
1

Hardware for Superior Texture Performance

G. Knittel, A. Schilling, A. Kugler and W. StraBer

WSIIGRISt

University of Ttibingen, Gennany

Abstract
Mapping textures onto suIfaces of computer-gener­
ated objects is a technique which greatly improves
the realism of their appearance. Unfortunately, this
imposes high computational demands and, even
worse, tremendous memory bandwidth require­
ments on the graphics system. Tight cost frames in
the industry in conjunction with ever increasing user
expectations make the design of a powerful texture
mapping unit a difficult task.
To meet these requirements we follow two different
approaches. On the technology side, we observe a
rapidly emerging technology which offers the com­
bination of enormous transfer rates and computing
power: logic-embedded memories.
On the algorithmic side, a common way to reduce
data traffic is image compression. Its application to
texture mapping, however, is difficult since the
decompression must be done at pixel frequency.
In this work we will focus on the latter approach,
describing the use of a specific compression scheme
for texture mapping. It allows the use of a very sim­
ple and fast decompression hardware, bringing high
performance texture mapping to low-cost systems.

Keywords: graphics hardware, texture mapping,

age value which best approximates the correct pixel
color. In real-time environments, where several tens
of millions of pixels per second are issued by fast
rasterizing units, hardware expenses for image map­
ping become substantial and algorithms must there­
fore be chosen and adapted very carefully. Thus, the
straightforward approach of taking the mean of all
image pixels t (or texels) inside the footprint for the
screen pixel's color C(x,y)

1 M
C(x,y) =M' I tm , (1)

m= 1

or, more generally, defining a filter kernel h, which
is convolved over the image t(a,~) [1]

C(x, y) = f f (h(x - a, y -~) . tCa, ~» dad~ (2)

can be excluded from further discussion due to the
long computing times. Summed-area-tables [3] are
an attempt to simplify and speed up the above oper­
ations. Instead of the color value, each cell of a
summed-area-table holds the sum of all values in a
certain region, usually the rectangle defined by the
position of the cell and the origin as indicated in
Figure 1.

image compression

Introduction

During the rasterization process, mapping images
onto objects can be considered as the problem of
determining a screen pixel's projection on the image
(which we call its/ootprint) and computing an aver­

t Universitiit Ttibingen

Wilhelm-Schickard-Institut Ilir Infonnatik­

Graphisch-Interaktive Systeme (WSI I GRIS)

Auf der Morgenstelle 10, C9

D-7W76 Ttibingen, Gennany

Phone: . .497071 29 5461 FAX: .. 497071295466
email: (knittel.andreas.strasserj@gris.infonnatik.uni-tuebingen.de

www: http://greco.gris.informatik.uni-tuebingen.del

Bounding Box
of Footprint

Figure 1: Summed-Area-Table

Given the bounding box of the footprint, C(x,y) is
then approximated by accessing the table four times
and peIforming the following operation:

C(x, y) = T4 - T3 - T2 + Tl. (3)

However, since the footprint of a pixel is not rectan­
gular, but can be considered as a quadrilateral in the

33

http://greco.gris.informatik.uni-tuebingen.del
mailto:knittel.andreas.strasserj@gris.infonnatik.uni-tuebingen.de
http://www.eg.org
http://diglib.eg.org

general case, a potentially large number of texels
within the bounding box contribute without reason
to the pixel color. Glassner proposes as a solution to
incrementally remove rectangles within the bound­
ing box to best approximate the footprint at the cost
of increased computing times [6].
For two reasons summed-area-tables are not well
suited for a direct hardware implementation:

o 	If the color components are 8-bit quantities, a
1024x 1024 summed-are a-table requires entries
as wide as 28 bits for each color component.

o 	For each pixel four random accesses must be
performed which limit the achievable texturing
speed.

