
Reducing Latency on PixelFlow
Anselmo A. Lastra

University ofNorth Carolina

Chapel Hill, N.C., USA

lastra@Cs.unc.edu

ABSTRACT Performance, as measured by the number of
primitives rendered per second, has been the most important
rendering system design consideration while latency, the
amount of time it takes to render an image, has largely been
ignored. This is because a moderate amount of latency is not
an issue for traditional interactive systems controlled by
joysticks. However, latency has emerged as a major
consideration when rendering for immersive systems,
especially those using head-mounted displays. Maintaining
low overall system latency is very important to create an
illusion of presence in a virtual environment and very
significant contribution to total system latency is the time it
takes to generate an image. This paper examines some possible
ways to reduce latency in the PixelFlow graphics computer.

We first describe the standard rendering software for
PixelFlow, and derive an expression for the time to render an
image. We then propose two alternative software systems for
the PixelFlow hardware. and derive expressions for the
rendering latency. When we compare latencies for some
common application scenarios, we find that the two prop~sed
systems render with lower latency than the standard hlgh­
throughput system, but find that the benefits are not enough
to outweigh the costs.

1 The Latency Problem

In an immersive virtual environment, the time from the
beginning of the head-position measurement until the proper
image is presented to the user is referred to as the system
latency. Low latency is critical to maintaining the illusion of
presence in a virtual world. High latency is especially
disturbing for augmented rea/jty systems - systems that
superimpose computer-generated images with a view of the
real world. Since the user has a frame of reference for the
position of virtual objects, it is apparent when these objects
do not stand still. In our lab, we have described the latency­
induced behavior of objects as "swiniming". The latency that
we are discussing in this paper, that caused by the image
generator, is only part of the total system latency. Other factors
include scanout of the image, tracking, and application
overhead.

Researchers [1, 6] have used prediction to try to reduce
apparent latency by rendering not the user's viewpoint as
determined by the tracker, but rather the user's viewpoint as it
will be when the image is scanned out. However, prediction is
not a panacea. As shown by Azuma [2], if the system latency is

greater than about 80 ms, he could not accurately predict t~e
user's head position. An explanation for this phenomenon IS

that the dynamics of a person's head govern the maximum rate
of change. During a short period of time, position can not
change abruptly and unpredictably. However, beyond that
short period, movement is much less predictable. Post­
processing of the rendered image [12] by panning or warping
is another possible way to reduce apparent latency. We may
want to incorporate those techniques into a system, but will
not consider it as part of our latency analysis.

This paper evaluates the latency of various proposed software
architectures for the PixelFlow [9] graphics computer. We first
review the assumptions used in our performance analyses, and
briefly present an overview of the hardware architecture. We
then detail and evaluate the basic software architecture - one
designed to maximize throughput of polygons, not to
minimize latency. We then examine two alternative
architectures designed to reduce latency. Finally, we make
some observations about the applicability of the three
rendering strategies.

2 Application Scenario

For this analysis, we are assuming a system using prediction
of head position. We would like to be able to render a frame
that is correct at some time during the scanout process, say
halfway down the display. To do this. we have to beg~n
rendering some time in advance and assume that we Will

complete the image before vertical retrace. We do not actually
have to finish rendering the whole image, of course. Data for
scan lines just have to be ready at the time they are to be
scanned [I I]. However, this is difficult to accomplish
properly, so for this analysis we will assume that we
completely render the image before vertical retrace. We would
like to keep overall system latency below 80 ms, so a target of
30 to 40 ms for the image generation latency is reasonable. For
some applications, such as experiments in predictive tracki!1g,
we'd like to generate simple images with very low latenCies,
therefore the performance region well below 30 ms is of
secondary interest.

Since the number of primitives that are actually rendered is
scene dependent, it is difficult to evaluate the true rendering
time. In actual usage, assuming that we do not wish to render
the complete model, we may want to use a working rendering
time lower than worst case, and be prepared to miss a frame
occasionally. However, the worst-case assumption is that the

43

mailto:lastra@Cs.unc.edu
http://www.eg.org
http://diglib.eg.org

Image-composition
Network ~

Figure 1. Block diagram of the PixelFlow system.

whole model is being rendered. For this analysis, we will
compute the worst-case latency.

