register locations. If a result is no longer needed, the
raytracmg processor can flush the first entry out of the FIFO.
Afterwards the next result in the sequence of resampling points can
be read. The processor interface together with the FIFOs allows
the voxel processor to work at another clock speed than the
ray tracing processor. Eight instructions can be stored in the
instruction FIFO at the beginning of the pipeline. Thirty results
(resampling points) can be stored in the FIFOs at the end of the
pipeline.

3.2 Pipeline design

As we mentioned above, the voxel processor is a large multifunc­
tion pipeline. A short estimate shows that the pipeline does not fit
into a single chip: The processor interface consists of 32 data lines
plus 8 address and control lines per port. For two ports this sums to
80 lines. To exploit full parallelism we divide voxel memory into 8
memory banks. To address a volume of 2563 voxels distributed on
16 processors with 8 memory banks each, we need 17 address lines
plus a CS and WE line per bank. Voxel values have 12 bit resolu­
tion and segment information is represented with 8 bit resolution.
So we have 20 data lines. This results in a total of 2x80+8x39=472
pins without power supply pins. For 20 I/O-pins we need one pair
of power supply pins which increases the number of pins to 520.
Chip size grows quadratically with the number of pins. Assuming
one pad every 170~ plus some margin for corner cells we come to
a chip size of approximately 50Omm2.
Because we only can fabricate chips with a size of up to 19Omm2

(l.~ or 0.7~ CMOS standard cell) in the Eurochip project, we
have decided to partition our design into 3 chips. A natural way is
to partition the design into an address generator, a voxel interpola­
tor, and a segment interpolator. The functions of these units are dis­
cussed in the following sections. Voxel memory is implemented
with discrete memory chips. It is one stage of the pipeline. As a
consequence of the partitioning the processor interface is distrib­
uted to the three chips.
The multifunction pipeline needs a scbeduler. The scheduling
strategy is to schedule instructions strongly in the sequence of
arrival. An instruction is scheduled as early as possible without
causing collisions (structural hazards) with other instructions
already streaming through the pipeline. The scheduler implementa­
tion is hardwired.
We have decided to implement a dynamically configured multi­
function pipeline. This means that the type of function performed
in the pipeline may change with every instruction entering the
pipeline. A statically configured pipeline would not have been suf­
ficient because we cannot guarantee that long sequences of the
same function are input to the voxel processor. Search and trace
instructions are arbitrarily mixed during ray tracing.
Each stage of the pipeline needs control. Control signals determine
the function of a pipeline stage depending on the operation to be
performed and may indicate the presence or absence of data (null
cycle) and the routing of data within the pipeline. Two extreme
control strategies are possible, time-stationary and data-stationary
control [6]. In time-stationary control a central controller is the
global source of the control and route signals going to each stage.
In data-stationary control the control signals accompany the data.
The control signals can be the opcode indicating the function to be
performed on that data. In this case decoders are necessary at the
pipeline stages generating the control and route signals for that
particular stage. It is also possible to send a wide vector of control

and route signals through the pipeline.
We have decided to implement data-stationary control. This facili­
tates the design of the multifunction pipeline. After a operation is
initiated in the pipeline we do not have to care about the control of
that operation in the central controller. The control vector accom­
panying the data takes 27 bit in our design.
The necessity to partition the pipeline into multiple chips leads to
new problems. First, if a single controller is used in one chip, the
control vector has to leave the chip and has to enter two other
chips. This results in an additional number of pins that have to be
added to the chips.
Second, the first pipeline stage, which realizes the readout of data
from the FIFOs into the pipeline, is partitioned to three chips. This
leads to timing problems because the control signals for this pur­
pose are generated within one cycle and have to cross chip bound­
aries within the same clock cycle.
We have replicated the controller in all three chips to overcome
both problems (figure 3.2). The three controllers are synchronized
with the scheduler contained in the address generator. This ensures
that all three controllers have the same global view of the pipeline
state. The controller is described with VHDL. After synthesis parts
of the controller and the shift registers for the control vector that
are not needed in a particular chip are automatically eliminated by
logic minimization. This helps to save chip area.

voxel interpolator

address generator segment interpolato
Figure 3-2 Controller replication in the multi chip pipeline.

