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Abstract 

Today's interactive 3D-applications on Pes demand efficient 
hardware support for functionality, e.g. shading and texture 
mapping. In this paper, I present an ASIC that integrates most of 
the 3D-reIated functionality defined in Intel's de-facto standard 
3DR. As the chip was designed for real time environmental 
simulation systems, the main focus has been on texture mapping, 
which provides the most natural appearance at a moderate effort 
level. To avoid artifacts during texture mapping, the chip 
performs bi- or tri-linear blending on a MIPmap structure. 
Texture addresses are calculated perspective correct. A crucial 
problem concerning the tri-linear blending is the necessary data 
bandwidth between ASIC and the texture buffer. Therefore, I 
discuss several memory types and architectures for the texture 
buffer depending on performance, price and board space 
requirements. A short overview of different system architectures 
using the ASIC concludes the paper. 

Introduction 

That which just recently occurred was foreseen years ago: After a 
continuous increase in computational power and system 
resources, the Pe has become a platform for real time 3D­
graphics applications such as environmental simulation for 
training education and entertainment. Games as mass products 
are pushing the market, preparing it for hardware-supported 3D 
rendering. Such hardware support is still necessary as the quality 
of software solutions is still poor in respect to resolution and 
image quality. One feature which is gaining more and more in 
importance is texture mapping. For optimum appearance with 
lowest possible modeling costs, texture mapping is a key feature 
of real time graphics systems today. Due to performance reasons, 
most hardware and software realizations of texture mapping on 
entry level platforms like Pes do not support true perspective 
mapping and texture blending. This results in bad artifacts when 
doing animation. Thus, components which overcome this 
problem will be standard components of graphics systems within 
a few years. First products like the GLiNT chips by 3Dlabs or 
the Real3DIlOO chipset by Lockeed Martin are available or 
announced. Compared to the REX chip presented in this paper, 
the GLiNT chip (300SX) has a much lower texture mapping 
functionality and rendering performance. The Real3D chip set 
bas almost the same 3D functionality, has less performance and 
consists of several chips. Both GLiNT and Real3D/lOO are 
designed for a certain typical system environment. They integrate 
bus interfaces and video controllers, which is efficient for small 
and effective systems. Contrarily, the REX chip was designed 

for highest and scalable rendering performance with more 
flexibility for system design. 

During the development of the REX chip, Intel published its 
3DR specification [7), which is an attempt to define and 
standardize the functionality of the pixel-oriented part of the 
rendering pipeline. Looking at this ,,abstract rendering engine" 
as it is called by Intel, we found that it fits the 3D functionality 
of the REX chip very well. This gave us the confirmation, that 
we are on the right track. 

2 The Rendering and Texture ASIC 

The Rendering and Texture ASIC (REX) has been designed to 
provide an efficient. highly integrated support for shading and 
texture mapping. It is based on the TRIA Chip described in [1] 
and the concepts of the PRE-Chip described in [2]. The REX­
chip consequently makes use of pipelining and on-chip 
parallelism to deliver a shaded and texture mapped pixel every 
clock cycle. To gain even more performance, multiple REX chips 
can be employed without additional initialization overhead. 

2.1 Functionality of the REX Chip 

The REX chip has the following characteristics: 

Primitives: 

• 	 Triangles 
• 	 Quadrilaterals with upper edge parallel to the span 

Sampling algorithms: 

• 	 Exact point sampling (24 bit address space) 
• 	 Area sampling with 16 stochastically distributed sample 

points and up to four visible fragments per pixel 

Pixel operations: 

• 	 Flat shading 
• 	 Gouraud shading 
• 	 Z.buffering 
• 	 Alpha blending for transparency 
• 	 Texture mapping, perspective correct, I, 4 (hi-linear 

blending) or 8 samples (tri-Iinear blending) per pixel, 
MIPmap approacb 

• 	 Nine mixing modes to support lighting effects 
• 	 Support for accumulation buffer (16 times oversampling) 
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Figure I: Block Diagram of the REX Chip 

Provisions for chip-level parallelism: 

• 	 Up to 32 REX..chips can work on the same data set in a 
scan-line interleaved architecture 

Interfaces: 

• 	 32 bit data interface for primitive data 
• 	 16 bit microcontroller interface 
• 	 80 bit pixel buffer interface 
• 	 64 bit texture buffer interface 

Provisions for testing and debugging: 

• 	 Full access to internal RAM and control and diagnostic 
registers via the microcontroller interface 

