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Abstract 

A reflectance map design is described which uses a minimal 
amount of memory for the table, in order to be applicable as an 
on-chip shader. The shader is designed for use with the volumetric 
super resolution hardware, which performs shading at 
supersampled locations. However, the design may be used as well 
to support surface visualization applications. Despite the small 
table size, the image quality obtained is excellent, even on smooth 
surfaces. 

Introduction 

Shading of surfaces is performed using a light modeL The light 
model ofPhong [1] is simple and therefore often used. It uses the 
surface normal, the direction of the light source(s), the direction of 
the viewer and characteristics of the surface to calculate the 
intensity at a sample position. 

The surface normal must be normalized to unit length. This 
involves operations as square and add, square root and three 
divisions [2], [3]. Thereafter, the different components of the 
Phong light model need to be calculated and added together. 
Especially the specular component is expensive to compute. If 
more than one light source is used, calculating the reflection 
components has to be repeated for every light source and added to 
the result. Therefore, calculating the light intensity at a sample 
position is a costly operation, especially when the specular 
component of the Phong light model or multiple light sources are 
used. 

Because of these expensive operations, often a look-up table is 
used, containing precalculated intensities for a set of predefined 
surface normal directions. It can easily be adjusted to handle 
different parameters, light models and even multiple light sources 
without affecting the rendering time. Parallel view and light vectors 
are assumed however, to make the reflection independent of the 
place. Unless the parameters and the light and view directions do 
not change, the look-up table has to be recomputed every frame, 
which is not a problem since the host computer can easily compute 
a small table in real time. 

To find the color intensity at a sample position, some sort of 
encoding of the surface normal is needed to find the index in the 
reflectance map. In volume rendering, the surface normal can be 
found by calculating the normalized gradient vector of the 
grey-level data [4]. 

The simplest encoding method uses a 3D look-up table [5]. The 
most significant bits from each gradient component are directly 
used to index the table. At least five bits per component are needed 

to give acceptable results, leading to a minimal table size of 32 
KByte. 

Sophisticated encoding schemes map the surface normal onto one 
or more 2D planes [6], [7]. 

If a unit length surface normal is used, only the sign bit of one of 
the components is needed together with the other two components 
[6]. The surface normal is thus mapped onto two planes. Six bits 
per component then give a table size of 8 KByte. 

All surface normal components can be normalized on one of the 
components [7]. The other two (normalized) components are 
converted into angles by using two atan tables of 64 KByte. These 
angles are used to index the reflectance map. The reflectance map 
has a size of 1802 "" 32 KByte entries. 

The reflection vector can be used as an index into a cube 
environment map [8]. The reflection vector is computed from 
non-normalized surface normal and eye vectors, and therefore is 
itself also unnormalized. Computing the reflection vector requires 
twelve multiplications. The environment map is stored in a texture 
map and creates perspective-correct mirror-like reflections or 
specular highlights. 

Strong highlights caused by specular shading can be a problem 
when using a smalliook-up table. Because only a few table entries 
are available for the fast changing intensity information near the 
highlight. intensity contouring will occur if the table size is too 
small. 

2 A reflectance map encoded on a cube 
All surface normals are located on the surface of a sphere with 
radius one. A single entry in the reflectance map contains the 
intensity of a small surface area of this sphere. Ideally, the encoding 
would map each entry to a surface area of identical size, to ensure 
an uniform partitioning of all possible surface normal directions. 

2.1 Overview 
As a sphere is hard to map in a table, another shape is needed. As a 
simple approximation of a sphere a cube can be used. A cube 
consists of six planes, which can be mapped in a table with ease. 

In general, the gradient vector can have any length, even zero, in 
which case it cannot be normalized. To map the gradient vector on 
a cube, each component is normalized on the maximum 
component. After normalization, the maximum component is 
always equal to one, hence it can be represented with its sign bit 
only. For each of the three maximum components possible, a 
separate map is needed The map corresponding with the maximum 
component is used, while the two remaining scaled vector 
components are the indices used to address this map. 
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Figure 1. Ove71liew reflectance map design. 