Parallelization schemes for summed-area-tables
show substantial disadvantages. Replicating the
entire map four times leads to unacceptable memory
capacity requirements. Interleaving the table across
four memory banks (similar to the scheme shown in
Figure 2 for level 0) would require to round the
bounding box dimensions to even numbers. This
would further reduce texturing accuracy especially
for small footprints.
Another approach is to create a set of prefiltered
images, which are selected according to the level of
detail (the size of the footprint) and used to interpo­
late the final pixel color. The most common method
is to organize these maps as mipmap as proposed by
Williams [11]. In a mipmap. we denote the original
image as level O. In levell, each entry holds an
averaged value and represents the area of 2x2 tex­
els. This is continued until we reach the top-level,
which has only one entry holding the average color
of the entire texture. Thus, in a square mipmap,
level n has one fourth the size of level n-l.
The shape of the footprint is assumed to be a square
of size q2, where, for example,

'(au)2 (av)2 J'(au)2 (av)2
q = maxC~J ax + ax ' ay + ay), (4)

as suggested in [8]. In (4), u and v denote texture
coordinates, x and y screen coordinates.
The mipmap is accessed by the texture coordinates
u, v of the pixel center and the level A, which in the
general case is a function of log2q. For example, if A
has an integer part Al and a fractional part Ap. Acan
be written as

q
)../ 	 = LlogzqJ and AF = A.-I (5)

2 1

Nearest-neighbor-sampling, however, is inadequate
due to severe aliasing artifacts. Instead, the levels A

and A+1 are accessed and bilinearly interpolated at
u, v. The final pixel value is linearly interpolated
from the results in both levels according to Ap
Mipmapping is a reasonable candidate for a hard­
ware implementation due to its regular access func­
tion. If the memory is designed to deliver all eight
texels for a tri -linear interpolation in a single access,
texturing can potentially keep up with fast rasterizer
units. This is accomplished by having eight inde­
pendent memory banks and a conflict-free address
distribution as shown in Figure 2. Furthermore, to

o 1 o 1

23 23
 0 1o 1 o 1 ·6 723 23 m

Level 0 Level 1 2 3

ILevel 2

Figure 2: Assignment of Texels to Memory Banks

reduce data traffic between the rasterizer unit and
the texture system, all address calculations concern­
ing the eight bank addresses as well as the tri-linear
interpolation should be performed locally.
At this point it becomes obvious that the ideal solu­
tion is a highly-integrated memory device which
incorporates all needed arithmetic units for fast mip­
mapping. An architectural description of such a
device can be found in [12]. Taking advantage of the
potentially high speed of such a memory device, we
can alleviate the deficiencies arising from the square
footprints. Our novel approach for image enhance­
ment is outlined in section 7. Logic-embedded
memories have also been shown to provide a quan­
tum leap in performance in other areas such as the
Z-Buffer [4],[9] and thus, we have developed a
graphics pipeline based on enhanced memories for
high performance in low-cost systems [10].
However, logic-embedded memories, especially
logic-embedded DRAMs, is a new technology which
is very expensive and risky. For this reason, our
architectural proposals have not been realized yet.
Mipmapping in a traditional implementation either
requires a parallel memory system or sequential
accesses to the texture buffer and is therefore either
expensive or slow. An obvious solution to both
problems would be to compress the textures, thus
saving memory costs and reducing memory band­
width requirements. Commonly used image com­
pression schemes such as JPEG, however, are not
suitable for texture mapping since they do not fulfil
two essential requirements for texture mapping:

34

2

o 	The decompression has to be simple and very
fast, and

o 	 random access to texels must be possible.

Here we propose to use a specific compression
scheme which meets the above requirements. A
hardware architecture is presented which integrates
texture mapping units together with a small texture
cache on a chip. The filtering can then take advan­
tage of the extremely high bandwidth which is
available on-chip. The off-chip bandwidth for
updating the on-chip cache is reduced, so that stan­
dard off-the-shelf DRAM devices can be used.
The compression algorithms are discussed in sec­
tion 2 and 3. A hardware architecture is given in
section 5. The benefits in terms of costs and perfor­
mance are detailed in section 6. Section 7 presents a
novel way of overcoming the deficiencies of square
footprints, and the results can be seen in section 8.

