
1

Single Chip Hardware Support for Rasterization and

Texture Mapping

Hans-Josef Ackermann

Fraunhofer Institute for Computer Graphics

Darmstadt, Germany

Abstract

Today's interactive 3D-applications on Pes demand efficient
hardware support for functionality, e.g. shading and texture
mapping. In this paper, I present an ASIC that integrates most of
the 3D-reIated functionality defined in Intel's de-facto standard
3DR. As the chip was designed for real time environmental
simulation systems, the main focus has been on texture mapping,
which provides the most natural appearance at a moderate effort
level. To avoid artifacts during texture mapping, the chip
performs bi- or tri-linear blending on a MIPmap structure.
Texture addresses are calculated perspective correct. A crucial
problem concerning the tri-linear blending is the necessary data
bandwidth between ASIC and the texture buffer. Therefore, I
discuss several memory types and architectures for the texture
buffer depending on performance, price and board space
requirements. A short overview of different system architectures
using the ASIC concludes the paper.

Introduction

That which just recently occurred was foreseen years ago: After a
continuous increase in computational power and system
resources, the Pe has become a platform for real time 3D­
graphics applications such as environmental simulation for
training education and entertainment. Games as mass products
are pushing the market, preparing it for hardware-supported 3D
rendering. Such hardware support is still necessary as the quality
of software solutions is still poor in respect to resolution and
image quality. One feature which is gaining more and more in
importance is texture mapping. For optimum appearance with
lowest possible modeling costs, texture mapping is a key feature
of real time graphics systems today. Due to performance reasons,
most hardware and software realizations of texture mapping on
entry level platforms like Pes do not support true perspective
mapping and texture blending. This results in bad artifacts when
doing animation. Thus, components which overcome this
problem will be standard components of graphics systems within
a few years. First products like the GLiNT chips by 3Dlabs or
the Real3DIlOO chipset by Lockeed Martin are available or
announced. Compared to the REX chip presented in this paper,
the GLiNT chip (300SX) has a much lower texture mapping
functionality and rendering performance. The Real3D chip set
bas almost the same 3D functionality, has less performance and
consists of several chips. Both GLiNT and Real3D/lOO are
designed for a certain typical system environment. They integrate
bus interfaces and video controllers, which is efficient for small
and effective systems. Contrarily, the REX chip was designed

for highest and scalable rendering performance with more
flexibility for system design.

During the development of the REX chip, Intel published its
3DR specification [7), which is an attempt to define and
standardize the functionality of the pixel-oriented part of the
rendering pipeline. Looking at this ,,abstract rendering engine"
as it is called by Intel, we found that it fits the 3D functionality
of the REX chip very well. This gave us the confirmation, that
we are on the right track.

2 The Rendering and Texture ASIC

The Rendering and Texture ASIC (REX) has been designed to
provide an efficient. highly integrated support for shading and
texture mapping. It is based on the TRIA Chip described in [1]
and the concepts of the PRE-Chip described in [2]. The REX­
chip consequently makes use of pipelining and on-chip
parallelism to deliver a shaded and texture mapped pixel every
clock cycle. To gain even more performance, multiple REX chips
can be employed without additional initialization overhead.

2.1 Functionality of the REX Chip

The REX chip has the following characteristics:

Primitives:

• 	 Triangles
• 	 Quadrilaterals with upper edge parallel to the span

Sampling algorithms:

• 	 Exact point sampling (24 bit address space)
• 	 Area sampling with 16 stochastically distributed sample

points and up to four visible fragments per pixel

Pixel operations:

• 	 Flat shading
• 	 Gouraud shading
• 	 Z.buffering
• 	 Alpha blending for transparency
• 	 Texture mapping, perspective correct, I, 4 (hi-linear

blending) or 8 samples (tri-Iinear blending) per pixel,
MIPmap approacb

• 	 Nine mixing modes to support lighting effects
• 	 Support for accumulation buffer (16 times oversampling)

15

http://www.eg.org
http://diglib.eg.org

32

Geo-Interlace

Hierarchical Conlrol Unit

Gee-Interfoce Control

~icro­

W~'1f I Ieontroller­
~ Interface

Globol
Contrel

Debug
Statistics

~ Texture
Address

Texture
Read

G.oOoto

Triangle Control

ISpon Control I

Pipeline Control

Figure I: Block Diagram of the REX Chip

Provisions for chip-level parallelism:

• 	 Up to 32 REX..chips can work on the same data set in a
scan-line interleaved architecture

Interfaces:

• 	 32 bit data interface for primitive data
• 	 16 bit microcontroller interface
• 	 80 bit pixel buffer interface
• 	 64 bit texture buffer interface

Provisions for testing and debugging:

• 	 Full access to internal RAM and control and diagnostic
registers via the microcontroller interface

• 	 Boundary scan interface
• 	 Two scanpaths including all internal registers

Figure 1 shows the block diagram of the REX chip. The chip has
a hierarchical control structure realized by interactive state
machines. The data paths are realized as parallel pipelines of
different lengths. Shift register stages are provided to equalize
the different lengths so that values, which belong together, arrive
at the mixing stage at the same clock cycle. When accesses to
external interfaces can not be carried out pipelined within a
clock cycle, parts of the pipeline or the whole pipeline is halted.
This can be necessary during area sampling or during tri-linear
blending, when all 8 samples have to be loaded from the texture
buffer. To prevent the pixel buffer latencies from degrading
performance, the pixel buffer interface contains FIFO memories
for the different logical parts of the pixel buffer word.