• 	 Boundary scan interface 
• 	 Two scanpaths including all internal registers 

Figure 1 shows the block diagram of the REX chip. The chip has 
a hierarchical control structure realized by interactive state 
machines. The data paths are realized as parallel pipelines of 
different lengths. Shift register stages are provided to equalize 
the different lengths so that values, which belong together, arrive 
at the mixing stage at the same clock cycle. When accesses to 
external interfaces can not be carried out pipelined within a 
clock cycle, parts of the pipeline or the whole pipeline is halted. 
This can be necessary during area sampling or during tri-linear 
blending, when all 8 samples have to be loaded from the texture 
buffer. To prevent the pixel buffer latencies from degrading 
performance, the pixel buffer interface contains FIFO memories 
for the different logical parts of the pixel buffer word. 
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2.2 Description of the Building Blocks 

In the following section, I describe the different basic building 
blocks of the REX chip focusing on the reaIization of the texture 
mapping functionality. 

2.2.1 The Control 8tnJctnre 

The global control and initialization of the chip is done through 
the microcontroller interface. Before normal operation, internal 
status registers which control the operation modes and several 
RAMs which are used as lookup tables have to be loaded. This is 
done using the microcontroller interface. The interface provides a 
16 bit data path and a 5 bit address room with direct access to 
some important controllstatus registers as well as to registers 
which contain statistical data. The statistical data are necessary 
for a real time simulation system to recognize an overload 
condition in the viewing subsystem. All other memory locations 
inside the chip and the memory interfaces are accessed through 
an address/data register logic. This logic is controlled by a state 
machine providing auto-increment modes for the address 
generation and taking care of the format conversion of the data 
words. There are five 16 bit data registers which can hold a 80 
bit pixel buffer word. In addition to the initialization tasks, the 
chip can be operated in a debug mode where several kinds of 
steps, like pixel step, span step, segment step and triangle step 
are executed under the control of the external microcontroller. 

The control unit of the geometry interface takes care of the 
loading of the data sets from an external FIFO memory. In 
single-Rex mode, its state depends on the availability of data in 
the FIFO and the status of the generation pipeline. In multi-Rex 



l£t £tl l£t ~ £t £t ;t} £t £t ~ £t £t ;:[1-'
RGBo-Gen RG60.flfo 

l£t £t1;J ;:[I- £t £tl l£t £tl 
Z-Gen Z-Reziprocol !JOlt Mixing Unit 

llli I£t £t £t i I£t £t £t £t II;g ;:[I- I £t ;:[1-11 £t £t ;:[I- £t 
F"UP Mask-Gen UV-U.,H TexLinAddr- TB-Intef'"foce ex ure tendtng nl 

I£t ;:[1-1 I£t £t ;:[I- £t ! 
XY-Gen LOD-Unit 

$pandata ShlftregiS1er 

~ 1;:[1- ;:[I- ;:[I- £t I[lli !;:[I- ;:[I- ;:[I- ;:[I- ;:[I- ;:[I- £t ;:[I- ;:[I- ;:[I- ;:[I- ;il ;:[I- i ~ il:J 
PBLinAddr'----;p'"e-:'"""nte":"::rf""oc.,-:.------' Z -Check Z-F";fo Fifo- Gen.PIl.EB 

Comp. Fifos 

I 1 I 2 I 3 I 4 i 5 I 6 I 7 I 8 I 9 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 

Figure 2: The Pipeline Structure of the REX Chip 

mode, the geometry control of the master device observes 
whether all slave devices are ready to receive new geometry data 
as well. 

The triangle control unit deals with all functions which have to 
be performed per triangle. Its most important task is the loading 
of primitive data from the setup registers in the geometry 
interface to the internal working registers. Triangle- and span­
relevant data are loaded independently to enable the pipeline to 
process a new triangle when pixels of the last span of the actual 
triangle are still generated. The triangle control unit initializes 
the segment process which decides in which part of a triangle the 
current span is. The init span process determines the starting 
values for the span control unit 

The main task of the span control unit is to generate the x­
address of the actual pixel. Furthermore, pixel data, which are 
invalid due to certain conditions like opacity, are marked to 
prevent operations such as tri-linear blending which could halt 
the pipeline, from dropping the performance unnecessarily. Data 
of two triangles can be present in the pipeline at a time. 
Corresponding data are marked with an ID bit. In this case the 
geometry unit has to assure, that the processed triangles do not 
overlap to avoid data inconsistencies. Otherwise, the pipeline has 
to run empty before values of the next triangle are generated. 

The REX chip as shown in figure 2 consists of several processing 
pipelines which operate in parallel. The maximum pipeline 
length is 21 stages. Intermediate results and parameters from all 
pipelined units which are not used immediately are stored in the 
span data shift register. The pipeline has to be halted by the 
pipeline control unit under several conditions. The most likely of 
these conditions is that the pixel buffer FIFOs run full due to 
refresh cycles when using DRAMs or due to accesses to the 
extended buffer when performing area sampling. If more than 
one access to the texture buffer is necessary (tri-linear blending) 
or if the texture buffer is not ready due to refresh cycles, the 
parts of the pipeline which are not related to texture mapping are 
halted on a cycle by cycle basis. 

