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ABSTRACT Performance, as measured by the number of 
primitives rendered per second, has been the most important 
rendering system design consideration while latency, the 
amount of time it takes to render an image, has largely been 
ignored. This is because a moderate amount of latency is not 
an issue for traditional interactive systems controlled by 
joysticks. However, latency has emerged as a major 
consideration when rendering for immersive systems, 
especially those using head-mounted displays. Maintaining 
low overall system latency is very important to create an 
illusion of presence in a virtual environment and very 
significant contribution to total system latency is the time it 
takes to generate an image. This paper examines some possible 
ways to reduce latency in the PixelFlow graphics computer. 

We first describe the standard rendering software for 
PixelFlow, and derive an expression for the time to render an 
image. We then propose two alternative software systems for 
the PixelFlow hardware. and derive expressions for the 
rendering latency. When we compare latencies for some 
common application scenarios, we find that the two prop~sed 
systems render with lower latency than the standard hlgh­
throughput system, but find that the benefits are not enough 
to outweigh the costs. 

1 The Latency Problem 

In an immersive virtual environment, the time from the 
beginning of the head-position measurement until the proper 
image is presented to the user is referred to as the system 
latency. Low latency is critical to maintaining the illusion of 
presence in a virtual world. High latency is especially 
disturbing for augmented rea/jty systems - systems that 
superimpose computer-generated images with a view of the 
real world. Since the user has a frame of reference for the 
position of virtual objects, it is apparent when these objects 
do not stand still. In our lab, we have described the latency­
induced behavior of objects as "swiniming". The latency that 
we are discussing in this paper, that caused by the image 
generator, is only part of the total system latency. Other factors 
include scanout of the image, tracking, and application 
overhead. 

Researchers [1, 6] have used prediction to try to reduce 
apparent latency by rendering not the user's viewpoint as 
determined by the tracker, but rather the user's viewpoint as it 
will be when the image is scanned out. However, prediction is 
not a panacea. As shown by Azuma [2], if the system latency is 

greater than about 80 ms, he could not accurately predict t~e 
user's head position. An explanation for this phenomenon IS 

that the dynamics of a person's head govern the maximum rate 
of change. During a short period of time, position can not 
change abruptly and unpredictably. However, beyond that 
short period, movement is much less predictable. Post­
processing of the rendered image [12] by panning or warping 
is another possible way to reduce apparent latency. We may 
want to incorporate those techniques into a system, but will 
not consider it as part of our latency analysis. 

This paper evaluates the latency of various proposed software 
architectures for the PixelFlow [9] graphics computer. We first 
review the assumptions used in our performance analyses, and 
briefly present an overview of the hardware architecture. We 
then detail and evaluate the basic software architecture - one 
designed to maximize throughput of polygons, not to 
minimize latency. We then examine two alternative 
architectures designed to reduce latency. Finally, we make 
some observations about the applicability of the three 
rendering strategies. 

2 Application Scenario 

For this analysis, we are assuming a system using prediction 
of head position. We would like to be able to render a frame 
that is correct at some time during the scanout process, say 
halfway down the display. To do this. we have to beg~n 
rendering some time in advance and assume that we Will 

complete the image before vertical retrace. We do not actually 
have to finish rendering the whole image, of course. Data for 
scan lines just have to be ready at the time they are to be 
scanned [I I]. However, this is difficult to accomplish 
properly, so for this analysis we will assume that we 
completely render the image before vertical retrace. We would 
like to keep overall system latency below 80 ms, so a target of 
30 to 40 ms for the image generation latency is reasonable. For 
some applications, such as experiments in predictive tracki!1g, 
we'd like to generate simple images with very low latenCies, 
therefore the performance region well below 30 ms is of 
secondary interest. 

Since the number of primitives that are actually rendered is 
scene dependent, it is difficult to evaluate the true rendering 
time. In actual usage, assuming that we do not wish to render 
the complete model, we may want to use a working rendering 
time lower than worst case, and be prepared to miss a frame 
occasionally. However, the worst-case assumption is that the 
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Figure 1. Block diagram of the PixelFlow system. 

whole model is being rendered. For this analysis, we will 
compute the worst-case latency. 