16

2.2 Description of the Building Blocks

In the following section, I describe the different basic building
blocks of the REX chip focusing on the reaIization of the texture
mapping functionality.

2.2.1 The Control 8tnJctnre

The global control and initialization of the chip is done through
the microcontroller interface. Before normal operation, internal
status registers which control the operation modes and several
RAMs which are used as lookup tables have to be loaded. This is
done using the microcontroller interface. The interface provides a
16 bit data path and a 5 bit address room with direct access to
some important controllstatus registers as well as to registers
which contain statistical data. The statistical data are necessary
for a real time simulation system to recognize an overload
condition in the viewing subsystem. All other memory locations
inside the chip and the memory interfaces are accessed through
an address/data register logic. This logic is controlled by a state
machine providing auto-increment modes for the address
generation and taking care of the format conversion of the data
words. There are five 16 bit data registers which can hold a 80
bit pixel buffer word. In addition to the initialization tasks, the
chip can be operated in a debug mode where several kinds of
steps, like pixel step, span step, segment step and triangle step
are executed under the control of the external microcontroller.

The control unit of the geometry interface takes care of the
loading of the data sets from an external FIFO memory. In
single-Rex mode, its state depends on the availability of data in
the FIFO and the status of the generation pipeline. In multi-Rex

l£t £tl l£t ~ £t £t ;t} £t £t ~ £t £t ;:[1-'
RGBo-Gen RG60.flfo

l£t £t1;J ;:[I- £t £tl l£t £tl
Z-Gen Z-Reziprocol !JOlt Mixing Unit

llli I£t £t £t i I£t £t £t £t II;g ;:[I- I £t ;:[1-11 £t £t ;:[I- £t
F"UP Mask-Gen UV-U.,H TexLinAddr- TB-Intef'"foce ex ure tendtng nl

I£t ;:[1-1 I£t £t ;:[I- £t !
XY-Gen LOD-Unit

$pandata ShlftregiS1er

~ 1;:[1- ;:[I- ;:[I- £t I[lli !;:[I- ;:[I- ;:[I- ;:[I- ;:[I- ;:[I- £t ;:[I- ;:[I- ;:[I- ;:[I- ;il ;:[I- i ~ il:J
PBLinAddr'----;p'"e-:'"""nte":"::rf""oc.,-:.------' Z -Check Z-F";fo Fifo- Gen.PIl.EB

Comp. Fifos

I 1 I 2 I 3 I 4 i 5 I 6 I 7 I 8 I 9 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I

Figure 2: The Pipeline Structure of the REX Chip

mode, the geometry control of the master device observes
whether all slave devices are ready to receive new geometry data
as well.

The triangle control unit deals with all functions which have to
be performed per triangle. Its most important task is the loading
of primitive data from the setup registers in the geometry
interface to the internal working registers. Triangle- and span­
relevant data are loaded independently to enable the pipeline to
process a new triangle when pixels of the last span of the actual
triangle are still generated. The triangle control unit initializes
the segment process which decides in which part of a triangle the
current span is. The init span process determines the starting
values for the span control unit

The main task of the span control unit is to generate the x­
address of the actual pixel. Furthermore, pixel data, which are
invalid due to certain conditions like opacity, are marked to
prevent operations such as tri-linear blending which could halt
the pipeline, from dropping the performance unnecessarily. Data
of two triangles can be present in the pipeline at a time.
Corresponding data are marked with an ID bit. In this case the
geometry unit has to assure, that the processed triangles do not
overlap to avoid data inconsistencies. Otherwise, the pipeline has
to run empty before values of the next triangle are generated.

The REX chip as shown in figure 2 consists of several processing
pipelines which operate in parallel. The maximum pipeline
length is 21 stages. Intermediate results and parameters from all
pipelined units which are not used immediately are stored in the
span data shift register. The pipeline has to be halted by the
pipeline control unit under several conditions. The most likely of
these conditions is that the pixel buffer FIFOs run full due to
refresh cycles when using DRAMs or due to accesses to the
extended buffer when performing area sampling. If more than
one access to the texture buffer is necessary (tri-linear blending)
or if the texture buffer is not ready due to refresh cycles, the
parts of the pipeline which are not related to texture mapping are
halted on a cycle by cycle basis.

1.2...2 The Geometry Interface

The geometry interface stores the data sets which are read from
an external FIFO memory. The length of the data sets and the
meaning of the single values are different depending on the type
of data set. The shortest data set comprises 22 32 bit words; the
longest data set consists of45 words. Due to the buffering of the

.l7

parameters in the geometry interface as well as in the processing
units, initialization and processing can work in parallel. For
accumulation buffer [5] operation, pseudo statistic subpixel
offsets [9], [4] from a table are added to the vertices x,y
addresses.

2..2.3 The Rasterization Unit

The rasterization unit determines the addresses of pixels which
belong to a primitive represented by its corresponding data set.
The rasterization unit can be operated in point sampling mode
and in area sampling mode. Rasterization is done in ascending
scanline order (top down). It always starts from the vertex with
the lowest y value (PTop). The edge with the biggest difference
in y direction is the active edge and determines the scanning
direction. The coordinates of the starting points and endpoints of
the scanlines are calculated in the init span unit by adding the
edge slopes recursively.

