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Abstract 

Accurate perspective mapping in real-time requires 
costly division operations per pixel and therefore ap­
proximation techniques are often employed. These per­
mit the mapping to be performed by interpolation, but 
generally with a significant set-up cost for the computa­
tion of the parameters. An efficient approximation tech­
nique which achieves good results with modest set-up 
requirements is presented. The technique uses Cheby­
shev control points to minimise errors. 

1 	 Introduction 

Texture mapping involves both geometric transforma­
tions and, to avoid aliasing, filtering operations. Only 
the former is considered here, with the main empha­
sis on texture coordinate calculation. Since the correct 
mapping function involves the evaluation of a quotient 
per pixel[6], it is computationally expensive. There­
fore, approximate methods are generally employed, al­
though these can introduce errors[3]. To improve the 
accuracy, polygons may be subdivided, however, as the 
number of polygons increases, the calculation becomes 
more expensive. Several approximation techniques have 
been reported [1] [8]. Both scan line and polygon 
based approximation techniques have been investigated. 
These approximation techniques in both cases require 
a considerable number of operations for the calcula­
tion of interpolation coefficients. We present here a 
new quadratic and cubic approximation techniques for 
both cases with significantly reduced set-up cost and 
improvement in the accuracy of the results. 

2 	 Perspective Mapping 

In order to map a 2D image onto an object in a per­
spective mapping, equation (1) must be performed at 
each pixel. 
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Az+By+C 
Gx+Hy+ I 

(1) 
D;z: +Ey+F

v ::: 
Gx +Hy+I 

where 2: and yare screen coordinates, u and v are tex­
ture coordinates and A to I are coefficients which char­
acterise the mapping function. Although this is an ef­
ficient solution to texture mapping in software, the di­
vision operation makes real time performance hard to 
achieve with hardware, since the two texture coordi­
nates (u, v) must be produced every SOns to satisfy real­
time constraints. The distinctive feature of perspective 
mapping is that it preserves lines in all orientations, 
however, lines converge to a vanishing point unless they 
are parallel to the projection plane. 

3 	 Conventional Approximation 
Techniques 

3.1 Linear Approximation 

The simplest and most widely used approximation tech­
nique is linear approximation. However, it results in 
severe errors in perspective projection, since the lin­
ear approximation is a poor representation of a rational 
function. Therefore, linear approximation cannot gen­
erate the foreshortening effects of true perspective [5] 
[6]. 

3.2 	 Quadratic Approximation along a 
Scanline 

Perspective mapping defined by equation (1) can be ap­
proximated by a quadratic function as below: 

(2) 
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where A to F are constants. In order to calculate these 
coefficients, the mapping of three points, i.e. the two 
ends of a scanline and its midpoint of each scan line, are 
required. Thus, a general solution for the polynomial 
coefficients can be found [1J. The quadratic coefficients 
are: 

A 
2(uo - 2UI + U2) 

(xo :1:2)2 

B 
XoUo + 3:1:2UO - 4XOUI 4X2Ul + 3XOU2 + X2 U 2 

(XO - X2)2 

c :l:OX2UO + x~Uo 4XOX2UI + X5U2 + XOX2U2 

(:1:0 - X2)2 
(3) 

3.3 	 Cubic Approximation along a Scan­
line 

In a similar way to quadratic approximation, a cubic 
expression can also be employed along a scanline. The 
general expression of the cubic interpolation polynomial 
15: 

U = aax3 + a2x2 + al x + ao 

v bax3 + b2 x2 + bix + bo (4) 

where ao to ba are constants. There are four unknown 
coefficients for the cubic approximation thus four con­
straints must be imposed to calculate them. For exam­
ple, the polynomial passes through the two endpoints 
of a span and satisfies the imposed conditions on the 
first derivative. The calculation of derivatives and the 
coefficients are given in [1]. 

3.4 	 Biquadratic Approximation 

Equation (1) can be approximated with a quadratic 
function in two variables [3], [8]. 

u::::; (Ax + By + C)2 (5) 

Re-arranging the equation above, this equation can be 
expressed in the form: 

u::::; A1X2 + AW2 + Aaxy + A4X + A 5 y + As (6) 

similarly, 

v::::; BIX2 + B2y2 + B3XY + B4:x + BsY + Bs (7) 

The biquadratic equation given in equation (6) is for a 
quadratic surface and quadratic interpolation is thus set 
up by fitting this surface to six points: the vertices and 
side midpoints of a triangle. Thus, using Gaussian elim­
ination method, six simultaneous equations are solved 
to obtain the interpolation coefficients. These six coef­
ficients must be calculated before texture coordinates 
are generated. Then, using the forward differencing 
method, interpolation is performed. 