We will also assume that the target application uses very little 
display-list hierarchy. We have found that the use of a deep 
hierarchy can greatly increase the rendering time because a 
significant portion of the computational resources of the 
geometric pipeline stage can be consumed in traversal and 
matrix manipulation. Users in our laboratory who are 
concemed with maximum performance, be it rendering or 
latency, have structured their applications with fairly shallow 
hierarchies, so this assumption. while not desirable, is 
representative of a class of applications. We may, for a future 
experiment, simulate a deeper hierarchy by modeling it 
directly or assuming that the geometry processing overhead is 
large. 

Although some experimental, high-resolution head-mounted 
displays are becoming available, the vast majority of current 
HMOs are driven at NTSC resolutions (the actual display 
resolution is usually much worse). We will assume a 640 by 
512 pixel display, stereoscopic or monoscopic, for our 
performance models. Ideally, we would like to render anti­
aliased images. However, it will cost us some performance. We 
will examine the latency with and without antialiasing. 

3 PixelFlow Hardware Architecture 

The PixelFlow architecture [9] is a scaleable architecture for 
interactive rendering based on the idea of image composition. 
In an idealized image composition system, complete images 
are rendered on a set of graphics nodes, each of which is 
assigned only a portion of the primitives. Depth information 
is saved for each pixel, along with color. The resulting images 
are depth composited to yield the fmal image. As we shall see, 
there are variations on this simple method. Figure I 
schematically illustrates a PixelFlow system. In this section, 
we will describe the system briefly and only in enough detail 
for the discussions to follow. More information is provided by 
Molnar, et. aI. [9]. 

All PixelFlow nodes are identical, and each is a complete 
rendering system. Figure 2 is a block diagram of the 

components on a node. Two Hewlett-Packard PA-RISC 7200 
modules (which we refer to as geometry processors or Gp), 
sharing 64 MB of memory, are used for the display Jist 
traversal and geometric calculations of the graphics pipeline. 
This stage of the pipeline is known as the front-end [8]. 
Rasterization and shading (the hack-end of the pipeline) are 
performed on a 128 by 64 array of 8-bit pixel processors, each 
with 256 bytes of local memory. and 128 bytes of 
communication registers (which may also be used as local 
memory when not needed for communications). Specialized 
memory for image-based texturing is accessible from the pixel 
processors. 

The composition network operates at the basic clock speed of 
100 MHz, but can send data on both edges of the clock, so the 
transfer rate is actually 200 MHz. It also operates in both 
directions so, if the system is configured carefully, we can 
achieve a maximum of twice the performance. The network is 
256 data bits wide. The amount of time to perform a depth 
composition on one byte of data for every pixel of the 
processor array is: 

tcompj'1t. 	= Transfer_Timeyer_Byte· PixelsJJer _Region 

= 1.28 J.lS 

In the performance analyses, we will multiply that time by the 
number of bytes of data used by the algorithm, for example 
three for 24-bit color. There is also a short, fixed setup time per 
composition that is dependent on the number of nodes in the 
system. It is short enough that we can ignore this time in our 
analysis. 

Rendering instructions for the pixel processors are produced 
by the PA-RISC microprocessors, and placed into GP memory. 
A DMA controller is used to fetch the instructions from GP 
memory as needed by the pixel processors. We use GP memory 
(64MB) rather than a hardware FIFO to store these instructions 
because we want to be able to buffer a large number, up to two 
complete frames, of rasterization commands. 

COl'1l'osition network 

Figure 2. PixelFlow node block diagram. 

Instead of providing a separate frame buffer for video scanout, 
one of the PixelFlow nodes serves as the frame buffer. Any of 
the PixelFlow nodes can be fitted with a daughter card for 
scanout. That card has access to texture memory which serves 
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as the actual frame buffer. We expect a variety of video cards 
for different formats. 

For virtual environments, we will often want to render stereo 
frames. We can do this in one of two ways. We can render them 
sequentially. However, since we would like to reduce latency, a 
better way to render two frames on Pixel Flow may be to 
logically divide the machine in half and render the frames 
concurrently on the halves. This is especially true if we want to 
reduce latency to below a field time. Note that we typically 
plan to maintain the display lists in OP memory, so data 
transfer from the host processor is not an issue. 