In point sampling mode, pixels are only considered if their center
points lie within the geometric boundaries of the triangle. Pixels
which lie on the boundary are handled in such a way that, in the
case of triangles sharing edges, all edge pixels are set only once.
This prevents errors during alpha blending and reduces the
number of frame buffer accesses. The algorithm has already been
realized in the TRIA chip described in [1].

In area sampling mode, the situation is much more complex. To
avoid aliasing effects, all pixels which are partially covered by a
triangle are taken into account. For all pixels, the area which is
covered by the actual triangle has to be decided. The basic idea
is to define 16 stochastically distributed sampling points within a
pixel and test which of these sampling points are covered by t9P. /,
triangle. Z /<

- ,,,,..
During area sampling, th FUP it analyses the type of scanline
which is to be rasterized. ~ere are basically seven different
types of scanlines depending on whether they include one, two,
three or none of the vertices. This information together with the
scanning direction (left to right or right to left) and the sign of
the edge slope determines the sampling point within the actual
pixel (which is not always the center point as in point sampling).
The coordinates of the sampling point are passed to the r,g,b,a
and the z generator which calculate the respective values.
Furthermore. formula and parameters for the calculation of the
intersection points are determined and passed to the intersection

http:Fifo-Gen.PIl.EB

Figure 3: Intersection Points

unit. Most of the functionality of the FUP unit, which handles
more than 150 different cases, is realized in 8 lookup tables
which keeps the algorithm flexible up to a certain extent.

The intersection unit determines the intersection points between
the boundaries of a pixel and the edges of the triangle, which is
rasterized (figure 3). Fonnulas which are applied according to
the decision of the FUP unit are of the fonn:

intersect_y = jrac(p_y)+(l-jrac(p_x»·dy_dx

The fractional part of the x,y addresses of the intersection points
are rounded to 3 bits. They are concatenated and fonn a 6 bit
address to a lookup table which contains 64 16 bit mask words.
Each bit location in the mask words detennines whether the
corresponding sampling point is covered or not. Depending on
the scanning direction and the sign of the edge slope, the bits of
the mask must be inverted to get the covered sample points. In
case more than one edge is contained in the pixel, the masks are
generated for each edge and then logically ANDed to form the

final mask. ~tlLf>~. ?
("-f~.w,.. .

2.2.4 The r ,g,b,a Generator

In the area sampling mode, the distance of successive sampling
points does not always equal 1 due to the edge pixels. Thus,
simply adding a fixed increment for r,g,b,a and z is not possible.
Multiplication operations are necessary in any case if the starting
or end point of a scanline does not lie on a pixel center. In order
to have a homogeneous formula and a fixed pipeline length for
the calculation, we decided to determine the color, alpha and z
values in the most general way which is by using the plane
equation:

reCx·dv_x + reCy·dv_y + pTop_v

where reCx and rel...:y are the x,y coordinates relative to the
coordinates of pTop, dv.-:x and dv...:y are the increments of v
(representing f,g,b,a and z) in x and y direction and pTop_v is
the value of v at pTop. pTop is the reference vertex of the
triangle. Figure 4 shows a block diagram of the r generator. The
g,b,a generators are identical to the r generator.

2.2.4 The z Generator

The z value at the sampling location is calculated in the same
way as r,g,b and IX using the plane equation. The only deviation
from the block diagram in figure 4 are the wider data paths. In
point sampling mode, only one read cycle to the pixel buffer and
one write cycle depending on the result of the z comparison take
place. In area sampling. the situation is much more complex as
there are up to four fractions per pixel which have to be
considered.

2.2.5 The z Reciprocal Unit

Figure 5a-c: a - Original Texture; b - Perspective Mapping;
c - Linear Mapping

During their flow through the geometry part of the rendering
pipeline as defined by graphics standards like PHIGS PLUS, all
vertices are subject to a perspective transfonnation. During
rasterization, linear interpolation of colors or texture addresses,
which is commonly done, leads to perspective distortion as
shown in figure 5c. The distortion is as big as the z differences
between the vertices of a triangle are. It can be easily noticed on
large planes textured with a regular pattern. A possible solution
to this problem could be to keep the triangles small. This,
however, would burden the geometry stage of the rendering
pipeline and would decrease the attractiveness of texture
mapping. which gives a very natural appearance at moderate
geometry costs. To avoid this, we decided to realize a true
perspective texture mapping which requires a division per pixel.
The division is realized as multiplication with the reciprocal
value which is determined in the z reciprocal unit shown in
figure 6.

The reciprocal value is calculated based on the iteration
algorithm by NewtonlRaphson. The formula is:

zao .I=za.· (2 - z· zao)

with z being the value of which the reciprocal value is wanted
and za being the iterated value. For zao a seed value is used.