3.3 Voxel Memory

Voxel data is stored in voxel memory. For each voxel a 12 bit sam­
ple value and a 8 bit segment number is stored. For resampling tri­
linear interpolation is used. To exploit full parallelism in the
interpolation hardware voxel memory is divided into eight mem­
ory banks. We can access the eight voxel values for one trilinear
interpolation in one access cycle. Memory access can be consid­
ered one stage of the pipeline. Therefore memory access time must
be less than the clock cycle of the pipeline (25 ns). Voxel memory
consists of static memory with 20 ns access time.
The partitioning of voxel space into subcuhes and the assignment
of subcubes to processors arises a new problem. A resampling
point on a ray may fall between two voxels stored in neighboring
subcubes. Figure 3.3 gives an example for the planar case. To per­
form the trilinear (example: bilinear) interpolation the voxel proc­
essor processing the resampling point has to access voxel values
stored in subcubes not assigned to it. The same problem arises for
gradient computation near the border of a subcube. For shading
calculations a surface normal is estimated by the gradient vector
(G(x+l,y,z) - G(x-l,y,z), G(x.y+l,z) - G(x,y-l,z), G(x,y,z+l) ­
G(x,y,z-». (x,y,z) is the resampling point and G(x,y,z) denotes the
interpolated voxel value at point (x,y,z). For gradient computations

87

the problem is worse (figure 3.4).

o ...sc\en-l0 ...sclen-l

X voxel on lattice

sclen­ xxx

o resampling point
XXX

O responsibility of
one processor

[] four voxel neigbomd. :, *- XXX
for bilin. interpolation

~ubplanel subplane2

assigned to pl assigned to p2

Figure 3-3 Bilinear resampling near the border of two subplanes.

Three design alternatives exist to overcome the problem: data rep­
lication, communication request for voxel values to neighboring
processors and shared (multi port) voxel memories.
First we estimate the frequency of the access problem. We denote
the subcube length with sclen. Along one axis the voxels within a
subcube can be enumerated from 0 to sclen - 1. A voxel processor
has to cope with resampling points falling onto voxel 0 up to
resampling points falling an indefinite small distance left to voxel
o of the neighbor. Thus during resampling there are no problems
with resampling points at the left border of a subcube but with all
resampling points between voxel sclen - 1 and voxel 0 of the
neighbor. For the subcube we can estimate the percentage of these
points:

sclen 3 - (sclen-l)3

rp = 3 100%.

sclen
For sclen =16 we get rp =17.6%.
For gradient computation all resampling points between voxel 0
and voxel 1 and all resampling points between voxel sclen - 2 and
voxel 0 of the neighbor are concerned (see figure 3.4 for the planar
case). The percentage of these points can be estimated:

sclen 3 - (sclen -1 _ 2) 3

rg = 3 100%.

sclen

For sclen = 16 we get rg =46.4%.

The estimate shows that a good solution must be chosen because
for sclen =16 and gradient computation the access problem arises
for nearly half of all resampling points in a subcube.

o ...sclen-l0 ... sclen-l

sclen-l XXX
..-•. ~.!~""'~'~"·••~!HJH..• X X X

XXX

X voxel on lattice

o resampling point

• ro~~J~Rt~ck'\~r
O responsibilitY of

one processor
[] four voxel neigh­

borhood for
subplane2 bilin. interpolation

assigned to p2

Figure 3.4 Gradient computation near the subplane boundaries.

