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Abstract 
Mapping textures onto suIfaces of computer-gener­
ated objects is a technique which greatly improves 
the realism of their appearance. Unfortunately, this 
imposes high computational demands and, even 
worse, tremendous memory bandwidth require­
ments on the graphics system. Tight cost frames in 
the industry in conjunction with ever increasing user 
expectations make the design of a powerful texture 
mapping unit a difficult task. 
To meet these requirements we follow two different 
approaches. On the technology side, we observe a 
rapidly emerging technology which offers the com­
bination of enormous transfer rates and computing 
power: logic-embedded memories. 
On the algorithmic side, a common way to reduce 
data traffic is image compression. Its application to 
texture mapping, however, is difficult since the 
decompression must be done at pixel frequency. 
In this work we will focus on the latter approach, 
describing the use of a specific compression scheme 
for texture mapping. It allows the use of a very sim­
ple and fast decompression hardware, bringing high 
performance texture mapping to low-cost systems. 
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age value which best approximates the correct pixel 
color. In real-time environments, where several tens 
of millions of pixels per second are issued by fast 
rasterizing units, hardware expenses for image map­
ping become substantial and algorithms must there­
fore be chosen and adapted very carefully. Thus, the 
straightforward approach of taking the mean of all 
image pixels t (or texels) inside the footprint for the 
screen pixel's color C(x,y) 

1 M 
C(x,y) =M' I tm , (1) 

m= 1 

or, more generally, defining a filter kernel h, which 
is convolved over the image t(a,~) [1] 

C(x, y) = f f (h(x - a, y -~) . tCa, ~» dad~ (2) 

can be excluded from further discussion due to the 
long computing times. Summed-area-tables [3] are 
an attempt to simplify and speed up the above oper­
ations. Instead of the color value, each cell of a 
summed-area-table holds the sum of all values in a 
certain region, usually the rectangle defined by the 
position of the cell and the origin as indicated in 
Figure 1. 

image compression 

Introduction 

During the rasterization process, mapping images 
onto objects can be considered as the problem of 
determining a screen pixel's projection on the image 
(which we call its/ootprint) and computing an aver­
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Bounding Box 
of Footprint 

Figure 1: Summed-Area-Table 

Given the bounding box of the footprint, C(x,y) is 
then approximated by accessing the table four times 
and peIforming the following operation: 

C(x, y) = T4 - T3 - T2 + Tl. (3) 

However, since the footprint of a pixel is not rectan­
gular, but can be considered as a quadrilateral in the 
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general case, a potentially large number of texels 
within the bounding box contribute without reason 
to the pixel color. Glassner proposes as a solution to 
incrementally remove rectangles within the bound­
ing box to best approximate the footprint at the cost 
of increased computing times [6]. 
For two reasons summed-area-tables are not well 
suited for a direct hardware implementation: 

o 	If the color components are 8-bit quantities, a 
1024x 1024 summed-are a-table requires entries 
as wide as 28 bits for each color component. 

o 	For each pixel four random accesses must be 
performed which limit the achievable texturing 
speed. 

Parallelization schemes for summed-area-tables 
show substantial disadvantages. Replicating the 
entire map four times leads to unacceptable memory 
capacity requirements. Interleaving the table across 
four memory banks (similar to the scheme shown in 
Figure 2 for level 0) would require to round the 
bounding box dimensions to even numbers. This 
would further reduce texturing accuracy especially 
for small footprints. 
Another approach is to create a set of prefiltered 
images, which are selected according to the level of 
detail (the size of the footprint) and used to interpo­
late the final pixel color. The most common method 
is to organize these maps as mipmap as proposed by 
Williams [11]. In a mipmap. we denote the original 
image as level O. In levell, each entry holds an 
averaged value and represents the area of 2x2 tex­
els. This is continued until we reach the top-level, 
which has only one entry holding the average color 
of the entire texture. Thus, in a square mipmap, 
level n has one fourth the size of level n-l. 
The shape of the footprint is assumed to be a square 
of size q2, where, for example, 

'(au)2 (av)2 J'(au)2 (av)2
q = maxC~J ax + ax ' ay + ay ), (4) 

as suggested in [8]. In (4), u and v denote texture 
coordinates, x and y screen coordinates. 
The mipmap is accessed by the texture coordinates 
u, v of the pixel center and the level A, which in the 
general case is a function of log2q. For example, if A 
has an integer part Al and a fractional part Ap. Acan 
be written as 

q
)../ 	 = LlogzqJ and AF = A.-I (5)