1

Add I 10.16 :

~ 10.16 ~ gen_r_ou!Add

8.16pTop_r ::::::::::======--~
Figure 4: The r Generator

18

n:-excePI

z 3232 Priority
Encoder

r-________..;I..IsEJr;:;;'~--------...;...jsEJf-;<S~------.:s;:,jEJf-;<;;T--------;s~L:t_ z_exp

5

Figure 6: Block Diagram of the z Reciprocal Unit

The algorithm requires normalized floating point numbers.
Therefore, the fixed point number z is converted first. The nine
most significant bits of the mantissa are used to determine a seed
value. The iteration is done one time, doubling the number of
significant bits, which is enough for our purposes. In the end, the
resulting floating point number is reconverted to a fixed point
representation. The floating point representation of z is passed to
the LOD unit where it is used to determine the correct level of
detail from the MIPmap representation of the texture.

2.2.6 The Texture Unit

The texture unit is the most complex processing unit within the
REX chip. It consists of the uv generator, the LOD unit, the
texture address unit, the texture buffer interface and the texture
blending unit.

(1,1)

(1,0)

Figure 7: The MIPmap Structure

The texture unit works on prefiltered texture maps which are
called MIPmaps [11]. In this representation, in addition to the
image with the intrinsic resolution, filtered images with lower
resolutions called levels of detail (LODs) are available. The
filtering is done by simply accumulating the color values of four
adjacent pixels of the higher resolution image and averaging the
result to compute one (figure 7). In our realization, the maximum
size for a texture is 1024 by 1024 texels. This size limits the
possible number of LODs to 11, where LODO is equivalent to a
base texture of 1024 by 1024 texels. Since it does not make
sense to have any LOD of any texture available, the two values
BES1LEVEL and WORSTLEVEL, included in the data set of
textured triangles, indicate the available LODs. The LOD which
has to be used depends on the z value of the sampling point. The
use of MIPmaps avoids aliases which are due to subsampling.
Artifacts which are due to horizontal or vertical movements of
the viewer or objects in a texture mapped scene can be reduced
by using bi-linear blending instead of point sampling the texture
[6]. In this mode, the four texels which are nearest to the u,v

address of the sampling point are taken into account. Their
v~ues are weighted according to their distance to the sampling
pomt and summed up. The result is scaled to the color range and
assigned to the pixel. In the bi-linear blending mode, the four
nearest pixels are chosen from the nearest LOD. When zooming
in~ a scene, the change of the different LODs can be recognized.
ThIS effect can be reduced by tri-linear blending. Tri-linear
blending consists of two bi-linear blending operations with texels
from the two nearest LODs. The results of the bi-linear blending
operations are weighted according to the z coordinate of the
sampling point. The weighting function determines the resulting
blending effect. Thus, it should be kept flexible.

2.2.6.1 The uv Generator

Using the x and y coordinates from the actual sampling point, the
za value from the z reciprocal unit, and a set of eight coefficients
all-a22 which are precalculated and included in each parameter
set, the uv generator calculates the normalized uv values
according to the following equations:

u.. =za· [(all· sp_x) + (al2· sp_y) +al3] +al4

v. =za· [(a21·sp_x) + (a22·sp_y)+a23] +a24

Un and Vn are multiplied with the size of the LOD calculated by
the LOD unit in order to receive the final uv values which are
used for the point sampling mode of texture mapping. For bi- and
tri-Iinear blending, the uv values of the four nearest texels per
LOD are calculated depending on the fractional parts of the uv
values. The corresponding weighting coefficients are read from a
lookup table.

2.2.6.2 The LODUnit

During point sampling and bi-Iinear blending, the LOD unit
determines the LOD which is nearest to the sampling point.
During tri-Iinear blending, the two LODs which embrace the
sampling point are taken into account. In the tri-Iinear blending
mode, weighting factors for the LODs are read from a lookup
table which is addressed by the fractional part of the calculated
LOD value. The basic equation to determine the LOD is:

LOD = ld(clod . za2)

Since za is available in normalized floating point format from the
z reciprocal unit, the whole equation is calculated in floating
point which reduces the complexity of the realization. If the
calculated LOD exceeds the range given by BES1LEVEL and
WORS1LEVEL, it is saturated to the respective value. In the tri­

.19

linear blending mode. the following equations detennine the two
LODs whicb are used:

WDIow =min(WORSTLEVEL, max(BESTLEVEL. ira(WD»))

WDhi =min(WORSTLEVEL, max(BESTLEVEL, ira(LOD)+l))

2.2.6.3 The Texture Address Unit

The texture address unit detennines the pbysical addresses for
the access to the texture buffer. Besides the uv values from the
uv generator and the LOD. the texture color depth (8. 16 ore 32
bits) and the 24 bit base address of the actual texture map are
considered for the calculation.

i elK

ITBAddrO~~
, Hotd ToWf{.)

,TBAddrl~~
I
TBOotaO~~

TBOotaO~~

Figure 8: Timing Diagram of the Texture Buffer Interface

2.2.6.4 The Texture Buft'er Interrace

The texture buffer interface consists of two independent 32 bit
data paths with 24 bits of address space each. The attached
memory must be organized in such a way that four arbitrary,
adjacent 32 bit texels can be read in one access. This can be
achieved by interleaving the memory two times in the borizontal
and two times in the vertical direction. In 16 bit or 8 bit texture
modes. the memory stores two or four texels per word. Starting
from their base address, the LODs of a texture are stored
consecutively in the memory beginning with the best LCD
available. The interface runs at 80 MHz. During one period of
the 40 MHz chip clock, addresses for all four banks are present
at the two independent address busses and can be latched