Communication requests to neighboring voxel processors is not a
good solution. First, the above estimate sbows that a lot of commu­
nication must occur. Communication takes time and leads to hold­
ups in the voxel pipeline. Additional hardware is necessary in the
voxel processor to service voxel request from other processors. A
pipeline working at maximal speed needs 8 voxel values every
clock cycle of 25 ns. Because of the hold-ups in the pipeline due to
communication delays throughput dramatically drops.
Shared or multiport memory is too costly. As we showed in section
2.4 a subcube has 26 neighbors. The neighboring subcubes are

assigned to processors within a communication distance of -3.... ,
+3. Thus a voxel processor has to access the voxel memory of 6
neighboring voxel processors. This leads to a very high connectiv­
ity because of the high number of address and data lines that are
necessary. Voxel memory can either be realized as a seven-port
memory or as a single port memory together with an arbitration
logic. Seven-port memories are no standard components and are
not available. For a single port memory access contentions have to
be resolved by an arbitration logic which leads to access delays.
The effect of access delays is again pipeline hold-up with a
decrease of throughput.
Replication of voxel data avoids both, communication and mem­
ory contention. Pipeline hold-ups are avoided because memory
accesses are local. As a disadvantage of data replication voxel
memory has to be enlarged which results in higher memory costs.
These higher memory costs can be justified because a high per­
formance should be achieved and the complexity for the hardware
implementation is low compared to the before mentioned alterna­
tives.
Memory overhead is the ratio of memory needed to store addi­
tional voxels from other voxel processors and the memory needed
to store only the subcube data. The additional number of voxels to
be stored can be determined from the discussion about resampling
and gradient computation near subcube boundaries. Near the 3
subcube borders with low voxel coordinates a region of thickness 1
has to be stored. Near the 3 subcube borders with high voxel COOf­

dinates a region of thickness 2 has to be stored. Thus the overhead
is given by

(1 + sclen + 2) 3
mo • 100%.

sclen
For selen ::: 16 the equation evaluates to mo =67.4%.

Addressing is simplified if a region of 2 is stored around each sub­
cube. This increases the overhead to

(2+sclen+2)3
mo' = 100% and evaluates to mo' = 95.3% for

sclen 3

sclen= 16.
We have chosen the last solution because we can simply use chips
with double address space to consider the memory overhead. So no
additional chips are necessary and board space can be saved.
For a 2563 voxel volume and 16 processors each voxel memory
stores 2563116=lM voxels. Assuming 8 memory banks 1M!
8 =128K voxels are stored in each memory bank. With data repli­
cation address space is doubled and chips with a 256K organiza­
tion can be used for the implementation of the voxel memory .

3.4 Voxel Addressing

In this section we describe the addressing scheme to map voxellat­

tice coordinates on memory addresses. Voxel memory is divided

into two parts. Voxels which belong to subcubes that are assigned

to the processor are stored in the first balf. Voxels belonging to rep­

licated data are stored in the second half.

First, we describe voxel addressing within subcubes that are

assigned to the processor. In section 2.4 we have introduced sub­

cube coordinates (Xsc,Ysc,zsc)' clen, selen, and p. By means of sub­

cube coordinates all subcubes of one processor can be enumerated:

sci = (xsc +Ysc (clendivsclen) +zsc (clendivsclen)2)divp

sel is the first part of a voxel address determining the number of the
subcube the voxel belongs to. For trilinear interpolation a set of
eight voxel values must be accessed in one cycle. We call a set of
voxels with addresses (x,y,z), (x.y+l,z). (x,y,Z+1), (x,y+I,z+I),
(X+l,y,z), (x+l,y+1,z), (x+l,y,z+l), (x+I,y+1,z+l) a voxeloctet.
The coordinates of a voxel with minimal x,y,z coordinates in a
voxel octet are called the base coordinates of the voxel octet. A
voxel octet which has base coordinates with even x,y,z coordinates
is called a supervoxel. Each voxel belongs to exactly one super­

88

voxel. For each voxel with coordinates (x.y.z) local supervoxel
coordinates within a subcube can be computed:

((x mod sclen) div 2,

(xIS_ YIs' zls) = (y mod sclen) div 2.