1.2...2 The Geometry Interface 

The geometry interface stores the data sets which are read from 
an external FIFO memory. The length of the data sets and the 
meaning of the single values are different depending on the type 
of data set. The shortest data set comprises 22 32 bit words; the 
longest data set consists of45 words. Due to the buffering of the 
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parameters in the geometry interface as well as in the processing 
units, initialization and processing can work in parallel. For 
accumulation buffer [5] operation, pseudo statistic subpixel 
offsets [9], [4] from a table are added to the vertices x,y 
addresses. 

2..2.3 The Rasterization Unit 

The rasterization unit determines the addresses of pixels which 
belong to a primitive represented by its corresponding data set. 
The rasterization unit can be operated in point sampling mode 
and in area sampling mode. Rasterization is done in ascending 
scanline order (top down). It always starts from the vertex with 
the lowest y value (PTop). The edge with the biggest difference 
in y direction is the active edge and determines the scanning 
direction. The coordinates of the starting points and endpoints of 
the scanlines are calculated in the init span unit by adding the 
edge slopes recursively. 

In point sampling mode, pixels are only considered if their center 
points lie within the geometric boundaries of the triangle. Pixels 
which lie on the boundary are handled in such a way that, in the 
case of triangles sharing edges, all edge pixels are set only once. 
This prevents errors during alpha blending and reduces the 
number of frame buffer accesses. The algorithm has already been 
realized in the TRIA chip described in [1]. 

In area sampling mode, the situation is much more complex. To 
avoid aliasing effects, all pixels which are partially covered by a 
triangle are taken into account. For all pixels, the area which is 
covered by the actual triangle has to be decided. The basic idea 
is to define 16 stochastically distributed sampling points within a 
pixel and test which of these sampling points are covered by t9P. /, 
triangle. Z / ....< 

- ,,,,.. 
During area sampling, th FUP it analyses the type of scanline 
which is to be rasterized. ~ere are basically seven different 
types of scanlines depending on whether they include one, two, 
three or none of the vertices. This information together with the 
scanning direction (left to right or right to left) and the sign of 
the edge slope determines the sampling point within the actual 
pixel (which is not always the center point as in point sampling). 
The coordinates of the sampling point are passed to the r,g,b,a 
and the z generator which calculate the respective values. 
Furthermore. formula and parameters for the calculation of the 
intersection points are determined and passed to the intersection 
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Figure 3: Intersection Points 

unit. Most of the functionality of the FUP unit, which handles 
more than 150 different cases, is realized in 8 lookup tables 
which keeps the algorithm flexible up to a certain extent. 

The intersection unit determines the intersection points between 
the boundaries of a pixel and the edges of the triangle, which is 
rasterized (figure 3). Fonnulas which are applied according to 
the decision of the FUP unit are of the fonn: 

intersect_y = jrac(p_y)+(l-jrac(p_x»·dy_dx 

The fractional part of the x,y addresses of the intersection points 
are rounded to 3 bits. They are concatenated and fonn a 6 bit 
address to a lookup table which contains 64 16 bit mask words. 
Each bit location in the mask words detennines whether the 
corresponding sampling point is covered or not. Depending on 
the scanning direction and the sign of the edge slope, the bits of 
the mask must be inverted to get the covered sample points. In 
case more than one edge is contained in the pixel, the masks are 
generated for each edge and then logically ANDed to form the 

final mask. ~tlLf>~. ? 
("-f~.w,.. . 

2.2.4 The r ,g,b,a Generator 

In the area sampling mode, the distance of successive sampling 
points does not always equal 1 due to the edge pixels. Thus, 
simply adding a fixed increment for r,g,b,a and z is not possible. 
Multiplication operations are necessary in any case if the starting 
or end point of a scanline does not lie on a pixel center. In order 
to have a homogeneous formula and a fixed pipeline length for 
the calculation, we decided to determine the color, alpha and z 
values in the most general way which is by using the plane 
equation: 

reCx·dv_x + reCy·dv_y + pTop_v 

where reCx and rel...:y are the x,y coordinates relative to the 
coordinates of pTop, dv.-:x and dv...:y are the increments of v 
(representing f,g,b,a and z) in x and y direction and pTop_v is 
the value of v at pTop. pTop is the reference vertex of the 
triangle. Figure 4 shows a block diagram of the r generator. The 
g,b,a generators are identical to the r generator. 