Performanee Estimates. We are currently in the design and 
construction process for PixelFlow. We can accurately model, 
on a clock cycle basis, the performance of the pixel array and 
the composition network, but the front-end, basically 
consisting of commercial microprocessors, is not modeled to 
that level of detail. The values for the various execution times 
used in the following sections were obtained as follows: 

Geometric operations - by benchmarking on existing 
workstations. Since the clock speed is higher and the 
memory subsystem on PixelFlow is more aggressive than 
that of the workstations, we expect somewhat better 
performance on PixelFlow. 

Rasterization and shading - obtaining clock-cycle counts 
of code running on simulators. 

Image composition - computed from the composition 
network design and target clock speeds. 

Overhead - estimated from measurements made on Pixel­
Planes 5. These are the data most likely to be wrong. 
However, sensitivity of the fmal conclusions to errors is 
low. 

4 PixeIFlow Software Architecture 

This section describes the software that we are developing as 
the standard rendering system for PixelFlow, and serves as the 
base system for which we would like to evaluate the latency, 
and as a point of comparison with alternative methods. We 
describe the system only in enough detail to allow the reader 
to understand how we model the latency. More detailed 
explanations are provided in [7] and [9}. 

In order to increase performance by reducing the amount of 
computation, we use the technique of deferred shading [4, 13]. 
This term refers to shading only the final, visible image, not 
the individual primitives as they are being rasterized. Instead 
of directly computing color during rasterization, we store 
appearance parameters [3] such as surface normals, intrinsic 
color, texture coordinates, etc. These appearance parameters 
are z-buffered and shading is only performed when all of the 
primitives have been rasterized. The obvious performance 
advantage, of course, is that pixels that will not be visible in 
the final image are not shaded. 

A problem with deferred shading is that it potentially requires 
very large amounts of frame-buffer memory in order to hold 
the appearance parameters. We reduce these memory 
requirements by using a virtual buffer [5). Instead of 
completely instancing the frame buffer, we divide it into fixed­
size screen regions, and work on the regions one after another. 
Therefore, we only need to have enough frame-buffer memory 
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to hold the appearance parameters for one screen region. This 
implies that we must first bucket sort the primitives [8] by 
screen region. As we shall see, this has an effect on latency 
because we must traverse all of the frame's primitives before 
doing any rasterization. 

To rasterize, composite the appearance parameters, and shade 
the resulting visible image, we divide the Pixel Flow nodes 
into three functional types: a set that performs rasterization, a 
set for shading, and a frame buffer. This functional division is 
illustrated in figure l. The rasterization nodes rasterize one 
screen region at a time, producing z and appearance parameters. 
These pixel parameters for a screen region, from all of the 
rasterization nodes, are depth composited, and the parameters 
for the visible pixels are delivered to one of the nodes 
responsible for shading. That shading node shades and 
textures all of the pixels in that region, and the resulting color 
is sent over the composition network to the frame buffer. 
Appearance parameters for screen regions are assigned to 
shading nodes in a round-robin fashion to achieve parallelism 
in shading as well as in rasterization. 

A straightforward implementation of this system would have 
the rasterization stage of the pipeline idle while geometric 
operations are being performed, and the geometric stage of the 
pipeline idle while rasterization and shading are performed. To 
increase throughput (by utilizing the hardware as much as 
possible), we pipeline complete frames. One frame is being 
rasterized while the next frame is being transformed. Two 
buffers in OP memory hold rendering instructions. One is 
being filled by the geometry processing, while the other is 
being emptied for the rasterization. 

Since geometric and pixel processing are completely separate 
parts of the pipeline, total rendering system latency is the sum 
of the front-end and the back-end processing times 

Latency = ft,ont + tback 

We can express the front-end processing time as 

f trans ' n 
tfront = toverhead +--­


nrast 


where n is the number of primitives, fIrast is the number of 
nodes devoted to rasterization, ttrans is the time perform all of 
the geometric operations for a primitive (the actual 
transformation, plus trivial reject, clipping, etc.), and the 
t_rMad term covers the frame startup costs. Note that I trans 
includes the bucket sorting of the primitive (in our code it is a 
tightly coupled part of the geometry processing routine). We 
are treating the two PA-RISC processors as one geometry 
engine, the mode in which we will use them. The rasterization 
time for all primitives is divided by the number of 
rasterization nodes to account for the effect of parallelism (we 
are assuming perfect load balancing). We measured ttrans as 1.85 
J.l.s, and estimate loverMad to be 0.1 ms. 