(z mod sclen) div 2)

The concatenation zls'Yls'xls enumerates all supervoxels within one
subcube.
The eight voxels of a supervoxel are assigned to the eight memory
banks by generating the 3 bit number bzbybx with bz =z mod 2,
by =Y mod 2, bx = x mod 2. Thus for addressing within a memory
bank the concatenation sc!,z)s'Yls'xls can be used to map coordi­
nates (x,y,z) on a memory address. It is evident that a random
voxel octet can be fetched in parallel from the eight memory banks
when using the mapping shown above. If the voxel octet is a super­
voxel then the same addresses are applied to all memory banks.
Otherwise the voxel values are stored in different supervoxels
depending on the base coordinates. If x of the base coordinates is
even, then Xis has to be applied to the memory addresses of all vox­
els in the octet. If x of the base coordinates is odd. then Xis has to
be applied to the memory addresses of all voxels with coordinate x
and xls+ 1 has to be applied to the memory addresses of all voxels
with coordinate x+l. The coordinates y and z are treated in the
same way.
Now the addressing scheme for replicated data is described. As
already mentioned in section 2.4 a subcube has 26 neighbors.
These neighbors are classified as face, edge, or vertex neighbors.
So the region of thickness 2 we want to store around each subcube
can be decomposed into face, edge, and vertex subvolumes (figure
3.5). There are 6 face subvolumes of size sclen2*2, 12 edge sub­
volumes of size sclen *22, and 8 vertex subvolumes of size 23. The
sub volumes of one type can be enumerated.

face subvolume edge subvolume vertex subvolume

Figure 3-5 	Three subvolume types for the storage of replicated
data.

If a voxel is read from a subvolume the type of the sub volume
together with the number of the subcube which is extended by the
sub volume is computed. So the first part of the memory address is
again the subcube number. Then the subcube type together with
the enumeration number of the subvolume is used as the second
part. The last part consists of the local supervoxel address within
the subvolume. Supervoxel addresses are defined separately for
each type of sub volume. The assignment of voxels to one of the
eight memory banks is the same which is used for voxels contained
in assigned subcubes.
The mapping of voxel coordinates on a subcube number and a sub­
cube type is not definite. A voxel may belong to up to three differ­
ent subvolumes. We have made the mapping table definite. This
eliminates the need to store a voxel value in three different subvol­
urnes when the voxel memory is loaded. Otherwise the 'store
voxel' operation would have consumed up to three pipeline cycles
depending on the voxel coordinates instead of just one cycle.

3.5 Voxellnterpolator

The voxel interpolator (upper part of figure 3.1) is designed to per­
form trilinear interpolation of voxel values. A single interpolation

takes 25 ns. The eight voxel values for one interpolation are
fetched from memory in one cycle. The eight values are input to
the interpolation tree (Figure 3.6) through a multiplexor stage. The
multiplexor stage rearranges the eight voxel values coming from
memory. This is necessary because the eight voxel values of an
octet may arrive from memory in different patterns. The pattern
depends on the base coordinates of the octet. In the interpolation
tree four interpolations along the x-axis. then 2 interpolations
along the y-axis and finally one linear interpolation along the z­
axis is performed. Linear interpolation is performed with 12 bit
voxel resolution and 12 bit interpolation weights xc' Yr, Zr. The
multiplexor together with the interpolation tree is implemented in
8 pipeline stages.

Figure 3-6 Trilinear interpolation tree.

To perform gradient computations the address generator enumer­
ates the coordinates of the six necessary points. For each of the six
points trilinear interpolation is performed. The gradient unit of the
pipeline collects the three pairs of values and computes the x,y,z
components G(x+1.y,z) - G(x-l,y.z), G(x,y+l.z) - G(x,y-l,z).
G(x,Y.z+l) G(x,y,z-l) of the gradient vector. After that the vector
length is computed to normalize the vector. Thus the vector com­
ponents are squared and summed. The cordic algorithm is used to
compute the square root. To perform these computations 16 clock
cycles of 25 os are necessary. The vector length is a 16 bit integer
value. The implementation of the square root computation takes
into account that one gradient can be computed every 7 clock
cycles of 25 ns. Therefore the stages in this part of the pipeline are
clocked with a lower frequency.
The output of the gradient unit is fed into the normalization unit.
There the three gradient vector components are normalized by
division with the vector length. This takes 9 clock cycles of 25 ns.
The normalized gradient vector components are computed with 15
bit accuracy plus a sign bit The design of the normalization unit
takes into account that one gradient normalization is performed at
most every 7 clock cycles of 25 ns.
The voxel interpolator contains additional hardware to support the
generation of resampIing points along a ray segment. This is nec­
essary for the search and trace instructions described in section 3.8.
To generate the resampling points along a ray segment the first
resampling point and the difference vector between two res am­
pling points is given. The (x,y,z) coordinates of a random resam­
pIing point can be split into an integer part (X;,yj,Zj) and a fractional
part (xf,Yf.Zr) with 0 ~ xr,yr,Zr < 1. The fractional part is stored in
the voxel interpolator and presents the weights for linear interpola­
tion in each direction. To generate the next resampling point from
the current resampIing point the difference vector has to be added.
The addition of the fractional parts is performed in the voxel inter­
polator. The addition of the integer parts and the carries from the
fractional parts is done in the address generator. The generation of
a new resampling point and thus the new interpolation weights is
possible within one clock cycle.
During previewing. points along a ray segment are generated until
a threshold is exceeded. To implement this instruction a threshold
register together with a comparator is contained in the voxel inter­
polator. The voxel value at the resampling point is compared with