2.2.4 The z Generator 

The z value at the sampling location is calculated in the same 
way as r,g,b and IX using the plane equation. The only deviation 
from the block diagram in figure 4 are the wider data paths. In 
point sampling mode, only one read cycle to the pixel buffer and 
one write cycle depending on the result of the z comparison take 
place. In area sampling. the situation is much more complex as 
there are up to four fractions per pixel which have to be 
considered. 

2.2.5 The z Reciprocal Unit 

Figure 5a-c: a - Original Texture; b - Perspective Mapping; 
c - Linear Mapping 

During their flow through the geometry part of the rendering 
pipeline as defined by graphics standards like PHIGS PLUS, all 
vertices are subject to a perspective transfonnation. During 
rasterization, linear interpolation of colors or texture addresses, 
which is commonly done, leads to perspective distortion as 
shown in figure 5c. The distortion is as big as the z differences 
between the vertices of a triangle are. It can be easily noticed on 
large planes textured with a regular pattern. A possible solution 
to this problem could be to keep the triangles small. This, 
however, would burden the geometry stage of the rendering 
pipeline and would decrease the attractiveness of texture 
mapping. which gives a very natural appearance at moderate 
geometry costs. To avoid this, we decided to realize a true 
perspective texture mapping which requires a division per pixel. 
The division is realized as multiplication with the reciprocal 
value which is determined in the z reciprocal unit shown in 
figure 6. 

The reciprocal value is calculated based on the iteration 
algorithm by NewtonlRaphson. The formula is: 

zao .I=za.· (2 - z· zao) 

with z being the value of which the reciprocal value is wanted 
and za being the iterated value. For zao a seed value is used. 

1 

Add I 10.16 : 

~ 10.16 ~ gen_r_ou!Add 

8.16pTop_r ::::::::::======--~ 
Figure 4: The r Generator 
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Figure 6: Block Diagram of the z Reciprocal Unit 

The algorithm requires normalized floating point numbers. 
Therefore, the fixed point number z is converted first. The nine 
most significant bits of the mantissa are used to determine a seed 
value. The iteration is done one time, doubling the number of 
significant bits, which is enough for our purposes. In the end, the 
resulting floating point number is reconverted to a fixed point 
representation. The floating point representation of z is passed to 
the LOD unit where it is used to determine the correct level of 
detail from the MIPmap representation of the texture. 

2.2.6 The Texture Unit 

The texture unit is the most complex processing unit within the 
REX chip. It consists of the uv generator, the LOD unit, the 
texture address unit, the texture buffer interface and the texture 
blending unit. 

(1,1) 

(1,0) 

Figure 7: The MIPmap Structure 

The texture unit works on prefiltered texture maps which are 
called MIPmaps [11]. In this representation, in addition to the 
image with the intrinsic resolution, filtered images with lower 
resolutions called levels of detail (LODs) are available. The 
filtering is done by simply accumulating the color values of four 
adjacent pixels of the higher resolution image and averaging the 
result to compute one (figure 7). In our realization, the maximum 
size for a texture is 1024 by 1024 texels. This size limits the 
possible number of LODs to 11, where LODO is equivalent to a 
base texture of 1024 by 1024 texels. Since it does not make 
sense to have any LOD of any texture available, the two values 
BES1LEVEL and WORSTLEVEL, included in the data set of 
textured triangles, indicate the available LODs. The LOD which 
has to be used depends on the z value of the sampling point. The 
use of MIPmaps avoids aliases which are due to subsampling. 
Artifacts which are due to horizontal or vertical movements of 
the viewer or objects in a texture mapped scene can be reduced 
by using bi-linear blending instead of point sampling the texture 
[6]. In this mode, the four texels which are nearest to the u,v 

address of the sampling point are taken into account. Their 
v~ues are weighted according to their distance to the sampling 
pomt and summed up. The result is scaled to the color range and 
assigned to the pixel. In the bi-linear blending mode, the four 
nearest pixels are chosen from the nearest LOD. When zooming 
in~ a scene, the change of the different LODs can be recognized. 
ThIS effect can be reduced by tri-linear blending. Tri-linear 
blending consists of two bi-linear blending operations with texels 
from the two nearest LODs. The results of the bi-linear blending 
operations are weighted according to the z coordinate of the 
sampling point. The weighting function determines the resulting 
blending effect. Thus, it should be kept flexible. 