Analysis of the back-end computation is more complex. 
Several rendering tasks are being pipelined: rasterization, 
composition, shading, transfer of the resulting image (color) 
to the frame-buffer node, and copy of the image to the frame­
buffer memory. The back-end latency of the system is going to 
be primarily whichever of these tasks takes the longest to 
complete. A smaller component is going to be the pipeline 
filling and emptying which is negligible because we are 
processing many screen regions. Therefore 



thad: =max(trasl' tcomp. t$hatk. tl«xJ) 

where trast is the time to rasterize all of the primitives., tCOftfP is 
the time to composite the image, tshatie is the time to shade the 
complete image, and t/oad is the time to write the image to the 
frame buffer. 

To derive an expression for rasterization time, we must 
consider the fact that primitives can span more than one screen 
region. An expression for computing the number of screen 
regions that a primitive is expected to cover as a function of 
primitive and region size was derived by John Eyles to analyze 
performance of Pixel-Planes 5. The derivation is detailed in 
[10]. We call this the bin-replication factor or overlap: 

Overlap: (w+W). (h+H)
W -~ H 

where w and h are the width and height of an average primitive, 
and Wand H are the width and height of a screen region. For 
primitives with 10 by 10 bounding boxes, and our screen 
region of 128 by 64 pixels, the overlap is 1.25. For eight­
sample anti-aliased rendering, the overlap is 1.52. 

The rasterization time is 

t t1'QstJXIr"'prim' n· Overlap 

rast 


nrost 

where t'atllJ'UJ'I'im. which we compute to be 0.83 J1S. is the time to 
rasterize a single primitive, and n is the number of primitives. 

Composition time is just the time we derived in the previous 
section to composite a single byte of data for a complete 
region, tCOftfP_IIyt., times the number of bytes used for appearance 
parameters., multiplied by the number of regions. We will need 
a total of 21 bytes of shading parameters for our examples (4 
for z. 6 for surface normals, 3 for color, 4 for u and v, 2 for 
texture 10, and 2 for texture scale), therefore 

tcomp = nr.glons· tcompjJyt.· Bytes_of_App_Parameters 

or 

tcomp = n"g;om' 26.88 J.I.S 

The main components of the shading time are the texture 
memory address computation and the lookup of the mip-map 
texture from memory. Address computation takes 15.4 J.I.S. The 
time to read a texture depends on the number of pixels that are 
to be textured in the current region. We will use the worst-case 
time, a lookup for all of the pixels, which is 95 J.I.S. Lighting 
computations are pipelined with the texture lookup. We need 
to consider the time to shade all of the regions, divided by the 
number of PixelFlow nodes devoted to shading, or 

nregions .JJ0.4f.IS 
tshade - ...;.;=~-....:..-

nshaders 

Loading color to the frame buffer is 

l/oad = nr.gI(JtfS' 52 J.I.S = 2.08 ms 

which is short enough that it is not a factor when rendering 
any significant number of primitives. 

5 Reducing Latency by Eliminating Frame 
Pipelining 

Much of the latency in the previous system is caused by the 
large granularity of the pipelining - two full frames. Can we 
reduce the latency by not pipelining frames, while still 
maintaining adequate performance? The coarse granularity of 
the pipelining was due to our need to sort the primitives based 
on their screen-space position. Can we improve this to reduce 
the amount of pipelining? 

One technique that we have identified is to make a separate 
pass over all of the primitives to sort them into screen regions, 
but doing as little work as possible. The minimum amount of 
work we have to do is to transform the vertices and perform a 
bounding box test. After the sorting pass., a second pass is 
made to generate the rasterization instructions. These are sent 
to the pixel-processor array one region at a time rather than 
one frame at a time. We will have to write the screen-space 
coordinates of the vertices into memory during the first pass 
because the second pass will not be in traversal order, but in 
screen-space order. A throughput penalty is that the pixel 
processors may have to be kept idle during the sorting pass, so 
there is lower resource utilization. 