89

http:xf,Yf.Zr

the threshold. A signal is sent to the address generator to terminate
the further generation of resampling points if the threshold is
exceeded.
A counter is implemented to count the number of resampling
points from the beginning of a ray segment until the threshold is
exceeded. The number of resampling points of a ray segment is
counted if threshold is not exceeded. It is also possible to count the
number of resampling points of a ray segment for the trace instruc­
tions.
The voxel interpolator is implemented in a chip with 190 pins. The
chip area is 150 mm2 using 1.0lJ. CMOS technology. F1FOs are
implemented as dual port RAMs using a megacell compiler. The
logic of the design is implemented with standard cells.

3.6 Segment Interpolator

The segment intexpolator (lower part of figure 3.1) is able to deter­
mine the nearest voxel to a given resampling point on a ray. It
selects the segment number of that voxel. Selection is imple­
mented in two pipeline stages. It then transforms the segment
number into voxel color (RGB), voxel opacity, and a highlight
coefficient for shading. Transformation is done by means of an OD­

chip translation lookup table within one clock cycle. The transla­
tion lookup table can be loaded from the raytracing processor.
To determine the nearest neighbor to a given resampling point the
segment intexpolator uses the fractional part (Xf'Yf'Zr) of the coordi­
nates. The segment intexpolator contains the same adder circuitry
that is implemented in the voxel interpolator to support generation
of resampling points along a ray segment. This is necessary for the
trace instructions. A new resampling point can be generated within
one clock cycle.
The segment intexpolator is implemented in a chip with 148 pins.
The chip area is 80 mm2 using 1.0J.l. CMOS technology. F1FOs are
implemented as dual port RAMs using a megacell compiler. The
logic of the design is implemented with standard cells.

3.7 Address Generator

The address generator (left part of figure 3.1) contains the sched­
uler. As described in section 3.2 operations are scheduled as soon
as pipeline resources become available.
The address generator performs several tasks.
First, it selects one of the eight memory banks if a single voxel
with integer coordinates is written into voxel memory or is read
from memory. A mapping of the voxel coordinates to a memory
address is performed as described in section 3.4. An error signal is
generated if the voxel that should be read is not stored in the voxel
memory.
Second, the address generator supports resampling. It generates the
voxel addresses of all eight voxels of the octet that is used to per­
form the trilinear intexpolation for a given resampling point. The
eight voxel addresses are mapped to memory addresses. The mem­
ory addresses determine the voxels in the corresponding memory
banks. The address mapping for the eight voxels is done in paral­
lel.
Third, the address generator automates gradient computation. It
generates all six resampling points that are necessary to compute
the gradient vector. For each of the six resampling points a resam­
pling operation is performed like described above.
Fourth, the address generator generates resampling points along a
ray. It uses the first resampling point of a ray segment together
with the incremental vector between two resampling points to iter­
atively generate the next resampling point. Only the integer coor­
dinate parts of the resampling point and the incremental vector
together with the carries from the fractional sums are added in the
address generator. Coordinates of resampling points are checked.

If a resampling point is outside the assigned subcubes of the proc­
essor, an error signal is generated. This mechanism is used to
determine wether a newly generated resampling point still belongs
to the ray segment or the ray leaves the processors responsibility.