2.2.6.1 The uv Generator 

Using the x and y coordinates from the actual sampling point, the 
za value from the z reciprocal unit, and a set of eight coefficients 
all-a22 which are precalculated and included in each parameter 
set, the uv generator calculates the normalized uv values 
according to the following equations: 

u.. =za· [(all· sp_x) + (al2· sp_y) +al3] +al4 

v. =za· [(a21·sp_x) + (a22·sp_y)+a23] +a24 

Un and Vn are multiplied with the size of the LOD calculated by 
the LOD unit in order to receive the final uv values which are 
used for the point sampling mode of texture mapping. For bi- and 
tri-Iinear blending, the uv values of the four nearest texels per 
LOD are calculated depending on the fractional parts of the uv 
values. The corresponding weighting coefficients are read from a 
lookup table. 

2.2.6.2 The LODUnit 

During point sampling and bi-Iinear blending, the LOD unit 
determines the LOD which is nearest to the sampling point. 
During tri-Iinear blending, the two LODs which embrace the 
sampling point are taken into account. In the tri-Iinear blending 
mode, weighting factors for the LODs are read from a lookup 
table which is addressed by the fractional part of the calculated 
LOD value. The basic equation to determine the LOD is: 

LOD = ld(clod . za2) 

Since za is available in normalized floating point format from the 
z reciprocal unit, the whole equation is calculated in floating 
point which reduces the complexity of the realization. If the 
calculated LOD exceeds the range given by BES1LEVEL and 
WORS1LEVEL, it is saturated to the respective value. In the tri­
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linear blending mode. the following equations detennine the two 
LODs whicb are used: 

WDIow =min(WORSTLEVEL, max(BESTLEVEL. ira(WD»)) 

WDhi =min(WORSTLEVEL, max(BESTLEVEL, ira(LOD)+l)) 

2.2.6.3 The Texture Address Unit 

The texture address unit detennines the pbysical addresses for 
the access to the texture buffer. Besides the uv values from the 
uv generator and the LOD. the texture color depth (8. 16 ore 32 
bits) and the 24 bit base address of the actual texture map are 
considered for the calculation. 

i elK 
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Figure 8: Timing Diagram of the Texture Buffer Interface 

2.2.6.4 The Texture Buft'er Interrace 

The texture buffer interface consists of two independent 32 bit 
data paths with 24 bits of address space each. The attached 
memory must be organized in such a way that four arbitrary, 
adjacent 32 bit texels can be read in one access. This can be 
achieved by interleaving the memory two times in the borizontal 
and two times in the vertical direction. In 16 bit or 8 bit texture 
modes. the memory stores two or four texels per word. Starting 
from their base address, the LODs of a texture are stored 
consecutively in the memory beginning with the best LCD 
available. The interface runs at 80 MHz. During one period of 
the 40 MHz chip clock, addresses for all four banks are present 
at the two independent address busses and can be latched 

externally. After a certain number of wait cycles. depending on 
memory speed, the four texel values appear on the data busses 
and are latched inside the chip. Figure 8 shows the basic timing 
of the texture buffer. To support DRAMs, a unit detects page 
misses based on the array size of the texture memory. This 
enables an external controller to start precbarge cycles as early as 
possible. Furthennore. an internal logic keeps track of refresh 
cycles and decides whether refresh cycles have to be triggered. 
The refresh logic tries to trigger refresb cycles during periods 
when the texture memory is not used. If a certain number of 
refresh cycles (detennined by the type of memory device) is 
pending, the texture pipeline is halted and the refresh cycles are 
executed. The values which determine the behavior of the refresh 
logic and the number of wait states necessary for page mode and 
random cycles are controlled from the microcontroller interface. 
When fast SRAMs are used to realize the texture buffer, no wait 
states are necessary. When using DRAMs, one or two wait states 
in page mode and three to five wait states in random mode are 
inserted, depending on the device speed. Wait states halt the 
generator pipeline as well as the texture pipeline. During tri­
linear blending, the pipeline is halted for each pixel. because 
eight values have to be loaded in two cycles. An exception to this 
rule takes place if values which have been loaded in the previous 
cycle can be reused. For this purpose, the last values are cached 
in the texture buffer interface. 

2.2.6.5 The Texture Blending Unit 

The texture may be represented in eight different fonnals as 
shown in the following table. Depending on the purpose of 
texture, color values (r,g,b). intensity (i) and alpha values (ex) are 
used. 