externally. After a certain number of wait cycles. depending on
memory speed, the four texel values appear on the data busses
and are latched inside the chip. Figure 8 shows the basic timing
of the texture buffer. To support DRAMs, a unit detects page
misses based on the array size of the texture memory. This
enables an external controller to start precbarge cycles as early as
possible. Furthennore. an internal logic keeps track of refresh
cycles and decides whether refresh cycles have to be triggered.
The refresh logic tries to trigger refresb cycles during periods
when the texture memory is not used. If a certain number of
refresh cycles (detennined by the type of memory device) is
pending, the texture pipeline is halted and the refresh cycles are
executed. The values which determine the behavior of the refresh
logic and the number of wait states necessary for page mode and
random cycles are controlled from the microcontroller interface.
When fast SRAMs are used to realize the texture buffer, no wait
states are necessary. When using DRAMs, one or two wait states
in page mode and three to five wait states in random mode are
inserted, depending on the device speed. Wait states halt the
generator pipeline as well as the texture pipeline. During tri­
linear blending, the pipeline is halted for each pixel. because
eight values have to be loaded in two cycles. An exception to this
rule takes place if values which have been loaded in the previous
cycle can be reused. For this purpose, the last values are cached
in the texture buffer interface.

2.2.6.5 The Texture Blending Unit

The texture may be represented in eight different fonnals as
shown in the following table. Depending on the purpose of
texture, color values (r,g,b). intensity (i) and alpha values (ex) are
used.

According to the texture format, multiplexers within the texture
blending unit connect the components of the texture words to the
appropriate calculation units. During bi-linear blending, the
components of the four texel values are weighted with the factors
determined by the LCD unit and summed up. The calculations

1.S :
ibl_fOC_oi

e.. !.Iult

tex_r_O

tbl_foc_l 1.6

Mult f---'
,,,-,-,' I r

"'-,,,-,, ... ' 8 El 8 lex_bi_r

8.,S

Ibl_foc_2 1.6

t.,_r_2

!.Iult r---'

088 : Reg,

!.lull
i:>l_fOC_

3 i
'''_'_3~1 I

W I'
Ibl_fac_23 loS

Figure 9: Block Diagram of the Texture Blending Unit

20

for r ,g,b and a are done in parallel. For each component, six
multiplications and four additions are necessary (figure 9). For
tri-linear blending, four texels of the fust LOD are processed in
this way and latched. The four texels of the second LOD are
blended consecutively in the same manner. The resulting values
are weighted with the LOD blending factors and summed up to
determine the final values.

texel width contents format
32 r,S/:,b,a 8,8,8,8
24 r,a,b 8,8,8
16 r,2,b 5.6,5
16 i.a 8,8
16 r,g,b,a 4,4,4,4
8 i 8
8 a 8
8 i,a 7,1

Table 1: Texel Formats

2.2.7 The Mixing Unit

The mixing unit combines the results of the r,g,b,a generator
pipeline and the texture pipeline to achieve lighting effects on
textured surfaces. Furthermore, a secondary color defined in the
triangle data set can be included into the mixing for fading
effects. We realized nine different mixing modes:

1. mix_c = gen3 * Ci; mix_a = gen_a;

2. mix_c =gen3, mix_a =gen_a *Ci;

3. mix_c =gen3 *Ci; mix_a =gen_a * Ci;

4. mix_c = gen_c * cc; mix_a = gen_a;

5. mix_c = gen_c *Cc, mix_a = gen_a *ca;

6. mix_c =gen_c + Ci * sec_c, mix_a =gen_a + Ci * sec_a;

7. mix_c = gen_c, mix_a: gen_a + ca *(seca - gen_a);

8. mix_c =gen_c + U *(sec_c - gen_c), mix_a =gen_a:

9. mvec: gen3 + U *(sec_c - gen_c), mix_a gen_a + Ci *
(sec_a - gen_a);

In the equations, c corresponds to the color components r,g.b.
whereas i corresponds to an intensity. The gen values are from
the generator pipeline, whereas the t values are from the texture
pipeline. As a last operation. the resulting values are saturated to
the maximum and minimum values to prevent color over- or
underflows. In the accumulation buffer mode. the accumulation
of the generated and the memory value takes place in the mixing
unit. The necessary weighting factors correspond to the
reciprocal of the supersampling factor which is 4 or 16. Thus. the
weighting can be achieved by simply shifting the operands.

u.s The Pixel Buffer Interface

The pixel buffer has a word width of 80 bits and has a linear
addressing scheme. It consists of two logical regions, the real
pixel buffer and the extended buffer. In point sampling mode. the
pixel buffer stores all pixel related data of a respective address.
These are the color values r,g,b. the alpha value a, the depth

Figure 10: Timing Diagram of the Pixel Buffer Interface

value z and some status information. In the supersampling mode.
r,g,b.a are expanded by four bits each, to store the accumulated
intermediate values. In the area sampling mode, the 16 bits of
the area mask are stored additionally. Furthermore. for each
pixel, up to four fractions are stored in the extended buffer which
is addressed dynamically. To mark pixels with more than one
fraction, a pointer bit in the status of the pixel buffer entry is set.