3.5 	 Bicubic Approximation 

A bicubic interpolation is an improvement over the bi­
quadratic technique. The mapping equation is: 

U ::::; 	 (A:x + By +C)a 

::::; 	 AIX3 + A 2ya + Aax2y + A4:1:y2 + Asx2 + ASy2 

+A7XY + Asx + A9Y + AlO (8) 

The 10 coefficients must also be calculated before tex­
ture coordinate generation. The control points can be 
chosen in several ways, provided certain constraints are 
satisfied over the polygon. However, in order to solve 
the 10 simultaneous equations, Gaussian elimination is 
again required, which requires approximately 1000 op­
erations. This represents an excessive computational 
cost. 

4 Chebyshev Approximation 

The solution that we adopt to approximate the per­
spective mapping equation is a combination of the 
well-known Chebyshev and the Lagrange interpolation 
methods. The approximation with Chebyshev roots ex­
ploits the rather special properties of the use of un­
equally distributed data points and evenly distributed 
errors. Chebyshev points are located in the span [-1, 
1] and can be applied to any other range by mapping 
it into the range of interest. Thus, the approximation 
polynomial using Chebyshev points can be derived. The 
arithmetic operations for these derivations are given in 
[2] and [7J. 

4.1 Second Order Polynomial 

The second order approximation polynomial along a 
scanline uses 3 Chebyshev points in the span [a,b]. The 

3 points are calculated b~Y:~ 

1 	 +l-n 
Zn= 2 [(b-a)cos ; )1I"+a+b] (9) 

Then, the general formula for the interpolation polyno­
mial is: 

g(Z) =To + Tiz + T2z2 (10) 

where 

To 	 = AZ1Z2 + BZOZ2 + CZOz1 

Tl [A(ZI + Z2) + B(zo + Z2) + C(zo + zt)] 

T:z 	 = A+B+C (ll) 

and 

/(Zo)
A = (ZO - Z1)(ZO - Z2) 
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I(zt)
B 

(Z1 - ZO)(Z1 -Z2) 
I(Z2) 

(12)C 

4.2 	 Third Order Polynomial 

In a similar way to that described in the section, the 
third order interpolation polynomial can be obtained. 
The general formula is: 

where 

To -[z2zs(Azl + Bzo) + ZOZI(CZS + Dzz)] 
Tl ZlZ2(A + D) + zlzs(A + C) + z2zs(A + B) 

+zoz2(B + D) + zozs(B +0) + zozdC + D) 

T2 = -[zl(A+C+D)+Z2(A+B+D) 

+zs(A + B + 0) + zo(B + C + D)] 

Ta 	 (14) 

and 

I(zo)
A 

B 

C 
(Z2 - ZO)(Z2 - Z1)(Z2 Zs 

I{za) 
(15)D = 

Once the coefficients are calculated, tL and v values fol­
low through the use of forward differencing [1]. There­
fore, three forward difference constants are used to ap­
proximate perspective mapping represented by a cu­
bic polynomial. The same procedure is valid for the 
quadratic polynomial. 

4.3 	 Biquadratic and Bicubic Interpola­
tion on Chebyshev Points 

In our approach, 9 control points for the biquadratic 
and 16 control points for the bicubic are used, which are 
the roots of the second and the third order Chebyshev 
polynomial along both the x and y axes. Figure 1 shows 
the positions of the Chebyshev points over a polygon. 
Although the equal intervals along both axes have been 
chosen, Figure I (a) and (b), unequal intervals can also 
be evaluated as shown in Figure I(c) and (d). In the 
first case, four Chebyshev points for the span [0,1] are: 
Zo =0.038060234, Z1 = 0.308658295, Z2 = 0.691341736 
and Zs 0.961939758. Since interpolation will be per­
formed across a polygon and span lengths are equal 

along x and yaxes, the true values of F(xm' Yn) are cal­
culated for Xo, Yo, ... , Xs, Ya where Zo = xo Yo, zl 
Xl = Yl,Z2 X2 = Y2 and Zs =Xs = Ys· 

9 Control Points 16 ContrOl Points 

(8) 	 (b) 

I I F.Sa S1 1 331 

-f- ­ .~-
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9 Control Points 16 Control Points 

(c) (d) 