According to the texture format, multiplexers within the texture 
blending unit connect the components of the texture words to the 
appropriate calculation units. During bi-linear blending, the 
components of the four texel values are weighted with the factors 
determined by the LCD unit and summed up. The calculations 
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Figure 9: Block Diagram of the Texture Blending Unit 
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for r ,g,b and a are done in parallel. For each component, six 
multiplications and four additions are necessary (figure 9). For 
tri-linear blending, four texels of the fust LOD are processed in 
this way and latched. The four texels of the second LOD are 
blended consecutively in the same manner. The resulting values 
are weighted with the LOD blending factors and summed up to 
determine the final values. 

texel width contents format 
32 r,S/:,b,a 8,8,8,8 
24 r,a,b 8,8,8 
16 r,2,b 5.6,5 
16 i.a 8,8 
16 r,g,b,a 4,4,4,4 
8 i 8 
8 a 8 
8 i,a 7,1 

Table 1: Texel Formats 

2.2.7 The Mixing Unit 

The mixing unit combines the results of the r,g,b,a generator 
pipeline and the texture pipeline to achieve lighting effects on 
textured surfaces. Furthermore, a secondary color defined in the 
triangle data set can be included into the mixing for fading 
effects. We realized nine different mixing modes: 

1. mix_c = gen3 * Ci; mix_a = gen_a; 

2. mix_c =gen3, mix_a =gen_a *Ci; 

3. mix_c =gen3 *Ci; mix_a =gen_a * Ci; 

4. mix_c = gen_c * cc; mix_a = gen_a; 

5. mix_c = gen_c *Cc, mix_a = gen_a *ca; 

6. mix_c =gen_c + Ci * sec_c, mix_a =gen_a + Ci * sec_a; 

7. mix_c = gen_c, mix_a: gen_a + ca *(seca - gen_a); 

8. mix_c =gen_c + U *(sec_c - gen_c), mix_a =gen_a: 

9. mvec: gen3 + U *(sec_c - gen_c), mix_a gen_a + Ci * 
(sec_a - gen_a); 

In the equations, c corresponds to the color components r,g.b. 
whereas i corresponds to an intensity. The gen values are from 
the generator pipeline, whereas the t values are from the texture 
pipeline. As a last operation. the resulting values are saturated to 
the maximum and minimum values to prevent color over- or 
underflows. In the accumulation buffer mode. the accumulation 
of the generated and the memory value takes place in the mixing 
unit. The necessary weighting factors correspond to the 
reciprocal of the supersampling factor which is 4 or 16. Thus. the 
weighting can be achieved by simply shifting the operands. 

u.s The Pixel Buffer Interface 

The pixel buffer has a word width of 80 bits and has a linear 
addressing scheme. It consists of two logical regions, the real 
pixel buffer and the extended buffer. In point sampling mode. the 
pixel buffer stores all pixel related data of a respective address. 
These are the color values r,g,b. the alpha value a, the depth 

Figure 10: Timing Diagram of the Pixel Buffer Interface 

value z and some status information. In the supersampling mode. 
r,g,b.a are expanded by four bits each, to store the accumulated 
intermediate values. In the area sampling mode, the 16 bits of 
the area mask are stored additionally. Furthermore. for each 
pixel, up to four fractions are stored in the extended buffer which 
is addressed dynamically. To mark pixels with more than one 
fraction, a pointer bit in the status of the pixel buffer entry is set. 

In this case, the r,g,b,a and z values are replaced by a pointer to 
one or two addresses in the extended buffer. where two fractions 
are stored consecutively at the first address and one or two at the 
second address, providing three or four fractions exist. The 
number of existing fractions is coded in the status of the pixel 
buffer entry. To ease the z decision which is much more complex 
in the area sampling mode than in the point sampling mode. a 
status bit indicates whether one of the datasets in the extended 
buffer belongs to a fraction covering the whole pixel. In this case, 
the z value and the position of the full pixel are stored in the 
pixel buffer entry. If the actually generated fraction is behind the 
full pixel, it is rejected and no accesses to the extended buffer 
occur. In the case of more than four fractions per pixel, a smooth 
bit is set, which indicates this situation. In a postfiltering 
process, such pixels can be blended with surrounding pixels to 
minimize aliasing. The same situation takes place when the 
extended buffer is full and no fractions can be stored. 

Like the texture buffer interface, the pixel buffer interface works 
at 80 MHz. The pixel buffer is assumed to consist of two banks, 
each containing either even or odd addresses. During the high 
state of the 40 MHz chip clock, the even addresses are output. 
during the low state. the odd addresses. The type of access (read 
or write) is indicated by two signals. The addresses are latched 
externally. Assuming fast SRAMs for the pixel buffer, read data 
are latched in the chip one clock cycle after the address appears. 
Write data are output at the next edge of the clock and are 
removed at the second following edge of the 40 MHz clock. 
Figure 10 shows the basic timing of the pixelbuffer interface. 