We will also assume that the target application uses very little
display-list hierarchy. We have found that the use of a deep
hierarchy can greatly increase the rendering time because a
significant portion of the computational resources of the
geometric pipeline stage can be consumed in traversal and
matrix manipulation. Users in our laboratory who are
concemed with maximum performance, be it rendering or
latency, have structured their applications with fairly shallow
hierarchies, so this assumption. while not desirable, is
representative of a class of applications. We may, for a future
experiment, simulate a deeper hierarchy by modeling it
directly or assuming that the geometry processing overhead is
large.

Although some experimental, high-resolution head-mounted
displays are becoming available, the vast majority of current
HMOs are driven at NTSC resolutions (the actual display
resolution is usually much worse). We will assume a 640 by
512 pixel display, stereoscopic or monoscopic, for our
performance models. Ideally, we would like to render anti­
aliased images. However, it will cost us some performance. We
will examine the latency with and without antialiasing.

3 PixelFlow Hardware Architecture

The PixelFlow architecture [9] is a scaleable architecture for
interactive rendering based on the idea of image composition.
In an idealized image composition system, complete images
are rendered on a set of graphics nodes, each of which is
assigned only a portion of the primitives. Depth information
is saved for each pixel, along with color. The resulting images
are depth composited to yield the fmal image. As we shall see,
there are variations on this simple method. Figure I
schematically illustrates a PixelFlow system. In this section,
we will describe the system briefly and only in enough detail
for the discussions to follow. More information is provided by
Molnar, et. aI. [9].

All PixelFlow nodes are identical, and each is a complete
rendering system. Figure 2 is a block diagram of the

components on a node. Two Hewlett-Packard PA-RISC 7200
modules (which we refer to as geometry processors or Gp),
sharing 64 MB of memory, are used for the display Jist
traversal and geometric calculations of the graphics pipeline.
This stage of the pipeline is known as the front-end [8].
Rasterization and shading (the hack-end of the pipeline) are
performed on a 128 by 64 array of 8-bit pixel processors, each
with 256 bytes of local memory. and 128 bytes of
communication registers (which may also be used as local
memory when not needed for communications). Specialized
memory for image-based texturing is accessible from the pixel
processors.

The composition network operates at the basic clock speed of
100 MHz, but can send data on both edges of the clock, so the
transfer rate is actually 200 MHz. It also operates in both
directions so, if the system is configured carefully, we can
achieve a maximum of twice the performance. The network is
256 data bits wide. The amount of time to perform a depth
composition on one byte of data for every pixel of the
processor array is:

tcompj'1t. 	= Transfer_Timeyer_Byte· PixelsJJer _Region

= 1.28 J.lS

In the performance analyses, we will multiply that time by the
number of bytes of data used by the algorithm, for example
three for 24-bit color. There is also a short, fixed setup time per
composition that is dependent on the number of nodes in the
system. It is short enough that we can ignore this time in our
analysis.

Rendering instructions for the pixel processors are produced
by the PA-RISC microprocessors, and placed into GP memory.
A DMA controller is used to fetch the instructions from GP
memory as needed by the pixel processors. We use GP memory
(64MB) rather than a hardware FIFO to store these instructions
because we want to be able to buffer a large number, up to two
complete frames, of rasterization commands.

COl'1l'osition network

Figure 2. PixelFlow node block diagram.

Instead of providing a separate frame buffer for video scanout,
one of the PixelFlow nodes serves as the frame buffer. Any of
the PixelFlow nodes can be fitted with a daughter card for
scanout. That card has access to texture memory which serves

44

as the actual frame buffer. We expect a variety of video cards
for different formats.

For virtual environments, we will often want to render stereo
frames. We can do this in one of two ways. We can render them
sequentially. However, since we would like to reduce latency, a
better way to render two frames on Pixel Flow may be to
logically divide the machine in half and render the frames
concurrently on the halves. This is especially true if we want to
reduce latency to below a field time. Note that we typically
plan to maintain the display lists in OP memory, so data
transfer from the host processor is not an issue.