Figure 1: Chebyshev Control Points 

Thus, after a four-corner correspondence has been 
established between the unit square in texture space 
and an arbitrary quadrilateral in screen space, scan­
conversion is performed by the interpolation function 
obtained by using Chebyshev points. The bicubic poly· 
nomial can be derived in several ways. We have used 
the transfinite interpolation method. The general trans­
finite interpolation function is: 

M 	 N 

F(re, y) L ~m(x)F(xm, y) + L wn(y)F(x, Yn) 
m=O 	 n=O 

(16) 
M N

- L L ~m(x)wn(y)F(xm' Yn) 
m=On=O 
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3 3
where 

M 

4?m(X) = II x - Xk 

k:::O,k;tm Xm - Xk 


\}In (y) IIN 
Y-Yk (17) 

k:::O,k;t'" y.", - Yk 

and M = N =3. 
Also, F(x,Yn) and F(xm,y) can be expressed as: 

3 


F(x, y.",) = 	L 4?m(x)Fmn 
m::O 

3 


F(xm, y) = L \}In(y)Fmn (18) 
",:::0 

where Fmn values are the true values on Chebyshev 
points. When the auxiliary arithmetic operations are 
completed, the interpolation function takes the form: 

F(x, y) 	 H1 y
3 z 3 + H 2y3x 2+ H 3y3z + H4y3 


+HSy2 z 3 + HSy2 x 2 + H7y2 x + HSy2 


+H9yx3 + HlOyx 2 + HuYx + HuY 

+H13Z 
3 + Hl4X2 + H15X + HIS (19) 

The coefficients HI to HI6 are calculated via another 
coefficient matrix 0. 

-Cy FlO CyFao[ CxCyF" 	 -C)[CYFSO]
0- -CXFOl Fll -F21 CXF31 

- CxFoa -FI2 F2a -CX F32 

-CXCy F03 CyFI 3 -Cy Fa3 CXCyF33 
(20) 

9 20
900 910 930] 


9 01 9 11 9 21 9 31
o = 	 (21)
802 812 e22 B32


[ 

803 8 13 823 833 


where Cx = (X2 - Xd/(X3 - xo) 

and Cy = (Y2 - Yl) I (Y3 - Yo). Further algebraic 

manipulation results in simplified expressions for the 

coefficients which are now given by: 


3 3 


HI 	 LL8;j 
;:::0 j=O 

3 3 


H2 - L DiL8;j 

;=0 j:::O 


3 3 


H3 = 	LEiLBij 
;:::0 j=O 

:=H4 - L FiL 8ij 
;=0 j=O 


3 3 


Hs = LAj Leij 

j=O ;=0 


3 3 


H6 = LAj L Di 8i; 
j=O ;=0 


3 3 


H7 = - LAj LEieij 
j=O ;=0 


3 3 


Hs = LAj LFiB;j 
j=O ;=0 


3 3 


H9 	 LBj LBij 
j=O ;=0 


3 3 


HlO - LBj LDj8;j 
j=O i=O 


3 3 


Hu LBj L Ei 8;j 
j=O ;=0 


3 3 


HI2 = - LBj LFieij 
j=O ;=0 


3 3 


H 13 - LCj L 8ij 
j=O ;=0 


3 3 


H14 = LCj L Di 8;j 
j=O ;=0 


3 3 


HIS - LCj L Ei8ij 

j=O ;=0 


3 3 


HIS LCj L Fi8ii (22) 
j:::O ;=0 

5 Accuracy 

The Chebyshev polynomial has 11; zeros in the interval 
[-1,1] as given in equation (9) and 11; + 1 maxima and 
minima, located at: 

:Vm = cos (k7r) (23)
n

k =0,1, .. . ,n. 
The maxima and minima of the polynomial can only 

be equal to 1 and -1 respectively. This property makes 
Chebyshev polynomials useful in approximating func­
tions [7]. Although the particular approximation in a 
certain interval using N Chebyshev roots (provided that 
N is big enough) may not be better than any other hav­
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6 

7 

ing some other set of N data points, the approximation 
polynomial can be truncated to a polynomial of lower 
degree m in a very graceful way that yields the most 
accurate approximation of degree m. Since the polyno­
mial is bounded between -1 and 1, the difference be­
tween Nth and mth (m ~ N) order polynomials cannot 
he larger than the sum of neglected coefficients, which 
typically decrease rapidly. Therefore, the error is dom­
inated by an oscillatory function with m + 1 extrema 
distributed over the interval. This truncated approxi­
mation is nearly the same polynomial as the minima:z: 
polynomial [7], which has the smallest maximum devi­
ation from the true function among all polynomials of 
the same degree and is very difficult to find. 