However, the biggest disadvantage of pre-sorting is that we are 
visiting the display list data more than once. As we are all 
aware, a bottleneck of modem microprocessors is the 
bandwidth to main memory. Part of the improvement in 
processor speed that we have seen is due to the extensive use 
of chaching, thus reducing the access to main memory. This 
fact shows us that we are likely to pay a penalty for this extra 
memory traffic. 

The latency of this system is the time it takes to make the 
separate sorting pass., t.f;rstJ1GD plus the time to complete the 
rest of the front-end processing. and the back-end processing, 
I""""",JXlU' 

Latency = t.f;rstJXlU + IIltICDIJdJXJSS 

The first pass consists of some :frame startup overhead, plus 
some processing for each primitive. 

t ·n 
tfirst _ pass =toverhead +...H!!L­

nrost 

We benchmarked I_I to equal 0.74 Ils. The second pass latency 
is the maximum of the time it takes to complete the front-end 
computations, the rasterization, composition, shading and 
copy to the frame buffer. We will call the second-pass 
geometry work, generating the rendering commands., tgm­

tsecandJXlU = max(tpn. trtllt, t..".. IsIrDde. tl«xJ) 

The times tra:st. t..".. t$hatk, and l/oad are the same as in the 
previous system. The time to generate rendering commands is 

t .1gen _ gen_each n 

nrost 


We benchmarked tpn_eoch as 1.45 Ils. 

46 




6 Completely Instanced Frame Buffer 

The deferred shading and virtual buffer techniques used in the 
previous designs serve to increa:>e thr~ughput and. e!lable 
high-quality shading, but re~ult In a frurly .Im:'.e mlnlmll;m 
latency. Even if we are rendenng only one primitive, we still 
incur the complete shading time and the sorting step increases 
latency. What if we want a very low minimum latency design, 
especially important for predictive tracking experim~nts, and 
for augmented reality applications? What we would like to do 
is to eliminate the deferred shading. and pipeline the front-end 
computations with the back-end at a fine granularity. This 
section presents the design for a simple, non-texturing system 
with a completely instanced frame buffer similar to the Slats 
system [11]. 

This system eliminates bucket sorting. Primitives ~ 
rasterized in the order in which they are traversed. As With 
most rendering systems, we can light the vertices on the front­
end and interpolate color. We could potentially texture each 
primitive as it is being rasterized. Howev~r, we do not ~ve any 
experience with this process and expect It to be expenSive, so 
will not consider texturing in our analysis of this system. The 
fmal steps in the rendering of the frame are to composi~e the 
colors, deliver the result to the frame-buffer node, and wnte the 
image to memory for scanout. 

The determining factor in our ability to realize this design is 
the desired size of the display since it determines frame-buffer 
needs. Do we have enough memory on the pixel processors? 
We need about 4 bytes for z and 3 bytes for color - a total of 7 
bytes per display pixel. For our low-resolution example. we 
need 640 by 512 pixels, or 40 screen regions, for a total of 280 
bytes. Recall that each pixel processor has 256 bytes of local 
memory plus 128 bytes of communications registers. Half of 
the communications register space is used to access texture 
memory. The other 64 bytes consists of two .sets. of 
composition-network transfer buffers, one for each direction. 
Since we are not compo siting while rendering, we can use 
those 64 bytes as general purpose memory. That leaves us with 
a total of 384 bytes available, plenty for our purposes. 

Note that this system differs from the previous ones in two 
fundamental ways, thus making direct performance 
comparisons difficult. First, it does not defer shading. Second, 
it does not texture. Unfortunately, we can not separate the two 
cases because PixelFlow was not designed for texturing during 
scan conversion. However, analysis of this design is valuable 
to see what performance we can achieve when we sacrifice 
texturing. 

The latency of this system is the time it takes to completely 
render all of the primitives for the first antialiasing subsample, 
the times it takes just to rasterize the subsequent subsamples 
(we will store the rendering instructions in memory and reuse 
them for the other subsamples), the time it takes to composite 
all but the fmal subsamples, plus, for the last sample, the 
maximum of the composition and frame-buffer loading times 
(since the latter steps are pipelined). 