Performanee Estimates. We are currently in the design and
construction process for PixelFlow. We can accurately model,
on a clock cycle basis, the performance of the pixel array and
the composition network, but the front-end, basically
consisting of commercial microprocessors, is not modeled to
that level of detail. The values for the various execution times
used in the following sections were obtained as follows:

Geometric operations - by benchmarking on existing
workstations. Since the clock speed is higher and the
memory subsystem on PixelFlow is more aggressive than
that of the workstations, we expect somewhat better
performance on PixelFlow.

Rasterization and shading - obtaining clock-cycle counts
of code running on simulators.

Image composition - computed from the composition
network design and target clock speeds.

Overhead - estimated from measurements made on Pixel­
Planes 5. These are the data most likely to be wrong.
However, sensitivity of the fmal conclusions to errors is
low.

4 PixeIFlow Software Architecture

This section describes the software that we are developing as
the standard rendering system for PixelFlow, and serves as the
base system for which we would like to evaluate the latency,
and as a point of comparison with alternative methods. We
describe the system only in enough detail to allow the reader
to understand how we model the latency. More detailed
explanations are provided in [7] and [9}.

In order to increase performance by reducing the amount of
computation, we use the technique of deferred shading [4, 13].
This term refers to shading only the final, visible image, not
the individual primitives as they are being rasterized. Instead
of directly computing color during rasterization, we store
appearance parameters [3] such as surface normals, intrinsic
color, texture coordinates, etc. These appearance parameters
are z-buffered and shading is only performed when all of the
primitives have been rasterized. The obvious performance
advantage, of course, is that pixels that will not be visible in
the final image are not shaded.

A problem with deferred shading is that it potentially requires
very large amounts of frame-buffer memory in order to hold
the appearance parameters. We reduce these memory
requirements by using a virtual buffer [5). Instead of
completely instancing the frame buffer, we divide it into fixed­
size screen regions, and work on the regions one after another.
Therefore, we only need to have enough frame-buffer memory

45

to hold the appearance parameters for one screen region. This
implies that we must first bucket sort the primitives [8] by
screen region. As we shall see, this has an effect on latency
because we must traverse all of the frame's primitives before
doing any rasterization.

To rasterize, composite the appearance parameters, and shade
the resulting visible image, we divide the Pixel Flow nodes
into three functional types: a set that performs rasterization, a
set for shading, and a frame buffer. This functional division is
illustrated in figure l. The rasterization nodes rasterize one
screen region at a time, producing z and appearance parameters.
These pixel parameters for a screen region, from all of the
rasterization nodes, are depth composited, and the parameters
for the visible pixels are delivered to one of the nodes
responsible for shading. That shading node shades and
textures all of the pixels in that region, and the resulting color
is sent over the composition network to the frame buffer.
Appearance parameters for screen regions are assigned to
shading nodes in a round-robin fashion to achieve parallelism
in shading as well as in rasterization.

A straightforward implementation of this system would have
the rasterization stage of the pipeline idle while geometric
operations are being performed, and the geometric stage of the
pipeline idle while rasterization and shading are performed. To
increase throughput (by utilizing the hardware as much as
possible), we pipeline complete frames. One frame is being
rasterized while the next frame is being transformed. Two
buffers in OP memory hold rendering instructions. One is
being filled by the geometry processing, while the other is
being emptied for the rasterization.

Since geometric and pixel processing are completely separate
parts of the pipeline, total rendering system latency is the sum
of the front-end and the back-end processing times

Latency = ft,ont + tback

We can express the front-end processing time as

f trans ' n
tfront = toverhead +--­

nrast

where n is the number of primitives, fIrast is the number of
nodes devoted to rasterization, ttrans is the time perform all of
the geometric operations for a primitive (the actual
transformation, plus trivial reject, clipping, etc.), and the
t_rMad term covers the frame startup costs. Note that I trans
includes the bucket sorting of the primitive (in our code it is a
tightly coupled part of the geometry processing routine). We
are treating the two PA-RISC processors as one geometry
engine, the mode in which we will use them. The rasterization
time for all primitives is divided by the number of
rasterization nodes to account for the effect of parallelism (we
are assuming perfect load balancing). We measured ttrans as 1.85
J.l.s, and estimate loverMad to be 0.1 ms.