In this case, the r,g,b,a and z values are replaced by a pointer to
one or two addresses in the extended buffer. where two fractions
are stored consecutively at the first address and one or two at the
second address, providing three or four fractions exist. The
number of existing fractions is coded in the status of the pixel
buffer entry. To ease the z decision which is much more complex
in the area sampling mode than in the point sampling mode. a
status bit indicates whether one of the datasets in the extended
buffer belongs to a fraction covering the whole pixel. In this case,
the z value and the position of the full pixel are stored in the
pixel buffer entry. If the actually generated fraction is behind the
full pixel, it is rejected and no accesses to the extended buffer
occur. In the case of more than four fractions per pixel, a smooth
bit is set, which indicates this situation. In a postfiltering
process, such pixels can be blended with surrounding pixels to
minimize aliasing. The same situation takes place when the
extended buffer is full and no fractions can be stored.

Like the texture buffer interface, the pixel buffer interface works
at 80 MHz. The pixel buffer is assumed to consist of two banks,
each containing either even or odd addresses. During the high
state of the 40 MHz chip clock, the even addresses are output.
during the low state. the odd addresses. The type of access (read
or write) is indicated by two signals. The addresses are latched
externally. Assuming fast SRAMs for the pixel buffer, read data
are latched in the chip one clock cycle after the address appears.
Write data are output at the next edge of the clock and are
removed at the second following edge of the 40 MHz clock.
Figure 10 shows the basic timing of the pixelbuffer interface.

The pixel buffer interface receives its data from three FIFOs
which contain 80 bit data words and 24 bit addresses. One of the
FIFOs contains only full pixels and first fractions. The second
contains additional fractions where pointers have to be stored in
existing pixel buffer entries. The third FIFO, which consists of
two independent blocks for even and odd addresses, contains
data for the extended buffer. The subdivision assures, that
independent of the available time slice (even or odd), a value can
be written. During each period of the chip clock, only one read
cycle can be executed. Therefore, read cycles have priority ov~
write cycles. Since the external memory access frequency IS

assumed to be double that of the internal pipeline, two write
cycles can be performed per chip clock cycle. If no read cycle is
necessary due to an invalid pixel in the pipeline. two write cycles
are executed. The decision from which FIFO the data are written
is made based on the filling level of the FIFOs, the triangle ID
and a round-robin strategy. If the triangle ID bit changes within a
FIFO, the other two FIFOs are served first. Ifone of the FIFOs is

21

filled, the generator pipeline is halted until the filling level is
once again below a certain threshold.

2.3 Performance of the REX Chip

Analyzing the perfonnance of polygon rendering hardware, two
different parameters must be considered. The frrst one is the
perfonnance in polygons. namely triangles. per second which can
be rendered, assuming the data sets are available. Assuming
further, that the triangles are small, the initialization time for the
chip detennines the perfonnance limits. The initialization time
mainly depends on the number of parameters in the data set of a
triangle. Thus, for different shading and texturing modes,
different perfonnance values tum out, as shown in table 2.

rendering mode trianglesls triangles S pixels
flat shading 900,000 34

flat shading + texture 540,000 64
Gouraud shading 660,000 50

Gouraud shading_ + texture 440,000 80

Table 2: Maximum Triangle Perfonnance Values

The second important perfonnance parameter is the number of
pixels which can be generated per second. This parameter
depends on the chosen sampling algorithm, the texture blending
mode, the speed of the attached memory and the clock frequency
of the internal pipeline. Clock frequency and memory speed
influence the perfonnance linearly. When DRAMs are used,
there is some additional loss in perfonnance due to refresh cycles
and random accesses. For point sampled texturing, only one
access per pixel is necessary. For bi-linear blending, the required
four values can be read pipelined in one clock cycle as well.
Using tri-linear blending of 32 bit textures, two clock cycles are
necessary unless data from the internal cache registers can be
used. When 16 bit or 8 bit textures are used, the probability of
cache hits is high as more texels are read per cycle. Assuming no
memory wait cycles are necessary in the point sampling mode at
40 MHz chip clock. the following performances occur:

rendering mode (including z buffering) Mpixels/s
flat shading 40
Gouraud shading 40
texture mapping, 1 sample 40
texture mapping, 4 samples 40
texture mapping, 8 samples (16 bit) 40
texture mapping, 8 samples (32 bit) 20 I

Table 3: Maximum Pixel Generation Rates

In the area sampling mode, the perfonnance additionally depends
on the data. The factor which mainly influences the perfonnance
is the depth complexity of the rendered scene. This is due to the
fact that the number of fractions per pixel detennines the number
of accesses to the extended buffer. Under worst case conditions,
with four existing fractions, one read and one write to the pixel
buffer and four reads and one write to the extended buffer are
necessary. The whole process with the comparisons and
decisions takes about 20 cycles. This delay influences
performance only in the instance of many such pixels occurring
consecutively or if the pixel buffer FlFOs are empty. Otherwise,
the interface is kept busy with data from the FlFOs.

Another factor which influences perfonnance during area
sampling is the ratio between edge pixels and pixels set during
point sampling. In scenes with small triangles, a significant rise
in rendering time can be noticed due to the higher number of

pixels which must be processed. Since the REX chip was
designed for real time applications, it keeps track of statistical
infonnation within a frame. This infonnation can be accessed via
the microcontroller interface. Thus, the system can react to
overload situations by reducing the scene complexity.