The pixel buffer interface receives its data from three FIFOs 
which contain 80 bit data words and 24 bit addresses. One of the 
FIFOs contains only full pixels and first fractions. The second 
contains additional fractions where pointers have to be stored in 
existing pixel buffer entries. The third FIFO, which consists of 
two independent blocks for even and odd addresses, contains 
data for the extended buffer. The subdivision assures, that 
independent of the available time slice (even or odd), a value can 
be written. During each period of the chip clock, only one read 
cycle can be executed. Therefore, read cycles have priority ov~ 
write cycles. Since the external memory access frequency IS 

assumed to be double that of the internal pipeline, two write 
cycles can be performed per chip clock cycle. If no read cycle is 
necessary due to an invalid pixel in the pipeline. two write cycles 
are executed. The decision from which FIFO the data are written 
is made based on the filling level of the FIFOs, the triangle ID 
and a round-robin strategy. If the triangle ID bit changes within a 
FIFO, the other two FIFOs are served first. Ifone of the FIFOs is 
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filled, the generator pipeline is halted until the filling level is 
once again below a certain threshold. 

2.3 Performance of the REX Chip 

Analyzing the perfonnance of polygon rendering hardware, two 
different parameters must be considered. The frrst one is the 
perfonnance in polygons. namely triangles. per second which can 
be rendered, assuming the data sets are available. Assuming 
further, that the triangles are small, the initialization time for the 
chip detennines the perfonnance limits. The initialization time 
mainly depends on the number of parameters in the data set of a 
triangle. Thus, for different shading and texturing modes, 
different perfonnance values tum out, as shown in table 2. 

rendering mode trianglesls triangles S pixels 
flat shading 900,000 34 

flat shading + texture 540,000 64 
Gouraud shading 660,000 50 

Gouraud shading_ + texture 440,000 80 

Table 2: Maximum Triangle Perfonnance Values 

The second important perfonnance parameter is the number of 
pixels which can be generated per second. This parameter 
depends on the chosen sampling algorithm, the texture blending 
mode, the speed of the attached memory and the clock frequency 
of the internal pipeline. Clock frequency and memory speed 
influence the perfonnance linearly. When DRAMs are used, 
there is some additional loss in perfonnance due to refresh cycles 
and random accesses. For point sampled texturing, only one 
access per pixel is necessary. For bi-linear blending, the required 
four values can be read pipelined in one clock cycle as well. 
Using tri-linear blending of 32 bit textures, two clock cycles are 
necessary unless data from the internal cache registers can be 
used. When 16 bit or 8 bit textures are used, the probability of 
cache hits is high as more texels are read per cycle. Assuming no 
memory wait cycles are necessary in the point sampling mode at 
40 MHz chip clock. the following performances occur: 

rendering mode (including z buffering) Mpixels/s 
flat shading 40 
Gouraud shading 40 
texture mapping, 1 sample 40 
texture mapping, 4 samples 40 
texture mapping, 8 samples (16 bit) 40 
texture mapping, 8 samples (32 bit) 20 I 

Table 3: Maximum Pixel Generation Rates 

In the area sampling mode, the perfonnance additionally depends 
on the data. The factor which mainly influences the perfonnance 
is the depth complexity of the rendered scene. This is due to the 
fact that the number of fractions per pixel detennines the number 
of accesses to the extended buffer. Under worst case conditions, 
with four existing fractions, one read and one write to the pixel 
buffer and four reads and one write to the extended buffer are 
necessary. The whole process with the comparisons and 
decisions takes about 20 cycles. This delay influences 
performance only in the instance of many such pixels occurring 
consecutively or if the pixel buffer FlFOs are empty. Otherwise, 
the interface is kept busy with data from the FlFOs. 

Another factor which influences perfonnance during area 
sampling is the ratio between edge pixels and pixels set during 
point sampling. In scenes with small triangles, a significant rise 
in rendering time can be noticed due to the higher number of 

pixels which must be processed. Since the REX chip was 
designed for real time applications, it keeps track of statistical 
infonnation within a frame. This infonnation can be accessed via 
the microcontroller interface. Thus, the system can react to 
overload situations by reducing the scene complexity. 

2.4 Status of the REX Chip 

The design has been described using VHDL. Functional 
simulation and synthesis have been done using the Synopsys 
VHDL simulator and silicon compiler. Test stimuli and strobes 
were generated from a software model built from an existing 
software implementation. The netlist generated by the synthesis 
tool was transferred to the LSI Logic design environment and 
simulated with the CMDE simulator. The results of the 
behavioral and netlist simulation were compared to ensure the 
correctness of the design flow. The gate count is about 450,000 
gate equivalents with about 280,000 logic gates, 40,000 gates for 
registers and 130,000 gates for internal RAMs. The utilization is 
about 45%. Due to power dissipation and utilization reasons, we 
migrated from the LSI 300K 0.6p. 5V technology to the 500K 
O.5J.1. 3.3V technology with a die size of 16,5 by 16,5 mm. The 
chip was designed for a worst case operating frequency of 40 
MHz. Two internal PLL-circuits compensate clock skew and 
buffer delays and generate the 80 MHz frequency for the buffer 
interface operation. The chIp has a power dissipation of about 
5W. It is packaged in a 39 x 39 CPGA package with 447 pins. 
The signal pin count is 304. 