Analysis of the back-end computation is more complex.
Several rendering tasks are being pipelined: rasterization,
composition, shading, transfer of the resulting image (color)
to the frame-buffer node, and copy of the image to the frame­
buffer memory. The back-end latency of the system is going to
be primarily whichever of these tasks takes the longest to
complete. A smaller component is going to be the pipeline
filling and emptying which is negligible because we are
processing many screen regions. Therefore

thad: =max(trasl' tcomp. t$hatk. tl«xJ)

where trast is the time to rasterize all of the primitives., tCOftfP is
the time to composite the image, tshatie is the time to shade the
complete image, and t/oad is the time to write the image to the
frame buffer.

To derive an expression for rasterization time, we must
consider the fact that primitives can span more than one screen
region. An expression for computing the number of screen
regions that a primitive is expected to cover as a function of
primitive and region size was derived by John Eyles to analyze
performance of Pixel-Planes 5. The derivation is detailed in
[10]. We call this the bin-replication factor or overlap:

Overlap: (w+W). (h+H)
W -~ H

where w and h are the width and height of an average primitive,
and Wand H are the width and height of a screen region. For
primitives with 10 by 10 bounding boxes, and our screen
region of 128 by 64 pixels, the overlap is 1.25. For eight­
sample anti-aliased rendering, the overlap is 1.52.

The rasterization time is

t t1'QstJXIr"'prim' n· Overlap

rast

nrost

where t'atllJ'UJ'I'im. which we compute to be 0.83 J1S. is the time to
rasterize a single primitive, and n is the number of primitives.

Composition time is just the time we derived in the previous
section to composite a single byte of data for a complete
region, tCOftfP_IIyt., times the number of bytes used for appearance
parameters., multiplied by the number of regions. We will need
a total of 21 bytes of shading parameters for our examples (4
for z. 6 for surface normals, 3 for color, 4 for u and v, 2 for
texture 10, and 2 for texture scale), therefore

tcomp = nr.glons· tcompjJyt.· Bytes_of_App_Parameters

or

tcomp = n"g;om' 26.88 J.I.S

The main components of the shading time are the texture
memory address computation and the lookup of the mip-map
texture from memory. Address computation takes 15.4 J.I.S. The
time to read a texture depends on the number of pixels that are
to be textured in the current region. We will use the worst-case
time, a lookup for all of the pixels, which is 95 J.I.S. Lighting
computations are pipelined with the texture lookup. We need
to consider the time to shade all of the regions, divided by the
number of PixelFlow nodes devoted to shading, or

nregions .JJ0.4f.IS
tshade - ...;.;=~-....:..-

nshaders

Loading color to the frame buffer is

l/oad = nr.gI(JtfS' 52 J.I.S = 2.08 ms

which is short enough that it is not a factor when rendering
any significant number of primitives.

5 Reducing Latency by Eliminating Frame
Pipelining

Much of the latency in the previous system is caused by the
large granularity of the pipelining - two full frames. Can we
reduce the latency by not pipelining frames, while still
maintaining adequate performance? The coarse granularity of
the pipelining was due to our need to sort the primitives based
on their screen-space position. Can we improve this to reduce
the amount of pipelining?

One technique that we have identified is to make a separate
pass over all of the primitives to sort them into screen regions,
but doing as little work as possible. The minimum amount of
work we have to do is to transform the vertices and perform a
bounding box test. After the sorting pass., a second pass is
made to generate the rasterization instructions. These are sent
to the pixel-processor array one region at a time rather than
one frame at a time. We will have to write the screen-space
coordinates of the vertices into memory during the first pass
because the second pass will not be in traversal order, but in
screen-space order. A throughput penalty is that the pixel
processors may have to be kept idle during the sorting pass, so
there is lower resource utilization.