In Figure 1, an overview of the table look-up process is given. The 
three gradient components are sorted to find the maximum. If 
leading zero bits are present in all components they are shifted out 
to retain the highest possible precision. The two smallest 
components are normalized on the maximum component. These 
normalized values give the indices for the reflectance map by using 
a distortion compensation table. After fetching four entries from the 
reflectance map, an interpolator provides the light intensity at the 
sample position. The light intensity can be used directly as a grey 
value, or it is multiplied with the red, green and blue values of the 
sample point to give the sample color. 

Figure 2. Example of the image quality obtained using a 
1.5 KByte reflectance map. 

An example image generated with a reflectance map of 1.5 KByte 
is given in Figure 2. It is practically indistinguishable from a 
version rendered using floating point arithmetic. Test images of a 
sphere are used to illustrate the image quality, as a sphere contains 
slowly varying surface normal directions and clearly shows the 
individual entries of the reflectance map if the map size is too 
small. 

The parts of the design are now discussed in more detail. 

2.2 Sort and shift 
The gradient vector is represented in X, Y and Z components in 
12-bits precision. The three sign bits are taken apart, as they are 
directly used as index bits in the shading table. Only the length of 
each component is used during normalization. 

The three components are sorted by computing X-Y. X-Z and 
Y-Z. A simple logical operation on the sign bits of the three results 
gives the maximum component. The number of bits is reduced to 
eight to simplify the computations which follow. Often the gradient 
vector is small. so leading zero bits are shifted out first, to maintain 
the precision of the results. 

The maximum component is multiplexed to the max output, the 
other two components are not sorted but are multiplexed in a 
specific order instead. 

2.3 Normalization 
To normalize the gradient components on the maximum 
component, they have to be divided by the maximum component. 
A direct implementation of the above requires two dividers. 
Another possibility is to compute the reciprocal of the maximum 
first. followed by two multiplications. This requires one divider 
and two multipliers. However, instead of the divider. a small ROM 
table can be used to provide the reciprocal of the maximum. 

Normally, the scaled components contain only fraction bits. But if a 
component is equal to the maximum, the scaled component will be 
one. so an extra bit is needed. Instead of this extra bit. all fraction 
bits could be set to get a similar result. 
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2.4 Distortion compensation 

Although the encoding on a cube gives a good partitioning of all 
surface normal directions, some distortion due to the mapping of 
the sphere on a cube will result. The size of the spherical surface 
normal area mapped by a single table entry decreases as the normal 
direction is further away from one of the axes. This is illustrated in 
Figure 3. The distance d2 is smaller than the distance dl, while the 
distance dx is the same for all positions in the table. A test image of 
a sphere illustrating this distortion effect is shown in Figure 4, 
using only two bits per component to emphasize the effect. 

Figure 3. 	 Distortion effect caused by mapping a cube on a 
sphere. 

The rectangular area of a single entry is distorted, and is the result 
of mapping the cube onto a spherical surface. As a result, some 
surface normal directions have a better angular resolution than 
others. A distortion compensation table coded using an atan 
function can partially compensate for this effect. This table only 
has to handle cases from 0° to 45° and can be placed in ROM. As it 
must be able to handle two reads in parallel, two tables or two read 
ports are needed. In Figure 5, distortion compensation is applied 
using the same settings as in Figure 4. The effect of the 
compensation is clearly visible near the highlight. The areas near 
the highlight are smaller than the corresponding areas of the image 
without compensation. 

2.5 Table look-up 

Table look-up is performed by using the sign bits of the three 
normal components and the two, distortion compensated, values of 
the normalized components. The maximum component is used to 
select the corresponding map. The map contains 8-bit intensity 
values. 

The angle mapped by a single entry, using three bits per 
component from the distortion compensation table, is 45° I 7 ::; 
6.5°. Every extra bit per component bisects this angle. 

2.6 Interpolator 

Finally, an interpolation stage computes the intensity at the sample 
position. Because the intensity values of neighboring entries in the 
reflectance map change slowly, an interpolator can give a 
significant improvement in image qUality. Therefore, the distortion 
compensation table provides three extra (lower order) bits per 
component to use in the interpolator. The four closest entries to the 
sample position are read in parallel from the reflectance map. By 
dividing the reflectance map in odd and even parts for both 
components, this parallel reading is always possible. 