2.4 Status of the REX Chip

The design has been described using VHDL. Functional
simulation and synthesis have been done using the Synopsys
VHDL simulator and silicon compiler. Test stimuli and strobes
were generated from a software model built from an existing
software implementation. The netlist generated by the synthesis
tool was transferred to the LSI Logic design environment and
simulated with the CMDE simulator. The results of the
behavioral and netlist simulation were compared to ensure the
correctness of the design flow. The gate count is about 450,000
gate equivalents with about 280,000 logic gates, 40,000 gates for
registers and 130,000 gates for internal RAMs. The utilization is
about 45%. Due to power dissipation and utilization reasons, we
migrated from the LSI 300K 0.6p. 5V technology to the 500K
O.5J.1. 3.3V technology with a die size of 16,5 by 16,5 mm. The
chip was designed for a worst case operating frequency of 40
MHz. Two internal PLL-circuits compensate clock skew and
buffer delays and generate the 80 MHz frequency for the buffer
interface operation. The chIp has a power dissipation of about
5W. It is packaged in a 39 x 39 CPGA package with 447 pins.
The signal pin count is 304.

The netlist of the chip has been delivered to the manufacturer for
layout. We expect first silicon to be available at the end of '95.

3 Texture Memory Considerations

The texture memory is a part of the rendering system which
mainly influences performance and determines costs. In order to
keep one MIPmap 32 bit texture with a LODO resolution of 1024
by 1024 texels in the texture memory, at least 5,33 Mbytes are
necessary. Due to the fixed array sizes of memory devices,
typically 8 Mbytes are used. To prevent texture buffer updates
from dropping rendering perfonnance, the texture buffer should
be realized as a double buffer. Both buffers together add up to 16
Mbytes, which is not even too extreme a demand. Assuming a
memory architecture with an interleave of four, a read cycle time
of 25 ns would be appropriate. Furthennore, the most restrictive
requirement is that the random accesses do not influence
perfonnance. To fulfill these requirements, using ultra fast 15 ns
SRAMs is still the only possible way. Such RAMs are available
with a complexity of 1 MBit. So 16 Mbytes correspond to 128
chips. Independent of the fact that such RAMs are rather
expensive, they use a lot of boardspace, too much for compact
systems. like in the PC envifonment.

DRAMs are available in higher complexity and at reasonable
lower costs. Besides the more complex interface and the
necessity of refresh cycles, DRAMs are substantially slower than
SRAMs. Due to the architecture of a DRAM, there are two
different access times. The random access time starts from
applying the row address. Including the precharge time between
subsequent cycles, the cycle time for a typical DRAM is about
lOOns. When data are accessed within a row of the memory
array, the access is faster. This mode is called page mode. The
page mode cycle time is typically about 60 ns. Achieving the
same perfonnance under worst case conditions (random access)
as with SRAMs, requires a four times higher interleave factor. A

22

higher interleave factor again means higher chip count and a
more complex circuitry. decreasing the advantages of the
DRAMs.

Recently. a number of enhanced memory devices based on
DRAMs have been presented.

Hyper page mode devices have the same characteristics as
ordinary DRAMs. The cycle time in page mode has been reduced
to about 20 to 30 ns which means double performance compared
to conventional page mode DRAMs. The random access time
could be reduced only slightly to 90 ns.

Eoo DRAMs (Extended Data Out DRAMs) have key timing
parameters similar to that of hyper page mode DRAMs.
Additionally, Eoo DRAMs have internal buffers to keep output
data stable during CAS precharge time. This feature relaxes the
timing and removes the need for external buffers.

EDRAMs (Enhanced DRAMs) contain four internal banks with
one line of cache for each. They have a random cycle time of 65
ns. a cache cycle time of 15 ns and a cache to cache cycle time of
25 ns. Up to now, only chips with a complexity of 4 Mbit are
available.

SDRAMs (Synchronous DRAMs) and SGRAMs (Synchronous
Graphics RAMs) belong to another group of memory devices.
They are clocked and have an architecture comprising of two
internal banks with cache memory for each bank. Operating the
banks alternately. precharge times can be hidden. SDRAMs have
a faster cache cycle time (10 ns) but a slower random access time
(100 ns) compared to EDRAMs. SDRAMs and SGRAMs are
burst oriented. This means that only ascending addresses within
a page can be read at full speed. SDRAMs are available or
announced in complexities up to 64 Mbit. SGRAMs are
announced only in a 128K by 32 bit organization.

RDRAMs (Rambus DRAMS) are also burst oriented. Unlike all
other devices. RDRAMs have a special high speed (250 MHz).
low voltage swing electrical interface with a proprietary
command protocol. Burst access is extremely fast (2 ns). The
single read cycle time within the cache is 40 ns. The random
access time is 112 ns due to cache miss latencies. The significant
difference between burst performance and performance in the
other operation modes results from the protocol overhead.
RDRAMs require a special controller and a fixed board layout.
Due to the high operation frequency the power consumption of
the controller is high.

