
1

Design of an On-Chip Reflectance Map
Jeroen Terwisscha van Scheltinga, Jaap Smit, and Marco Bosma

University of Twente

Department of Electrical Engineering EF9250

PO Box 217, 7500 AE Enschede, The Netherlands

e-mail: jaap@nt.eLutwente.nl

Abstract

A reflectance map design is described which uses a minimal
amount of memory for the table, in order to be applicable as an
on-chip shader. The shader is designed for use with the volumetric
super resolution hardware, which performs shading at
supersampled locations. However, the design may be used as well
to support surface visualization applications. Despite the small
table size, the image quality obtained is excellent, even on smooth
surfaces.

Introduction

Shading of surfaces is performed using a light modeL The light
model ofPhong [1] is simple and therefore often used. It uses the
surface normal, the direction of the light source(s), the direction of
the viewer and characteristics of the surface to calculate the
intensity at a sample position.

The surface normal must be normalized to unit length. This
involves operations as square and add, square root and three
divisions [2], [3]. Thereafter, the different components of the
Phong light model need to be calculated and added together.
Especially the specular component is expensive to compute. If
more than one light source is used, calculating the reflection
components has to be repeated for every light source and added to
the result. Therefore, calculating the light intensity at a sample
position is a costly operation, especially when the specular
component of the Phong light model or multiple light sources are
used.

Because of these expensive operations, often a look-up table is
used, containing precalculated intensities for a set of predefined
surface normal directions. It can easily be adjusted to handle
different parameters, light models and even multiple light sources
without affecting the rendering time. Parallel view and light vectors
are assumed however, to make the reflection independent of the
place. Unless the parameters and the light and view directions do
not change, the look-up table has to be recomputed every frame,
which is not a problem since the host computer can easily compute
a small table in real time.

To find the color intensity at a sample position, some sort of
encoding of the surface normal is needed to find the index in the
reflectance map. In volume rendering, the surface normal can be
found by calculating the normalized gradient vector of the
grey-level data [4].

The simplest encoding method uses a 3D look-up table [5]. The
most significant bits from each gradient component are directly
used to index the table. At least five bits per component are needed

to give acceptable results, leading to a minimal table size of 32
KByte.

Sophisticated encoding schemes map the surface normal onto one
or more 2D planes [6], [7].

If a unit length surface normal is used, only the sign bit of one of
the components is needed together with the other two components
[6]. The surface normal is thus mapped onto two planes. Six bits
per component then give a table size of 8 KByte.

All surface normal components can be normalized on one of the
components [7]. The other two (normalized) components are
converted into angles by using two atan tables of 64 KByte. These
angles are used to index the reflectance map. The reflectance map
has a size of 1802 "" 32 KByte entries.

The reflection vector can be used as an index into a cube
environment map [8]. The reflection vector is computed from
non-normalized surface normal and eye vectors, and therefore is
itself also unnormalized. Computing the reflection vector requires
twelve multiplications. The environment map is stored in a texture
map and creates perspective-correct mirror-like reflections or
specular highlights.

Strong highlights caused by specular shading can be a problem
when using a smalliook-up table. Because only a few table entries
are available for the fast changing intensity information near the
highlight. intensity contouring will occur if the table size is too
small.

2 A reflectance map encoded on a cube
All surface normals are located on the surface of a sphere with
radius one. A single entry in the reflectance map contains the
intensity of a small surface area of this sphere. Ideally, the encoding
would map each entry to a surface area of identical size, to ensure
an uniform partitioning of all possible surface normal directions.

2.1 Overview
As a sphere is hard to map in a table, another shape is needed. As a
simple approximation of a sphere a cube can be used. A cube
consists of six planes, which can be mapped in a table with ease.

In general, the gradient vector can have any length, even zero, in
which case it cannot be normalized. To map the gradient vector on
a cube, each component is normalized on the maximum
component. After normalization, the maximum component is
always equal to one, hence it can be represented with its sign bit
only. For each of the three maximum components possible, a
separate map is needed The map corresponding with the maximum
component is used, while the two remaining scaled vector
components are the indices used to address this map.

51

mailto:jaap@nt.eLutwente.nl
http://www.eg.org
http://diglib.eg.org

max x

j
maxy

I maxz

sign bits

S

gradient x Sort grad max

12 8
&

gradient y Shift grad1
Normalization

norm1

12 8 f---.'s+

gradient z grad2 nOrm2

12 8 f---.'s+

"" I I I

I
I

Reflectc nee Map

rtt""
I inW

8 ! ~ (.1 i~ J
COmp1 rs1 comp2

8

""

.........

Distortion fraction1

Compan 3 Bilinear

sation Interpolator
lightlnte~

8

Table
i fraClion2

I
3

Figure 1. Ove71liew reflectance map design.