However, the biggest disadvantage of pre-sorting is that we are
visiting the display list data more than once. As we are all
aware, a bottleneck of modem microprocessors is the
bandwidth to main memory. Part of the improvement in
processor speed that we have seen is due to the extensive use
of chaching, thus reducing the access to main memory. This
fact shows us that we are likely to pay a penalty for this extra
memory traffic.

The latency of this system is the time it takes to make the
separate sorting pass., t.f;rstJ1GD plus the time to complete the
rest of the front-end processing. and the back-end processing,
I""""",JXlU'

Latency = t.f;rstJXlU + IIltICDIJdJXJSS

The first pass consists of some :frame startup overhead, plus
some processing for each primitive.

t ·n
tfirst _ pass =toverhead +...H!!L­

nrost

We benchmarked I_I to equal 0.74 Ils. The second pass latency
is the maximum of the time it takes to complete the front-end
computations, the rasterization, composition, shading and
copy to the frame buffer. We will call the second-pass
geometry work, generating the rendering commands., tgm­

tsecandJXlU = max(tpn. trtllt, t..".. IsIrDde. tl«xJ)

The times tra:st. t..".. t$hatk, and l/oad are the same as in the
previous system. The time to generate rendering commands is

t .1gen _ gen_each n

nrost

We benchmarked tpn_eoch as 1.45 Ils.

46

6 Completely Instanced Frame Buffer

The deferred shading and virtual buffer techniques used in the
previous designs serve to increa:>e thr~ughput and. e!lable
high-quality shading, but re~ult In a frurly .Im:'.e mlnlmll;m
latency. Even if we are rendenng only one primitive, we still
incur the complete shading time and the sorting step increases
latency. What if we want a very low minimum latency design,
especially important for predictive tracking experim~nts, and
for augmented reality applications? What we would like to do
is to eliminate the deferred shading. and pipeline the front-end
computations with the back-end at a fine granularity. This
section presents the design for a simple, non-texturing system
with a completely instanced frame buffer similar to the Slats
system [11].

This system eliminates bucket sorting. Primitives ~
rasterized in the order in which they are traversed. As With
most rendering systems, we can light the vertices on the front­
end and interpolate color. We could potentially texture each
primitive as it is being rasterized. Howev~r, we do not ~ve any
experience with this process and expect It to be expenSive, so
will not consider texturing in our analysis of this system. The
fmal steps in the rendering of the frame are to composi~e the
colors, deliver the result to the frame-buffer node, and wnte the
image to memory for scanout.

The determining factor in our ability to realize this design is
the desired size of the display since it determines frame-buffer
needs. Do we have enough memory on the pixel processors?
We need about 4 bytes for z and 3 bytes for color - a total of 7
bytes per display pixel. For our low-resolution example. we
need 640 by 512 pixels, or 40 screen regions, for a total of 280
bytes. Recall that each pixel processor has 256 bytes of local
memory plus 128 bytes of communications registers. Half of
the communications register space is used to access texture
memory. The other 64 bytes consists of two .sets. of
composition-network transfer buffers, one for each direction.
Since we are not compo siting while rendering, we can use
those 64 bytes as general purpose memory. That leaves us with
a total of 384 bytes available, plenty for our purposes.

Note that this system differs from the previous ones in two
fundamental ways, thus making direct performance
comparisons difficult. First, it does not defer shading. Second,
it does not texture. Unfortunately, we can not separate the two
cases because PixelFlow was not designed for texturing during
scan conversion. However, analysis of this design is valuable
to see what performance we can achieve when we sacrifice
texturing.

The latency of this system is the time it takes to completely
render all of the primitives for the first antialiasing subsample,
the times it takes just to rasterize the subsequent subsamples
(we will store the rendering instructions in memory and reuse
them for the other subsamples), the time it takes to composite
all but the fmal subsamples, plus, for the last sample, the
maximum of the composition and frame-buffer loading times
(since the latter steps are pipelined).