The address generator consists of three pipeline stages. In the first
stage the voxel addresses for the eight voxels of an octet are gener­
ated. During gradient computation the coordinates of the six
resampling points are generated in this stage. The coordinates of
the successor of a resampling point are generated in the first stage,
too. Some work of the coordinate to address mapping concerning
supervoxels is also done in the first stage.
The second stage performs the next part of the coordinate to
address mapping. The type of the subcube is determined if an
access to replicated data takes place. Read and write signals for the
memories are generated. An error bit is generated if a voxel
address is outside the processors responsibility.
In the third stage coordinate to address mapping completes. Chip
select signals for the memory banks are generated. An error signal
for gradient computation is composed from the sequence of error
signals of stage 2. This helps to mark a gradient invalid if one of
the six resampling points for the gradient computation is outside
the processors responsibility.
After the third stage signals leave the chip and are connected to the
address and control lines of the memory banks. Memory is the
fourth stage of the voxel processor pipeline.
To bring pipeline clock cycle close to memory access time, we
have not implemented the registers after the third stage within the
address generator chip. Instead, we have used external registers, as
shown in figure 3.8.
In figure 3.7 the clock period is determined by the following
delays: At the beginning of a clock cycle signals of stage 3 are
valid at the output of register R3 after a register delay TR3. Then
signals have to leave the address generator which causes a pin
delay Tpin,ou!' After memory access time Tacc,rnem signals are valid
at the memory output. Then the signal has to enter the voxel or
segment intexpolator which causes an additional pin delay TpinJn'
Before the next clock cycle the setup time of register R4 tsetup.R4
has to be met.
Thus: Tmin == TRJ + Tpm.out + Tacc.mem + Tpin,in + fsetup.R4

exterruil clock

Figure 3·7 	Pipeline with register R3 inside the address genera­
tor.

The solution shown in figure 3.8 performs better as the comparison
shows:
At the beginning of the first clock cycle the signals of stage 3 have
already left the address generator and have propagated to the
inputs of external register R3. There is a clock skew between the
clock at external register R3 and the clock signals within the chips
at internal registers R2 in the address generator and R4 in the voxel
or segment interpolator. The clock signal at R3 is earlier because
there is a pin delay for the external clock to enter the chips and an
additional in-chip delay caused by the clock distribution networks
inside the chips. So, after the first clock cycle, we have a register
delay caused by external register R3. After that. the memory
access time plus the pin propagation delay to enter the voxel or
segment interpolator must be considered. Before the next clock

90

http:fsetup.R4
http:tsetup.R4

cycle the setup time of register R4 has to be met.
Thus Tmin =TR3 - Tskew + Tacc,mem + Tpin,in + tsetup,R4

external clock

Figure 3-8 Pipeline with external register R3.

Because the external register is implemented with Advanced BIC­
MOS technology (Texas Instruments) propagation delay is very
small (clock to output 1.5 ns min., 4.5 ns max.).
The design of figure 3.8 allows a 25 ns pipeline clock period with
20 ns access time memories. With the solution of figure 3.7 we
would have been 10% slower for the typical case and 29% slower
for the worst case. The solution of figure 3.8 has the additional
advantage that the adress lines of the memory chips are externaly
buffered. This avoids high peak currents for the address generator
chips caused by charge effects of the memories input capacitances.
The address generator is implemented in a chip with 244 pins. The
chip area is 135 mm2 using LOll CMOS technology. AFOs are
implemented as dual port RAMs using a megacell compiler. The
logic of the design is implemented with standard cells.