MDRAMs (Multi bank DRAMs) have been one of the latest
developements in memory architectures. They exploit the idea of
multiple banks on chip. to hide latencies and to increase the hit
rate when accessing nonsequential data. The smallest chip
comprises 16 banks of 32 rows by 256 columns by 32 bit,
summing up to 4 Mbit. The most complex chip announced
contains 72 of such banks. MDRAMs are clocked and have a 16
bit multiplexed address/data bus. Data are transferred on both
edges of the clock which can be up to 166 MHz. The random
access time is about 54 ns. The burst acces time is 6 ns. The
access time between activated banks is 18 ns. Control of the
MDRAMs is different and more complex than that of ordinary
DRAMs. An external controller has to take care of precharge,
activate and refresh cycles. The electrical interface is CMOS or
TIL compatible.

Taking into account the different characteristics of the described
memory devices, there is no optimum solution. If price and board
space are of minor importance, SRAMs deliver optimum

performance for random access. Among the other devices
standard DRAMs and DRAMs with hyper page mode are the
cheapest solution if performance is of less importance. EDRAMs
offer a very good page mode performance and an acceptable
random access time at moderate costs. Due to their limited
complexity they require medium board space. MDRAMs seem to
be a true alternative to SRAMs. They combine excellent page
mode cycle time with acceptable random access time. Due to the
internal architecture, the hit rate is high, compared to the other
devices with internal cache. Board space requirements of the
MDRAMs are moderate. Costs are expected to be similar to that
of standard DRAMs. More details are discussed in [10).

4 System Considerations

Using the REX chip, a wide variety of system requirements can
be covered. To design a system utilizing a REX chip or multiple
REX chips, the most important question is which performance
should be reached. This determines the number of REX chips in
the system. A multiple REX approach with 32 REX chips
increases the pixel generation rate almost linearly up to 1.28
GpixelS/s. On the other hand, it does not increase the triangle
performance. Nevertheless, a triangle performance of 400,000 to
900,000 is already rather high and requires a multiprocessor
geometry pipeline to be reached as system performance. A
drawback of the multiple REX approach, as with all similar
approaches, is the necessity of supplying multiple texture buffers
as well. The effects of choosing texture memory in terms of
performance, boardspace and costs have already been outlined in
the previous paragraph. When using the REX chip in the area
sampling mode, the up to four fractions per pixel have to be
blended after the generation of a frame has been finished. For
this purpose, another ASIC, the Color Blending Unit (CBU) has
been designed. The blending is done at the frequency of the
video output. Systems for multi-media applications such as the
integration of video and graphics using the REX chip have been
described in [8] and [3].

5 Conclusions and Future Work

I presented a rendering chip which integrates high performance
shading and texture mapping functionality compatible with
Intel's 3DR specification. The chip was mainly designed for real
time applications. The chip integrates support for chip level
parallelism allowing for a scaleable system performance.

Future work will focus on two different areas. The most
important was already discussed in the section Texture Memory
Considerations. It is necessary to reduce memory costs without a
significant drop in performance. Therefore, new architectures
and memory types must be investigated.

The second topic is the integration of a CPU kernel in order to
calculate the necessary data structures from the standard vertex
representation internally. This would improve the interface
efficiency and increase system performance.

1 Acknowledgements

The REX chip was realized in cooperation with S1N Atlas
Electronics, Bremen and the Institute for Integrated Circuits,
Erlangen. The work was funded in part by the German Ministry
for Education and Research (BMBF).

23

8 References

[I] 	 Ackermann, H.-J., Hornung, C.: An Architecture for a
High Performance Rendering Engine. In A. Kaufman,
(Ed.): Rendering, Visualization and Rasterization
Hardware, Springer-Verlag, Berlin, 1993, pp.157-174.

[2J 	 Ackermann, H.-J., Hornung. C.: The Triangle Shading
Engine. In R.L. Grimsdale. A. Kaufman, (Eds.):
Advances in Computer Graphics Hardware V, Springer­
Verlag, Berlin. 1991, pp.3-13.

[3J 	 Ackermann, H.-J., Osterfeld, U.: Integration of Live
Video and Computer Graphics for Video Effect
Generation. In W. StraBer, (Ed.): Proceedings of the
ninth Eurographics Workshop on Graphics Hardware,
Oslo, September 1994, pp.l09-114.

[4J 	 Barkans. A.: Hardware-Assisted Polygon Antialiasing,
Computer Graphics and Application, 11 (l), January
1991, pp. 80-88.

[5] 	 Haeberli, P., Akeley, K.: The Accumulation Buffer:
Hardware Support for High-Quality Rendering.
Computer Graphics, VoJ.24 Nr.4, August 1990, pp. 309­
318.

[6] 	 Heckbert, P. S.: Survey of Texture Mapping. Computer
Graphics &: Applications. 6(11), November 1986, pp.
56-67.

[7] 	 Intel Corporation: Intel 3DRIRE Graphics Programming
Manual, revision 002. April 1995.

[8] 	 Jager. M., Osterfeld, U., Ackermann. H.-J .• Hornung. C.:
Building a Multimedia ISDN PC, Computer Graphics
and Application. 13(5), September 1993. pp. 24-33.

[9] 	 Lathrop. 0., Kirk, D., Voorhies. D.: Accurate Rendering
by Subpixel Addressing. IEEE Computer Graphics &
Applications. September 1990. pp. 45-53.

[10] 	 Schrooter, F.: Diploma Thesis, Technical University
Darmstadt, September 1995.

[11] 	 Williams, L.: Pyramidal Parametrics. Computer
Graphics, Proc. SIGGRAPH'83, 17(3), July 1983, pp. I­
ll.

24