Block Truncation Coding / Color Cell
Compression

Block Truncation Coding (BTC) was introduced by
Delp et. al. [5] in 1978. In 1986, Campbell et. al. [2]
presented Color Cell Compression (CCC), a modifi­
cation and application of BTC to color images.
The main idea of BTC/CCC is to use a local I-bit
quantizer on 4x4 pixel blocks. The compressed data
for such a block thus consists of only two colors and
16 bits that indicate, which one of the two colors is
assigned to each of the 16 pixels. Figure 3 shows the

Figure 3: Quantization of 4x4-blocks to two colors

principle of the BTC/CCC. For further data reduc­
tion, the 24 bit colors can be globally quantized to 8

35

bits, using a standard quantizer such as the Heckbert
quantizer [7]. The decoding of a CCC-encoded
image is very simple. The principle of the decoder
circuitry is shown in Figure 4. It consists of a multi­

llll
256 x 24 b~

" 	 11GB
out

Figure 4: CCC Decoder Circuitry

plexer and a lookup table. Once a 16-texel-block (32
bits) is retrieved from memory, the individual texels
are decoded by looking up the two possible colors
for that block and selecting the color according to
the associated bit from the 16 decision bits. The
decoder fulfils the listed requirements for texture
mapping in a nearly ideal way.

3 Compressing the Images

The compression of the texture maps can and should
be performed in advance. This not only saves space
on the storage media for the description of the
scene, but also allows more complex algorithms to
be used for the quantization due to the off-line com­
pression. [5] shows for grey scale images how the
first three sample moments can be preserved by
choosing appropriate threshold and output levels. In
[2], only the luminance of the input colors is used
for clustering. If there are different colors with simi­
lar luminance in the same block, this method will
fail. The quantization with the minimum mean
square error can only be found by exhaustive trial,
resulting in long compression times. For a quicker
approximate solution we therefore propose to split
the input values into two clusters by a plane perpen­
dicular to the axis with the minimum "moment of
inertia". For that purpose we calculate the tensor of

-t
inertia from the individual colors Xj as

16

0 ik = L 11~1120ik - XjiXjk , 	
(6)

j=1

where i, k E {R, G, B} and 0ik=] for i=k, 0 else .

We then calculate the with the smallest
using standard methods. Multiplication

of the individual colors with that
reduces the clustering problem to one
and allows the colors to be sorted according to their

mmenSlOn

to a parallel to the plane. The
quantization threshold is set to the mean distance. In
this way the mean color is in the plane.

4 .uua~\".: Quality

examples in Figure 5 have

CCC as described in

5 Texture Mapping Architecture

interpolation is
for the

'nf" .. t"!"''',..... to the
DRAM

1".1"'1." " ao,..f-An to

address- and 4 controlpins).

A direct
is

through D)
one

an lnt""'l"l,po""porlin
This unambiguous way of allows a sim­
ple address calculation logic to be used. A simple
form

<Trmon"" of the current block are pre-

three neighbors
addressed the current u- and
sion can be made
u- and the other of

up the operation

cated lookahead could use the direction ot consecu­
tive accesses within a scanline. which could be
calculated from the two previous access points. The
rasterizer should provide a flag to indicate a scan­
line which could be used to the
prefetch and lookahead that