3.8 Instruction set and performance

We must distinguish between the number of clock cycles (25 ns for
DIV2A) it takes from the beginning of an instruction until we have
a valid result and the number of clock cycles the pipeline is
blocked and no other instruction can be performed in meantime.
Throughput of the pipeline is determined by the last value if the
pipeline can be kept filled all the time. The FIFOs at the beginning
and at the end of the pipeline decoupling the voxel processor from
the ray tracing processor help to keep the pipeline filled.
The first group of instructions stores voxel values, segment num­
bers, or both in voxel memory. If the data does not belong to one of
the assigned subcubes or replicated data of the voxel processor, the
store instruction behaves like a no-operation. This simplifies the
loading of the voxel memories because all ray tracing processors
present the whole data volume to their voxel processor. The voxel
processors store what they need.
There are instructions to retrieve voxel values and segment num­
bers from voxel memory. The instructions assume that the coordi­
nates are on the voxel grid. All instructions of the first group block
the pipeline for one clock cycle.
The second group of instructions performs resampling operations.
We can get the voxel value and segment information at a res am­
pling point. This blocks the pipeline for one clock cycle. Addition­
ally we can get the voxel value, segment information, and gradient
at a resampling point. This blocks the pipeline for seven clock
cycles.
The third group of instructions supports the construction of ray
segments. Let n be the number of resampling points of a ray seg­
ment.
The search instruction gets the first resampling point of a ray seg­
ment and generates all further resampling points until a subcube is
left or a threshold at a resampling point is exceeded. The search
instruction is used in previewing mode.
The instruction blocks the pipeline for 2 + n clock cycles if thresh­
old is not exceeded. To perform the resampling at the n resampling
points takes n clock cycles. Two additional clock cycles are neces­
sary to detect that a resampling point is outside the subcubes

assigned to the processor. The error signal is complete after the
third pipeline stage. Therefore two invalid resampling points have
been generated in the meantime. If threshold is exceeded at point
m in the ray segment the pipeline is blocked for min(13 + m,2 + n)
clock cycles. In this case m resampling operations have to be per­
formed which takes m clock cycles. Because exceeding of the
threshold is detected in stage 13 of the pipeline (voxel interpolator)
up to 13 superfluous resampling points have been generated and
are streaming through the pipeline. If additionally a resampling
point outside the processors responsibility was generated in the
address generator, it has already stopped generating resampling
points for that ray segment. Then 2+n can be less than 13+m. In
every case the number of clock cycles is at most the number of
clock cycles we had needed if threshold were not exceeded.
The trace instructions get the first resampling point of a ray seg­
ment and generate all further resampling points in a subcube.
Trace1 computes the voxel value, segment information, and gradi­
ent at each resampling point. It blocks the pipeline 2 + 7*n clock
cycles. Trace2 does not compute the gradients at the resampling
points and takes only 2 + n clock cycles. To perform the resam­
pling at n resampling points takes n clock cycles for the trace2
instruction because of gradient computation and 7*n clock cycles
for the trace! instruction. 1\\'0 additional clock cycles are neces­
sary to detect that a resampling point is outside the subcubes
assigned to the processor. The error signal is complete after the
third pipeline stage. Therefore two invalid resampling points have
been generated in the meantime.
The fourth group deals with loading the segment lookup table in
the segment interpolator. Reading or writing a segment entry takes
one clock cycle.
There are some miscellaneous instructions that can be used to reset
the pipeline or to clock the FIFOs when the results of an instruc­
tion are read. Clocking the FIFOs does not consume pipeline clock
cycles.

4. Conclusion
We have introduced a parallel architecture designed for real-time
volume visualization. Volume data is divided into small cubes and
distributed among multiple image processors. Ray tracing is sup­
ported by a powerful pipelined voxel processor. A dynamically
configured multifunction pipeline with data-stationary control is
used. Because of the high pin count the pipeline is implemented in
three chips. The pipeline controllers are replicated in each chip to
reduce the number of pins and to avoid timing constraints. The
voxel processor uses trilinear interpolation for resampling. It is
able to perform gradient computation and to generate resampling
points on ray segments. At the subcube boundaries additional
voxel data is needed to perform resampling and gradient computa­
tion. Data replication is used to overcome the problem and to guar­
antee high pipeline throughput. Voxel memory consists of 8
independent memory banks. A coordinate to memory address
mapping is presented that allows to fetch a set of eight voxel val­
ues for trilinear interpolation from memory in one cycle.
The voxel processor can perform a trilinear interpolation and the
computation of the next resampling point in one 25 ns pipeline
clock cycle. A 16 processor architecture is able to visualize a 2563

voxel volume at a rate of 20 images per second. Each image con­
sists of 2562 pixels and uses a byte for each RGB color component.