Cost 

We have considered several approximation techniques in 
previous sections. In order to calculate approximation 
coefficients for the conventional biquadratic and bicu­
hic interpolation polynomials, the Gaussian elimination 
method is used. This method requires approximately 
N S operations where N denotes the number of equa­
tions. Therefore, much computational power is needed. 
As for the Chebyshev approximation, many fewer op­
erations are required and the results are more accurate 
as a greater number of control points are used. The re­
quirements for the traditional and Chebyshev approxi­
mation techniques are given in Table 1. 

Set-up Operations 

II Operations Scanline Polygon 

Traditional Quad. 36 > 216 
Traditional Cubic > 75 > 1000 
Chebyshev Quad. 24 138 
Chebyshev Cubic 62 310 

Table 1: Number of Operations 

Results 

Figures 4 to 8 show the results of scanline based approx­
imation techniques. In order to compare the methods, a 
rather difficult perspective view has been chosen. Gen­
erally, all images generated by approximate methods 
exhibit errors related to preserving straight and diago­
nallines. Careful examination of squares near the view­
ing point shows deformation of the nearest black square. 
Line errors and distortions of squares become less visible 
in Figure 8, which uses the Cubic Chebyshev approxi­
mation along a scanline. Figures 9 and 10 also show two 
different graphs of approximate coordinate versus true 

coordinates. The straight line represents the accurate 
result and it can be seen that the error with the use 
of the Chebyshev approximation method are less than 
with the others. Figures 2 and 3 also compare the re­
sults of the true algorithm and the Bicubic Chebyshev 
approximation technique. The perspective projection 
chosen for these views is also considered to be a dif­
ficult case and can give rise to severe deformations in 
the checkerboard pattern at large perspective distances 
if the mapping technique is not sufficiently accurate. 
However, the errors in the Bicubic Chebyshev approxi­
mation technique are acceptably small and distortion of 
straight lines is only apparent in a few diagonals, after 
careful examination. 

8 Discussion 

The method described in section 4.3 has been applied to 
a single rectangular surface. It uses 16 control points for 
the bicubic polynomial, which are chosen as the roots of 
the third order Chebyshev polynomial. It may not al­
ways be possible to restrict the surface to a rectangular 
shape and it may take the form of a general quadri­
lateral or a triangle. Furthermore, in a model with a 
number of facets, there can be a multiplicity of poly­
gons with the same texture pattern. Since the Cheby­
shev points would be chosen independently for two ad­
jacent surfaces, there would be a discontinuity between 
the texture patterns along the common edge. There­
fore the use of Chebyshev points is impractical in the 
case. However, as can be observed from equations (16) 
and (17), the control points can be arbitrarily chosen 
over a polygon at a cost of a few more multiplication 
operations. Although the errors will now be greater, 
the technique is still more accurate than other bicubic 
approximation methods due to extra control points. 

9 Conclusion 

A linear approximation is a poor fit for a rational func­
tion and in an extreme case, a quadratic one also fails. 
Therefore, a cubic approximation can be considered a 
reasonable technique. Traditional techniques are rea­
sonably accurate in the middle range of the interval, 
but the error increases towards the edges. On the other 
hand, using Chebyshev approximation methods, errors 
become more evenly distributed throughout the inter­
polation and their magnitudes become less than the 
other techniques. The reason for this is that the tra­
ditional methods use equi-spaced data points whereas 
Chebyshev approximation employs roots of Chebyshev 
polynomial as data points, which are defined by a cosine 
function and the spacing between these points is great­
est at the centre of the interpolation domain, decreasing 
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towards the edges. The results show that the Cubic and 
Bicubic Chebyshev approximation techniques provide 
rather acceptable images at much less cost in compari­
son with the conventional techniques. Hardware design 
can be based on either scan line or polygon rendering 
algorithms. Therefore, real time or near real time per­
formance can be achieved. 

Figure 2: True Texture Coordinates 

Figure 3: The Bicubic Chebyshev Approximation 

Figure 4: Linear Approximation 

Figure 5: Direct Quadratic Approximation 
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Figure 6: Quadratic Chebyshev Approximation 
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Figure 7: True Texture Coordinates 

Figure 8: Cubic Chebyshev Approximation 
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Comparison of 3 Oifferent Approximations 
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Figure 10: Comparisons of Case 2 

32 