2 1 

Nearest-neighbor-sampling, however, is inadequate 
due to severe aliasing artifacts. Instead, the levels A 

and A+1 are accessed and bilinearly interpolated at 
u, v. The final pixel value is linearly interpolated 
from the results in both levels according to Ap 
Mipmapping is a reasonable candidate for a hard­
ware implementation due to its regular access func­
tion. If the memory is designed to deliver all eight 
texels for a tri -linear interpolation in a single access, 
texturing can potentially keep up with fast rasterizer 
units. This is accomplished by having eight inde­
pendent memory banks and a conflict-free address 
distribution as shown in Figure 2. Furthermore, to 
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Figure 2: Assignment of Texels to Memory Banks 

reduce data traffic between the rasterizer unit and 
the texture system, all address calculations concern­
ing the eight bank addresses as well as the tri-linear 
interpolation should be performed locally. 
At this point it becomes obvious that the ideal solu­
tion is a highly-integrated memory device which 
incorporates all needed arithmetic units for fast mip­
mapping. An architectural description of such a 
device can be found in [12]. Taking advantage of the 
potentially high speed of such a memory device, we 
can alleviate the deficiencies arising from the square 
footprints. Our novel approach for image enhance­
ment is outlined in section 7. Logic-embedded 
memories have also been shown to provide a quan­
tum leap in performance in other areas such as the 
Z-Buffer [4],[9] and thus, we have developed a 
graphics pipeline based on enhanced memories for 
high performance in low-cost systems [10]. 
However, logic-embedded memories, especially 
logic-embedded DRAMs, is a new technology which 
is very expensive and risky. For this reason, our 
architectural proposals have not been realized yet. 
Mipmapping in a traditional implementation either 
requires a parallel memory system or sequential 
accesses to the texture buffer and is therefore either 
expensive or slow. An obvious solution to both 
problems would be to compress the textures, thus 
saving memory costs and reducing memory band­
width requirements. Commonly used image com­
pression schemes such as JPEG, however, are not 
suitable for texture mapping since they do not fulfil 
two essential requirements for texture mapping: 
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o 	The decompression has to be simple and very 
fast, and 

o 	 random access to texels must be possible. 

Here we propose to use a specific compression 
scheme which meets the above requirements. A 
hardware architecture is presented which integrates 
texture mapping units together with a small texture 
cache on a chip. The filtering can then take advan­
tage of the extremely high bandwidth which is 
available on-chip. The off-chip bandwidth for 
updating the on-chip cache is reduced, so that stan­
dard off-the-shelf DRAM devices can be used. 
The compression algorithms are discussed in sec­
tion 2 and 3. A hardware architecture is given in 
section 5. The benefits in terms of costs and perfor­
mance are detailed in section 6. Section 7 presents a 
novel way of overcoming the deficiencies of square 
footprints, and the results can be seen in section 8. 

Block Truncation Coding / Color Cell 
Compression 

Block Truncation Coding (BTC) was introduced by 
Delp et. al. [5] in 1978. In 1986, Campbell et. al. [2] 
presented Color Cell Compression (CCC), a modifi­
cation and application of BTC to color images. 
The main idea of BTC/CCC is to use a local I-bit 
quantizer on 4x4 pixel blocks. The compressed data 
for such a block thus consists of only two colors and 
16 bits that indicate, which one of the two colors is 
assigned to each of the 16 pixels. Figure 3 shows the 

Figure 3: Quantization of 4x4-blocks to two colors 

principle of the BTC/CCC. For further data reduc­
tion, the 24 bit colors can be globally quantized to 8 
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bits, using a standard quantizer such as the Heckbert 
quantizer [7]. The decoding of a CCC-encoded 
image is very simple. The principle of the decoder 
circuitry is shown in Figure 4. It consists of a multi­
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Figure 4: CCC Decoder Circuitry 

plexer and a lookup table. Once a 16-texel-block (32 
bits) is retrieved from memory, the individual texels 
are decoded by looking up the two possible colors 
for that block and selecting the color according to 
the associated bit from the 16 decision bits. The 
decoder fulfils the listed requirements for texture 
mapping in a nearly ideal way. 

3 Compressing the Images 

The compression of the texture maps can and should 
be performed in advance. This not only saves space 
on the storage media for the description of the 
scene, but also allows more complex algorithms to 
be used for the quantization due to the off-line com­
pression. [5] shows for grey scale images how the 
first three sample moments can be preserved by 
choosing appropriate threshold and output levels. In 
[2], only the luminance of the input colors is used 
for clustering. If there are different colors with simi­
lar luminance in the same block, this method will 
fail. The quantization with the minimum mean 
square error can only be found by exhaustive trial, 
resulting in long compression times. For a quicker 
approximate solution we therefore propose to split 
the input values into two clusters by a plane perpen­
dicular to the axis with the minimum "moment of 
inertia". For that purpose we calculate the tensor of 

-t 
inertia from the individual colors Xj as 

16 

0 ik = L 11~1120ik - XjiXjk , 	
(6) 

j=1 

where i, k E {R, G, B} and 0ik=] for i=k, 0 else . 



We then calculate the with the smallest 
using standard methods. Multiplication 

of the individual colors with that 
reduces the clustering problem to one 
and allows the colors to be sorted according to their 

mmenSlOn 

to a parallel to the plane. The 
quantization threshold is set to the mean distance. In 
this way the mean color is in the plane. 