Figure 4. 	 Sphere without distortion compensation. 

Figure 5. 	 Sphere with distortion compensation. 

The four intensity values are hi-linearly interpolated using the 
three extra bits. Figure 6 shows the result using three bits per 
component from the distortion compensation table. The same 
image is also generated by using floating point arithmetic to 
perform the shading, and compared with the reflectance map 
image. The resulting 50 times enlarged error image is shown in 
Figure 7. It is clear that the largest errors are made near the 
highlight. 

Near a highlight, the intensity values change fast. The interpolator 
cannot create correct values if the highlight is too strong. To 
prevent this, more entries in the reflectance map are needed or 
strong highlights must be avoided. 
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Figure 6. Sphere with distortion compensation and 
interpolation. 

Figure 7. 	 A 50 times enlarged error image of the image in 
Figure 6. 

The entries in the reflectance map are organized differently in 
behalf of the interpolator. Figure 8 shows one side of the cube 
(without distortion compensation) using two bits per component, 

with the circles representing entries of the map. Each square 
represents a surface area with equal intensity. At the place of a 
circle the light intensity is calculated. Figure 8a depicts the situation 
without interpolation, showing uniformly partitioned entries. In 
Figure 8b, the situation is depicted with an interpolation using two 
bits per component. Only some squares have a corresponding entry 
and the squares are smaller because of the interpolation. The 
interpolation needs entries at the borders of the plane, which causes 
some entries to almost overlap others. This effectively reduces the 
range of the components by one. 
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Figure 8. 	 Partitioning of map entries over one side of the 
cube. a: without interpolation. b: with 
interpolation. 

For the interpolation the closest lower (base) entry and the three 
neighboring higher entries are used. Therefore, outer entries must 
never become a base entry. This is ensured by placing them outside 
the plane. The distortion compensation table can be used to 
compensate for the unusual range of values needed. 

3 Implementation 
The reflectance map design described, is simulated using the Vivid 
software developed at the University of Twente. Vivid is a test 
environment for volume rendering. It allows interactive change of 
table parameters, to be able to calculate and view image differences 
immediately. 

A good image quality is obtained using only three bits per 
component from the distortion compensation table for indexing the 
reflectance map. This gives a 9-bit index (three sign bits plus two 
times three component bits), so the reflectance map size is 512 
bytes. Three such tables are needed, resulting in a total size of 1.5 
KByte. The distortion compensation table contains 6-bit entries, of 
which three bits are used as an index and three bits in the 
interpolator. The total amount of entries in the distortion 
compensation table is 256 and is placed in ROM. 

A special case arises when the maximum component is zero. Then 
no surface normal exists as all components of the gradient vector 
are zero. This situation can be checked for during normalization, 
after which appropriate action will be taken. 

In Figure 9 an engine block is rendered using this reflectance map 
design. There is practically no difference with the image generated 
with floating point arithmetic, as can be seen in Figure 10, which is 
a 50 times enlarged error image. Only at the highlights the errors 
become slightly visible. 
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Figure 9. 	 Image of an engine block generated with a 1.5 
Kbyte reflectance map. 

Conclusions 

We presented the design of an on-chip reflectance map. Despite the 
small table size, it generates high quality images. 

A cubic encoding of the surface normal ensures a good partitioning 
of all possible directions over the reflectance map entries. 
Therefore, the map size can be small and the intermediate 
calculations can be done using low precision without obtaining 
incorrect results. 

The interpolator provides a higher angular resolution without 
increasing the size of the reflectance map, by taking advantage of 
the correlation between the entries. This prevents the appearance of 
intensity contouring, but is less suitable when specular highlights 
gets stronger. 

Leaving out the distortion compensation table and the interpolator 
will result in lower quality images, but can simplify the design, 
while the difference is hardly visible if no large smooth surfaces are 
present. 
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Figure 10. A 50 times enlarged error image of the image in 
Figure 9. 
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