d) Detail of compressed Image

Figure 5: Original and compressed Images

36

6

DRAM
lMx16

0'2561<.16

Ad
oot

n

I
RAS~ fl.
Q;,v.£ ..
14'4Tecels;UcdO'O,I'CdO'b I 00010

..
I odorb I

I t.
MDC Ict 16

t·
Ad:t"""'11

lego
DRAM
CO'ltrd

1256'24b1t~~512'24t;tJ I

!1X24t:1!a'.tI
speold Cache 4 • 64 t;t--1

.. Coler Extract Bltnea I RGB
.. (MJ~tpecerJ § ,..tnterpdcliCrll ~

Tectur Adcies:s -Ge'ledt01 Rc6IE!IIM

Figure 6: Texture Mapping Architecture

A B A B
D DC C

A B A B
D DC C

Figure 7: Assignment of Texel Blocks to Cache Cells

PriceIPerformance Comparison

In our proposed architecture, we assume an average
of 3 mipmap accesses per 4x4 texel block. If stan­
dard 256Kx16 DRAM is used, one page can hold
512 words, which corresponds to 16x16 blocks. We
assume therefore that about every 24 blocks a new
page has to be accessed. Thus about 2% (1/48) of
the DRAM-accesses result in a page fault. This
leads to the following performance estimation
(assuming bilinear interpolation, a page access time

of SOns and a random access time of lOOns). 24
blocks are accessed in

t = 47· 50ns + 1 . JOOns = 2450ns. (7)

72 mipmap accesses can be performed in this time.
Assuming 4 accesses for bilinear interpolation, we
get a rate R of

R = 29.4Mtexells. (8)

We compare this to a design using 8-bit index map­
ping with one 16Mbit DRAM-chip (2Mx8) for the
same texture size (the memory has to be 4 times
larger). With a page size of 32x32 texels and 1 page
fault every 24 mipmap accesses we get the follow­
ing results. 24 mipmap accesses are performed in

t = 71· 50ns + 1 . JOOns = 3650ns, (9)

if one mipmap access includes 4 texel accesses (of

which we count only three, as we assume caching

for a fair comparison):

For the rate we get:

R = 6.6Mtexells. (10)

The result of the comparison is summarized in Table
1.

CCC Standard System

Memory 4Mbit 16Mbit

Bus 16bit 8bit

Page Size 512 x 16 1024 x 8

Texture
size

2Mtexel
=1.5Mtexel
mipmapped

2Mtexel
=1.5Mtexel
mipmapped

Speed (mipmap,
bilinear

interpolation

29AMtexeVs 6.6Mtexel/s

Memory
Costs

(June 95)

$15 $60

Prize/Perfor­
mance Ratio

2MtexeVsI $ 0.1 Mtexel/s I $

Table 1: Prize/Performance Comparison

7 Footprint Assembly

Footprint assembly is a novel way of mapping tex­
tures onto surfaces. The main idea is to approximate
the projection of the pixel on the texture by a num­

2mber N of square mipmapped texels. N = for

37

8

practical reasons, so the texels can be summed up
and shifted right m places to give the final texture
color.
Figure 8 shows how the projection of a pixel

Figure 8: Footprint Assembly

(assumed to be a parallelogram, drawn in dark grey)
on the texture map is approximated by a sequence of
mipmap accesses. Footprint assembly requires only
small additional hardware. The sequence of texture
coordinates is generated internally to the texture
mapping unit, so that this kind of texturing is still
very fast for a reasonable m. To avoid unacceptable
computing times the user can set an upper limit for
m. Detailed information about footprint assembly
can be found in [12].

The enhanced image quality justifies the increased

rendering time, as can be seen in Figure 9.

The upper four views were created by standard mip­
mapping and show vanishing details towards the
background. The four images at the bottom were
generated by footprint assembly with N limited to
16.

Image Quality

The visual quality of a compression scheme can in
the end only be judged by human observers. We
made simulations of texturing with the described
CCC compression scheme in conjunction with foot­
print assembly. In Figure 9, the results for different
combinations can be seen (unfortunately only in
black and white). Compared to original textures,
still images as well as animations show noticeable
but no disturbing artifacts for compressed textures.
Mipmapping with bi-linear interpolation generally
exhibits severe artifacts, independent of the use of
image compression. Footprint assembly retains tex­
ture details even for objects in the background. For
cost-efficient systems, we propose to combine bilin­
ear interpolation, CCC and footprint assembly, a
way to improve texture mapping performance sig­

nificantly.