4 .uua~\".: Quality 

examples in Figure 5 have 

CCC as described in 


5 Texture Mapping Architecture 
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up the operation 

cated lookahead could use the direction ot consecu­
tive accesses within a scanline. which could be 
calculated from the two previous access points. The 
rasterizer should provide a flag to indicate a scan­
line which could be used to the 
prefetch and lookahead that 

d) Detail of compressed Image 

Figure 5: Original and compressed Images 
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Figure 6: Texture Mapping Architecture 
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Figure 7: Assignment of Texel Blocks to Cache Cells 

PriceIPerformance Comparison 

In our proposed architecture, we assume an average 
of 3 mipmap accesses per 4x4 texel block. If stan­
dard 256Kx16 DRAM is used, one page can hold 
512 words, which corresponds to 16x16 blocks. We 
assume therefore that about every 24 blocks a new 
page has to be accessed. Thus about 2% (1/48) of 
the DRAM-accesses result in a page fault. This 
leads to the following performance estimation 
(assuming bilinear interpolation, a page access time 

of SOns and a random access time of lOOns). 24 
blocks are accessed in 

t = 47· 50ns + 1 . JOOns = 2450ns. (7) 

72 mipmap accesses can be performed in this time. 
Assuming 4 accesses for bilinear interpolation, we 
get a rate R of 

R = 29.4Mtexells. (8) 

We compare this to a design using 8-bit index map­
ping with one 16Mbit DRAM-chip (2Mx8) for the 
same texture size (the memory has to be 4 times 
larger). With a page size of 32x32 texels and 1 page 
fault every 24 mipmap accesses we get the follow­
ing results. 24 mipmap accesses are performed in 

t = 71· 50ns + 1 . JOOns = 3650ns, (9) 

if one mipmap access includes 4 texel accesses (of 

which we count only three, as we assume caching 

for a fair comparison): 

For the rate we get: 


R = 6.6Mtexells. (10) 

The result of the comparison is summarized in Table 
1. 

CCC Standard System 

Memory 4Mbit 16Mbit 

Bus 16bit 8bit 

Page Size 512 x 16 1024 x 8 

Texture 
size 

2Mtexel 
=1.5Mtexel 
mipmapped 

2Mtexel 
=1.5Mtexel 
mipmapped 

Speed (mipmap, 
bilinear 

interpolation 

29AMtexeVs 6.6Mtexel/s 

Memory 
Costs 

(June 95) 

$15 $60 

Prize/Perfor­
mance Ratio 

2MtexeVsI $ 0.1 Mtexel/s I $ 

Table 1: Prize/Performance Comparison 

7 Footprint Assembly 

Footprint assembly is a novel way of mapping tex­
tures onto surfaces. The main idea is to approximate 
the projection of the pixel on the texture by a num­

2mber N of square mipmapped texels. N = for 
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practical reasons, so the texels can be summed up 
and shifted right m places to give the final texture 
color. 
Figure 8 shows how the projection of a pixel 

Figure 8: Footprint Assembly 

(assumed to be a parallelogram, drawn in dark grey) 
on the texture map is approximated by a sequence of 
mipmap accesses. Footprint assembly requires only 
small additional hardware. The sequence of texture 
coordinates is generated internally to the texture 
mapping unit, so that this kind of texturing is still 
very fast for a reasonable m. To avoid unacceptable 
computing times the user can set an upper limit for 
m. Detailed information about footprint assembly 
can be found in [12]. 

The enhanced image quality justifies the increased 

rendering time, as can be seen in Figure 9. 

The upper four views were created by standard mip­
mapping and show vanishing details towards the 
background. The four images at the bottom were 
generated by footprint assembly with N limited to 
16. 

Image Quality 

The visual quality of a compression scheme can in 
the end only be judged by human observers. We 
made simulations of texturing with the described 
CCC compression scheme in conjunction with foot­
print assembly. In Figure 9, the results for different 
combinations can be seen (unfortunately only in 
black and white). Compared to original textures, 
still images as well as animations show noticeable 
but no disturbing artifacts for compressed textures. 
Mipmapping with bi-linear interpolation generally 
exhibits severe artifacts, independent of the use of 
image compression. Footprint assembly retains tex­
ture details even for objects in the background. For 
cost-efficient systems, we propose to combine bilin­
ear interpolation, CCC and footprint assembly, a 
way to improve texture mapping performance sig­

nificantly. 

9 	 Conclusion 

Compression in the context of texture mapping 
serves two purposes: it reduces the size and thereby 
the cost of the required memory and, equally impor­
tant, it reduces the required memory bandwidth. 
However, several requirements have to be fulfilled. 
The most important one is, that the local decompres­
sion of the stored texture is possible and can be per­
formed very quickly. Color Cell Compression 
(Ccq is identified as an extremely useful image 
compression technique for texture mapping. CCC in 
conjunction with footprint assembly gives better 
image quality at higher speed and lower cost than 
traditional texture mapping. 
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