Latency = max(t.fro,u. t~ + (nsample. - J). (trost + tcamp) 
+ max(tcomp. tload) 

Note that antiaiiasing is very different for this design. The 
previous two systems performed supersampling in one pass, 
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whereas this one takes multiple rasterization and composition 
passes. As we shall see, anti-aliased performance suffers. 

The expressions for the front·end processing time and for 
rasterization are the same as for the first system (although the 
values of the constants change): 

frost per prim on·Overlap
frost = - ­

nrast 

We benchmarked tITans as 0.87 ~ and measured trost.Jl<1'.J1rim as 

0.62 J.1s. The composition time 

tcomp = nregions • tCDltlp_byte 0 Bytes_ol_Color 360 JlS 

is very short, since we are only sending color. 

7 Conclusions 

Using the expressions that we have derived, we evaluated !he 
performance of the three systems, the base system, pre-sorting 
system, and non-tex~ng system, using a .me~ium-sized 
configuration of 20 PlxelFlow nodes (one of which IS a frame­
buffer node). We examined both single-sample, and sub­
sampled antialiasing modes. 

Figure 3 shows the latency of the three systems with 
antialiasing enabled. Two machine configurations are used for 
the systems that are texturing. O~e configuration devo~es .four 
of the nodes to shading (Ieavmg fifteen for rasterlzatlon), 
while the other configuration uses only one node for shading. 
The non-texturing system is a poor performer, both on 
minimum latency with only a few polygons, and at our latency 
target region of 30 to 40 ms. This is due to the fact that the 
necessary technique for antiaiiasing, multi-passes of the 
rasterization, is very inefficient when compared to the single­
pass antialiasing possible with more available pixel·processor 
memory on the other two designs. 

For the texturing systems, using more nodes as shaders 
reduces the minimum latency when very few polygons are 
being rendered. This is because, initially, all of the frame time 
is due to the fixed cost of shading. Once enough polygons are 
being rasterized, the rasterization costs dominate the latency. 
For our target latency range of 30 to 40 ms, we get much better 
performance using only one node for shading and the oth~rs 
for rasterization. The crossover point will shift if we require 
higher-quality, more time-consuming shading. as we expect 
for some applications [7]. 

There is also a latency performance advantage to pre-sorting, at 
the cost of some throughput of course. However, it was 
surprising to us how little the performance increases for any 
give latency. For example, in the region of interest between 30 
and 40 ms, the difference amounts to only 10 to 15 percent. It 
is unlikely that this small increase in performance WOUld. be 
worth the effort of creating and maintaining a pre-sorting 
system. Given the stopes of the curves, the difference will 
increase and make the pre-sorting system look better, but at 
latency ranges that are not of interest to us. 



Figure 4 shows the same configurations, but without 
antialiasing. When not antialiasing, pre-sorting does not show 
a perfonnance advantage because the extra cost of the fll'St pass 
offsets the elimination of the pipe lining. If texturing is not 
required, the simple non-texturing system has a large latency 
perfonnance advantage. Not only is it rendering very simple 
triangles, but the geometric and rasterization stages are 
completely pipelined. The only other cause of latency is the 
copy to the frame buffer. At a latency of 30 ms, the system 
should be able to render over 600,000 triangles per frame. 

We could reduce the latency even further. If using an interlaced 
display, such as NTSC, one can render only fields at a time 
instead of full frames [11]. This reduces the minimum latency 
but mandates the generation of an image every field (60 Hz for 
NTSC). If the rendering of a frame takes longer than the 
planned time, you have to adopt some contingency strategy, as 
is done on some flight simulators. Rendering fields is a useful 
technique if we need to reduce latency below our target of 30 
to 40 ms. It's likely that it would be a good addition to the 
simple, non-texturing system. 

The standard, highly pipe lined implementation suffers from 
somewhat higher latency than the pre-sorting system, but also 
provides maximum throughput. At the region of interest, the 
pre-sorting system reduces the latency, but not enough to 
make it very interesting. The simple, Gouraud-shading system 
provides the maximum perfonnance when antialiasing and 
texturing are not required. 
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Figure 3. Supersampling performance of the three systems. The two systems which use 
deferred shading are shown in two configurations, with one and four shading nodes. 
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Figure 4. Single sample performance of the three systems. The two systems which use deferred 
shading are shown in two configurations, with one and four shading nodes. 
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