In Figure 1, an overview of the table look-up process is given. The
three gradient components are sorted to find the maximum. If
leading zero bits are present in all components they are shifted out
to retain the highest possible precision. The two smallest
components are normalized on the maximum component. These
normalized values give the indices for the reflectance map by using
a distortion compensation table. After fetching four entries from the
reflectance map, an interpolator provides the light intensity at the
sample position. The light intensity can be used directly as a grey
value, or it is multiplied with the red, green and blue values of the
sample point to give the sample color.

Figure 2. Example of the image quality obtained using a
1.5 KByte reflectance map.

An example image generated with a reflectance map of 1.5 KByte
is given in Figure 2. It is practically indistinguishable from a
version rendered using floating point arithmetic. Test images of a
sphere are used to illustrate the image quality, as a sphere contains
slowly varying surface normal directions and clearly shows the
individual entries of the reflectance map if the map size is too
small.

The parts of the design are now discussed in more detail.

2.2 Sort and shift
The gradient vector is represented in X, Y and Z components in
12-bits precision. The three sign bits are taken apart, as they are
directly used as index bits in the shading table. Only the length of
each component is used during normalization.

The three components are sorted by computing X-Y. X-Z and
Y-Z. A simple logical operation on the sign bits of the three results
gives the maximum component. The number of bits is reduced to
eight to simplify the computations which follow. Often the gradient
vector is small. so leading zero bits are shifted out first, to maintain
the precision of the results.

The maximum component is multiplexed to the max output, the
other two components are not sorted but are multiplexed in a
specific order instead.

2.3 Normalization
To normalize the gradient components on the maximum
component, they have to be divided by the maximum component.
A direct implementation of the above requires two dividers.
Another possibility is to compute the reciprocal of the maximum
first. followed by two multiplications. This requires one divider
and two multipliers. However, instead of the divider. a small ROM
table can be used to provide the reciprocal of the maximum.

Normally, the scaled components contain only fraction bits. But if a
component is equal to the maximum, the scaled component will be
one. so an extra bit is needed. Instead of this extra bit. all fraction
bits could be set to get a similar result.

52

2.4 Distortion compensation

Although the encoding on a cube gives a good partitioning of all
surface normal directions, some distortion due to the mapping of
the sphere on a cube will result. The size of the spherical surface
normal area mapped by a single table entry decreases as the normal
direction is further away from one of the axes. This is illustrated in
Figure 3. The distance d2 is smaller than the distance dl, while the
distance dx is the same for all positions in the table. A test image of
a sphere illustrating this distortion effect is shown in Figure 4,
using only two bits per component to emphasize the effect.

Figure 3. 	 Distortion effect caused by mapping a cube on a
sphere.

The rectangular area of a single entry is distorted, and is the result
of mapping the cube onto a spherical surface. As a result, some
surface normal directions have a better angular resolution than
others. A distortion compensation table coded using an atan
function can partially compensate for this effect. This table only
has to handle cases from 0° to 45° and can be placed in ROM. As it
must be able to handle two reads in parallel, two tables or two read
ports are needed. In Figure 5, distortion compensation is applied
using the same settings as in Figure 4. The effect of the
compensation is clearly visible near the highlight. The areas near
the highlight are smaller than the corresponding areas of the image
without compensation.

2.5 Table look-up

Table look-up is performed by using the sign bits of the three
normal components and the two, distortion compensated, values of
the normalized components. The maximum component is used to
select the corresponding map. The map contains 8-bit intensity
values.

The angle mapped by a single entry, using three bits per
component from the distortion compensation table, is 45° I 7 ::;
6.5°. Every extra bit per component bisects this angle.

2.6 Interpolator

Finally, an interpolation stage computes the intensity at the sample
position. Because the intensity values of neighboring entries in the
reflectance map change slowly, an interpolator can give a
significant improvement in image qUality. Therefore, the distortion
compensation table provides three extra (lower order) bits per
component to use in the interpolator. The four closest entries to the
sample position are read in parallel from the reflectance map. By
dividing the reflectance map in odd and even parts for both
components, this parallel reading is always possible.

Figure 4. 	 Sphere without distortion compensation.

Figure 5. 	 Sphere with distortion compensation.

The four intensity values are hi-linearly interpolated using the
three extra bits. Figure 6 shows the result using three bits per
component from the distortion compensation table. The same
image is also generated by using floating point arithmetic to
perform the shading, and compared with the reflectance map
image. The resulting 50 times enlarged error image is shown in
Figure 7. It is clear that the largest errors are made near the
highlight.

Near a highlight, the intensity values change fast. The interpolator
cannot create correct values if the highlight is too strong. To
prevent this, more entries in the reflectance map are needed or
strong highlights must be avoided.

53

Figure 6. Sphere with distortion compensation and
interpolation.

Figure 7. 	 A 50 times enlarged error image of the image in
Figure 6.