Latency = max(t.fro,u. t~ + (nsample. - J). (trost + tcamp)
+ max(tcomp. tload)

Note that antiaiiasing is very different for this design. The
previous two systems performed supersampling in one pass,

47

whereas this one takes multiple rasterization and composition
passes. As we shall see, anti-aliased performance suffers.

The expressions for the front·end processing time and for
rasterization are the same as for the first system (although the
values of the constants change):

frost per prim on·Overlap
frost = - ­

nrast

We benchmarked tITans as 0.87 ~ and measured trost.Jl<1'.J1rim as

0.62 J.1s. The composition time

tcomp = nregions • tCDltlp_byte 0 Bytes_ol_Color 360 JlS

is very short, since we are only sending color.

7 Conclusions

Using the expressions that we have derived, we evaluated !he
performance of the three systems, the base system, pre-sorting
system, and non-tex~ng system, using a .me~ium-sized
configuration of 20 PlxelFlow nodes (one of which IS a frame­
buffer node). We examined both single-sample, and sub­
sampled antialiasing modes.

Figure 3 shows the latency of the three systems with
antialiasing enabled. Two machine configurations are used for
the systems that are texturing. O~e configuration devo~es .four
of the nodes to shading (Ieavmg fifteen for rasterlzatlon),
while the other configuration uses only one node for shading.
The non-texturing system is a poor performer, both on
minimum latency with only a few polygons, and at our latency
target region of 30 to 40 ms. This is due to the fact that the
necessary technique for antiaiiasing, multi-passes of the
rasterization, is very inefficient when compared to the single­
pass antialiasing possible with more available pixel·processor
memory on the other two designs.

For the texturing systems, using more nodes as shaders
reduces the minimum latency when very few polygons are
being rendered. This is because, initially, all of the frame time
is due to the fixed cost of shading. Once enough polygons are
being rasterized, the rasterization costs dominate the latency.
For our target latency range of 30 to 40 ms, we get much better
performance using only one node for shading and the oth~rs
for rasterization. The crossover point will shift if we require
higher-quality, more time-consuming shading. as we expect
for some applications [7].

There is also a latency performance advantage to pre-sorting, at
the cost of some throughput of course. However, it was
surprising to us how little the performance increases for any
give latency. For example, in the region of interest between 30
and 40 ms, the difference amounts to only 10 to 15 percent. It
is unlikely that this small increase in performance WOUld. be
worth the effort of creating and maintaining a pre-sorting
system. Given the stopes of the curves, the difference will
increase and make the pre-sorting system look better, but at
latency ranges that are not of interest to us.

Figure 4 shows the same configurations, but without
antialiasing. When not antialiasing, pre-sorting does not show
a perfonnance advantage because the extra cost of the fll'St pass
offsets the elimination of the pipe lining. If texturing is not
required, the simple non-texturing system has a large latency
perfonnance advantage. Not only is it rendering very simple
triangles, but the geometric and rasterization stages are
completely pipelined. The only other cause of latency is the
copy to the frame buffer. At a latency of 30 ms, the system
should be able to render over 600,000 triangles per frame.

We could reduce the latency even further. If using an interlaced
display, such as NTSC, one can render only fields at a time
instead of full frames [11]. This reduces the minimum latency
but mandates the generation of an image every field (60 Hz for
NTSC). If the rendering of a frame takes longer than the
planned time, you have to adopt some contingency strategy, as
is done on some flight simulators. Rendering fields is a useful
technique if we need to reduce latency below our target of 30
to 40 ms. It's likely that it would be a good addition to the
simple, non-texturing system.

The standard, highly pipe lined implementation suffers from
somewhat higher latency than the pre-sorting system, but also
provides maximum throughput. At the region of interest, the
pre-sorting system reduces the latency, but not enough to
make it very interesting. The simple, Gouraud-shading system
provides the maximum perfonnance when antialiasing and
texturing are not required.

Acknowledgments

I am grateful to the reviewers for their excellent suggestions.
Thanks to the PixelFlow development team for many valuable
discussions, and especially to Steve Molnar for his input, and
to Jon McAllister, Lawrence Kesteloot and Lee Westover for
some perfonnance timings. We thank Hewlett·Packard for their
generous donations of equipment.