9 	 Conclusion

Compression in the context of texture mapping
serves two purposes: it reduces the size and thereby
the cost of the required memory and, equally impor­
tant, it reduces the required memory bandwidth.
However, several requirements have to be fulfilled.
The most important one is, that the local decompres­
sion of the stored texture is possible and can be per­
formed very quickly. Color Cell Compression
(Ccq is identified as an extremely useful image
compression technique for texture mapping. CCC in
conjunction with footprint assembly gives better
image quality at higher speed and lower cost than
traditional texture mapping.

10 	 Acknowledgments

This work was done for the MONOGRAPH project,
supported by the CEC's ESPRIT Programme. We
would like to mention the skill and enthusiasm of
Axel Schildan, who made the implementations and
helped to make a video sequence.

11 	 References

[1] 	 H. C. Andrews and B. R. Hunt, "Digital Image
Restoration", Prentice-Hall, 1977

[2] 	 G. Campbell, T. A. DeFanti, J. Frederiksen, S. A.
Joyce, L. A. Leske, J. A. Lindberg and D. J. San­
din, "Two BitIPixel Full Color Encoding", SIG­
GRAPH '86 Conference Proceedings,
Computer Graphics,. Vol. 20, No.4, August
1986, pages 215-223

[3] 	 F. C. Crow, "Summed-Area Tables/or Texture Map­
ping", Proceedings of SIGGRAPH '84, Com­
puter Graphics, Vol. 18, No.3, July 1984, pages
207-212

[4] 	 M. F. Deering, S. A. Schlapp and M. G. Lavelle,
"FBRAM: A new Form ofMemory Optimized/or 3D
Graphics", Proceedings of SIGGRAPH '94,
July 1994, pages 167-174

[5] 	 E. J. Delp and O. R. Mitchell. "Image Compres­
sion Using Block Truncation Coding", IEEE
Transactions on Communications. Vol. COM­
27, No.9, Sept. 1979, pages 1335-1342

[6] 	 A. Glassner, "Adaptive Precision in Texture Map­
ping", Proceedings of SIGGRAPH '86, Com­
puter Graphics. Vol. 20, No.4, August 1986,
pages 297-306

38

[7] 	 P. Heckbert, "Color image quantization/or frame

buffer display", Proceedings of SIGGRAPH '82,
Computer Graphics, Vol. 16, No.3, July 1982

[8] 	 P. Heckbert, "Texture Mapping Polygons in Per­

spective", NYIT Computer Graphics Lab Tech­
nical Memo #13, April, 1983

[9] 	 G. Knittel and A. Schilling, "Eliminating the Z­
Buffer Bottleneck", Proceedings of the European
Design and Test Conference, Paris, France,
March 6-9, 1995, pages 12-16

[to] G. Knittel, A. Schilling and W. Stra8er, "GRAM­
MY: High Performance Graphics Using Graphics
Memories", in: High Performance Computing
for Computer Graphics and Visualisation,
Springer-Verlag, London, 1996

[11] 	L. Williams, "Pyramidal Parametrics", Pro­
ceedings of SIGGRAPH '83, Computer Graph­
ics, Vol. 17, No.3, July 1983, pages 1-11

[12] A. Schilling, G. Knittel and W. Stra8er,
"TEXRAM - A Smart Memory for Texturing", Tech­
nical Report WSI- 95-12, University of Tiibin­
gen, January 1995

39

Right Side:
COIOf Cell

bilinear
Interpolation

trilinear
Interpolation

bilinear
Interpolation

Assembly

trilinear
Interpolation
Footprint

lln