The entries in the reflectance map are organized differently in
behalf of the interpolator. Figure 8 shows one side of the cube
(without distortion compensation) using two bits per component,

with the circles representing entries of the map. Each square
represents a surface area with equal intensity. At the place of a
circle the light intensity is calculated. Figure 8a depicts the situation
without interpolation, showing uniformly partitioned entries. In
Figure 8b, the situation is depicted with an interpolation using two
bits per component. Only some squares have a corresponding entry
and the squares are smaller because of the interpolation. The
interpolation needs entries at the borders of the plane, which causes
some entries to almost overlap others. This effectively reduces the
range of the components by one.

0

0

"
"
"

0

0

"
0

"

0

0

0

"
"

0

0

0

"
0

0

"
0

"
"

"
0

0

0

"

0

"
0

"
0

"
"
"
0

"
0

0

0
.

"
"
"

"
"
" ..

0

"
0

"
0

" .

"
"
"

"
0

,.0

0

"
0

o

a

Figure 8. 	 Partitioning of map entries over one side of the
cube. a: without interpolation. b: with
interpolation.

For the interpolation the closest lower (base) entry and the three
neighboring higher entries are used. Therefore, outer entries must
never become a base entry. This is ensured by placing them outside
the plane. The distortion compensation table can be used to
compensate for the unusual range of values needed.

3 Implementation
The reflectance map design described, is simulated using the Vivid
software developed at the University of Twente. Vivid is a test
environment for volume rendering. It allows interactive change of
table parameters, to be able to calculate and view image differences
immediately.

A good image quality is obtained using only three bits per
component from the distortion compensation table for indexing the
reflectance map. This gives a 9-bit index (three sign bits plus two
times three component bits), so the reflectance map size is 512
bytes. Three such tables are needed, resulting in a total size of 1.5
KByte. The distortion compensation table contains 6-bit entries, of
which three bits are used as an index and three bits in the
interpolator. The total amount of entries in the distortion
compensation table is 256 and is placed in ROM.

A special case arises when the maximum component is zero. Then
no surface normal exists as all components of the gradient vector
are zero. This situation can be checked for during normalization,
after which appropriate action will be taken.

In Figure 9 an engine block is rendered using this reflectance map
design. There is practically no difference with the image generated
with floating point arithmetic, as can be seen in Figure 10, which is
a 50 times enlarged error image. Only at the highlights the errors
become slightly visible.

54

.0

4

Figure 9. 	 Image of an engine block generated with a 1.5
Kbyte reflectance map.

Conclusions

We presented the design of an on-chip reflectance map. Despite the
small table size, it generates high quality images.

A cubic encoding of the surface normal ensures a good partitioning
of all possible directions over the reflectance map entries.
Therefore, the map size can be small and the intermediate
calculations can be done using low precision without obtaining
incorrect results.

The interpolator provides a higher angular resolution without
increasing the size of the reflectance map, by taking advantage of
the correlation between the entries. This prevents the appearance of
intensity contouring, but is less suitable when specular highlights
gets stronger.

Leaving out the distortion compensation table and the interpolator
will result in lower quality images, but can simplify the design,
while the difference is hardly visible if no large smooth surfaces are
present.

~",'

\ :

Figure 10. A 50 times enlarged error image of the image in
Figure 9.

References

[1] 	 B.T. Phong, "Illumination for Computer Generated Pictures,"
Communications o/the ACM, 18(6), June 1975, pp. 311- 317.

[2] 	 M. Margala, N.G. Durdle, S. Juskiw, V.I. Raso, and D.L. Hill,
"A 33 MHz 16-bit gradient Calculator for Real-Time Volume
Imaging," Proc. of the 9th Eurographics Workshop on
Graphics Hardware, September 1994, ISSN 1017-4656, pp.
80--85.

[3J 	 G, Knittel, "A VLSI-Design for fast Vector Normalization,"
Proc. ofthe 8th Eurographics Hardware Workshop, Barcelona,
September 1993, pp. 1-14.

[4] 	 M. Bosma, J. Smit, and J. Terwisscha van Scheltinga, "Super
Resolution Volume Rendering Hardware," Proc. 0/ the 10th
Eurographics Workshop on Graphics Hardware, August
1995.

[5] 	 M.C. Doggetand G.R. Hellestrand, "A Hardware Architecture
for Video Rate Smooth Shading of Volume Data," Proc. ofthe
9th Eurographics Workshop on Graphics Hardware,
September 1994, ISSN 1017-4656, pp. 95-102.

[6] 	 T.S. Yoo, U. Neumann, H. Fuchs, S.M. Pizer, T. Cullip, I.
Rhoades, and R. Whitaker, "Achieving Direct Volume
Visualization with Interactive Semantic Region Selection,"
Proc. Visualization 9J , IEEE CS Press, Los Alamitos,
California, 1991, pp. 58-67.

[7] 	 D. Jackel and H. Riisselet; "A Real Time Rendering System
with Normal Vector Shading," Proc. of the 9th Eurographics
Workshop on Graphics Hardware, September 1994, ISSN
1017-4656, pp.48-57.

[8] 	 D. Voorhies and 1. Foran, "Reflection Vector Shading
Hardware," Proc. ofSlGGRAPH '94, July 1994, pp. 163-166.

55