This research is supported in part by the Advanced Research
Projects Agency, ARPA ISTO Order No. A410 and the National
Science Foundation, Grant No. MIP·9306208.

References

[IJ 	 Azuma., R and G. Bishop: Improving Static and
Dynamic Registration in an Optical See-through
HMD, Proc. Siggraph 94, 197-204.

[2] 	 Azuma, R.: Predictive Tracking for Augmented
Reality, PhD. Dissertation, University of North
Carolina, Chapel Hill, N.C., 1995 (also available as
UNC CS Technical Report TR95·007).

[3] 	 Cook, R. L.: Shade Trees, Prac. Siggraph 84, pp. 223·
231.

[4] 	 Deering, M., S. Winner, B. Schediwy, C. Duffy, and N
Hunt: The Triangle Processor and Nonnal Vector
Shader: A VLSI System for High Perfonnance
Graphics, Proc. Siggraph 88, 21-30.

[5] 	 Gharachorloo N .. S. Gupta, R F. Sproull and I. E.
Sutherland: A Characterization of Ten Rasterization
Techniques., Proc. Siggraph 89, 355-368.

[6] 	 Liang, t, C. Shaw, and M Green, On Temporal-Spatial
Realism in a Virtual Reality Environment, Proc. ACM
Symp. on User Interface Software and Technology,
1991, 19-25.

[7] 	 Lastra, A., S. Molnar, M Olano, and Y. Wang: Real­
Time Programmable Shading, Proc. 1995 Symp. on
Interactive 3D Graphics, 59-66.

[8] 	 Molnar S., and H Fuchs: Advanced Raster Graphics
Architecture, in Foley, J., van Dam, A., Feiner, S .• and
1. Hughes., Computer Graphics: Principles and
Practice, 2nd ed., Addison·Wesley, 1990, 855-922.

[9] 	 Molnar S., J. Eyles, and J. Poulton: PixelFlow: High­
Speed Rendering Using Image Composition, Proc.
Siggraph 92, 231-240.

[10] 	 Molnar, S., M Cox, D. Ellsworth, and H Fuchs: A
Sorting Classification of Parallel Rendering, IEEE CG
& A, 14(4), July 1994, 23-32.

[11] 	 Olano, M., J. Cohen, M. Mine, and G. Bishop:
Combatting Rendering Latency, Proc. 1995 Symp. on
Interactive 3D Graphics, 19·24.

[12] 	 Regan. M., and R Pose: Priority Rendering with a
Virtual Reality Address Recalculation Pipeline, Proc.
Siggraph 94, 155-162.

[13] 	 Tebbs, B .. U. Neumann, J. Eyles., G. Turk. and D.
Ellsworth, "Parallel Architectures and Algorithms for
Real-Time Synthesis of High QUality Images using
Deferred Shading", UNC CS Technical Report TR92·
034.

48

---Base. 4 Shaders
- - - - - ­ Base, 1 Shader
-----Pre-sort, 4 Shaders
- - - - - ­ Pre-sort, 1 Shader
- - - -Non-texturing

50,-- ­

....
.'

40

-fID
E 30-
>­u
c
CD
.. 20 ...

10

O+--------------------+--------------------+-------------------~

300,000o 100,000 200,000

Triangles per Frame

Figure 3. Supersampling performance of the three systems. The two systems which use
deferred shading are shown in two configurations, with one and four shading nodes.

50,---~..---Base, 4 Shaders ..."......
- - - - - - Base, 1 Shader ...,/"----Pre-sort. 4 Shaders 40 .. , ­- - - - - - Pre-sort. 1 Shader­- - - -Non-texturing .../ ...-fID

E 30 -
>­
u
c .,,, ~ 20CIII...

.... ... --- ...

10

o +-------------------~-----------------+------------------~
o 100,000 200,000 300,000

Triangles per frame

-,,~., ..
---,- ..

---- -..",..-----­

Figure 4. Single sample performance of the three systems. The two systems which use deferred
shading are shown in two configurations, with one and four shading nodes.

49