We are currently building a prototype consisting of 4 image proc­
essors interfaced to a Sun workstation. This prototype is not
expected to perform in real-time. The voxel processor is designed
for a 40 MHz clock. We use a subcube size of !6 for a 2563 voxel
volume. The voxel processor consists of 3 custom chips designed
with 1.0 Il CMOS standard cells of ES2. Chips are fabricated by

91

ES2 within the Eurochip Project. References
The next prototype will have 16 image processors and is expected
to perform in real-time. We plan to implement 3D segmentation on [1JDN2A and two expand the architecture for radiation treatment

planning in medicine which is very time consuming. Because radi­

ation has similarities to the behavior of light. ray tracing could be

used, too.

This research is supported by the German Science Foundation.
 [2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[l4J

Camahort. Emilio and Indranil Chakravarty, 'Integrating

Volume Data Analysis and Rendering on Distributed

Memory Architecture,' 1993 Parallel Rendering Sympo·

sium Proceedings, (San Jose, California. October, 1993).

89·96

Guenther, T. and C. Poliwoda and C. Reinhart and J.

Hesser and R. Maenner and Hans-Peter Meinzer and H.·

1. Baur. 'VIRIM: A Massively Parallel Processor for
Real-Time Volume Visualization in Medicine.' Proc. of
the 9th Eurographics Hardware Workshop. (Oslo. Nor­
way, September, 1994), 103-108
Kaufman, Arie et al., 'A Survey of Architectures for Vol­
ume Rendering,' IEEE Engineering in Medicine and
Biology, (December. 1990), 18·23
Kaufman. Arie. '3D Volume Visualization.' Advances in
Computer Graphics VI, Series Eurographics Seminars,
Springer, (1991), 175·203 .
Knittel, Guenter and Wolfgang Strasser, 'A Compact
Volume Rendering Accelerator.' ACMIlEEE Symposium
on Volume Visualization, (Washington. DC, October.
1994),67-74
Kogge, P. M., 'The Microprogramming of Pipelined
Processors" Proceedings 4th Annual Conference Com·
puter Architecture, IEEE No. 77CH 1182-5C, March,
1977,63-69
Lacroute Philippe and Marc Levoy, 'Fast Volume Ren·
dering Using a Shear-Warp Factorization of the Viewing
Transformation.' SIGGRAPH 94 Computer Graphics
Proceedings. (Orlando, Florida. July. 1994).451-458
Levoy, Marc. 'Display of Surfaces from Volume Data,'
IEEE Computer Graphics and Applications, Vol. 8, No.
3, (May, 1988),29·37
Levoy, Marc. 'Volume Rendering by Adaptive Refine­
ment', The VISual Computer (1990) 6, (1990). 2-7
Meagher, Donald J. 'Applying Solids Processing Meth­
ods to Medical Planning.' Proceedings NCGS'85, (Dal·
las. TX, April, 1985),101·109
MittelhauBer, Gangolf and Frithjof Kruggel, 'Fast Seg·
mentation of Brain Magnetic Resonance Tomograms,'
Computer 'tison, Virtual Reality and Robotics in Medi·

cine. First International Conference, CVRMed'95.

(Nice. France, April, 1995).237.241

Neumann, Ulrich. 'Communication Costs for Parallel

Volume· Rendering Algorithms,' IEEE Computer

Graphics andApplications, (July, 1994).49·58

Neumann, Ulrich and TlIllothy 1. Cullip. 'Accelerating

Volume Reconstruction With 3D Texture Hardware,'

Radiation Oncology Department. Department of Com·

puter Science, University of North Carolina at Chapel

Hill, TR93·027, (May, 1994)

Pfister, Hanspeter and Arie Kaufman and Tzi·cker

Chiueh, 'Cube·3: A Real·TlIlle Architecture for High·

Resolution Volume Visualization,' ACMllEEE Sympo­

sium on Volume Visualization, (Washington. DC, Octo­

ber, 1994),75·83

92