The netlist of the chip has been delivered to the manufacturer for 
layout. We expect first silicon to be available at the end of '95. 

3 Texture Memory Considerations 

The texture memory is a part of the rendering system which 
mainly influences performance and determines costs. In order to 
keep one MIPmap 32 bit texture with a LODO resolution of 1024 
by 1024 texels in the texture memory, at least 5,33 Mbytes are 
necessary. Due to the fixed array sizes of memory devices, 
typically 8 Mbytes are used. To prevent texture buffer updates 
from dropping rendering perfonnance, the texture buffer should 
be realized as a double buffer. Both buffers together add up to 16 
Mbytes, which is not even too extreme a demand. Assuming a 
memory architecture with an interleave of four, a read cycle time 
of 25 ns would be appropriate. Furthennore, the most restrictive 
requirement is that the random accesses do not influence 
perfonnance. To fulfill these requirements, using ultra fast 15 ns 
SRAMs is still the only possible way. Such RAMs are available 
with a complexity of 1 MBit. So 16 Mbytes correspond to 128 
chips. Independent of the fact that such RAMs are rather 
expensive, they use a lot of boardspace, too much for compact 
systems. like in the PC envifonment. 

DRAMs are available in higher complexity and at reasonable 
lower costs. Besides the more complex interface and the 
necessity of refresh cycles, DRAMs are substantially slower than 
SRAMs. Due to the architecture of a DRAM, there are two 
different access times. The random access time starts from 
applying the row address. Including the precharge time between 
subsequent cycles, the cycle time for a typical DRAM is about 
lOOns. When data are accessed within a row of the memory 
array, the access is faster. This mode is called page mode. The 
page mode cycle time is typically about 60 ns. Achieving the 
same perfonnance under worst case conditions (random access) 
as with SRAMs, requires a four times higher interleave factor. A 
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higher interleave factor again means higher chip count and a 
more complex circuitry. decreasing the advantages of the 
DRAMs. 

Recently. a number of enhanced memory devices based on 
DRAMs have been presented. 

Hyper page mode devices have the same characteristics as 
ordinary DRAMs. The cycle time in page mode has been reduced 
to about 20 to 30 ns which means double performance compared 
to conventional page mode DRAMs. The random access time 
could be reduced only slightly to 90 ns. 

Eoo DRAMs (Extended Data Out DRAMs) have key timing 
parameters similar to that of hyper page mode DRAMs. 
Additionally, Eoo DRAMs have internal buffers to keep output 
data stable during CAS precharge time. This feature relaxes the 
timing and removes the need for external buffers. 

EDRAMs (Enhanced DRAMs) contain four internal banks with 
one line of cache for each. They have a random cycle time of 65 
ns. a cache cycle time of 15 ns and a cache to cache cycle time of 
25 ns. Up to now, only chips with a complexity of 4 Mbit are 
available. 

SDRAMs (Synchronous DRAMs) and SGRAMs (Synchronous 
Graphics RAMs) belong to another group of memory devices. 
They are clocked and have an architecture comprising of two 
internal banks with cache memory for each bank. Operating the 
banks alternately. precharge times can be hidden. SDRAMs have 
a faster cache cycle time (10 ns) but a slower random access time 
(100 ns) compared to EDRAMs. SDRAMs and SGRAMs are 
burst oriented. This means that only ascending addresses within 
a page can be read at full speed. SDRAMs are available or 
announced in complexities up to 64 Mbit. SGRAMs are 
announced only in a 128K by 32 bit organization. 

RDRAMs (Rambus DRAMS) are also burst oriented. Unlike all 
other devices. RDRAMs have a special high speed (250 MHz). 
low voltage swing electrical interface with a proprietary 
command protocol. Burst access is extremely fast (2 ns). The 
single read cycle time within the cache is 40 ns. The random 
access time is 112 ns due to cache miss latencies. The significant 
difference between burst performance and performance in the 
other operation modes results from the protocol overhead. 
RDRAMs require a special controller and a fixed board layout. 
Due to the high operation frequency the power consumption of 
the controller is high. 

MDRAMs (Multi bank DRAMs) have been one of the latest 
developements in memory architectures. They exploit the idea of 
multiple banks on chip. to hide latencies and to increase the hit 
rate when accessing nonsequential data. The smallest chip 
comprises 16 banks of 32 rows by 256 columns by 32 bit, 
summing up to 4 Mbit. The most complex chip announced 
contains 72 of such banks. MDRAMs are clocked and have a 16 
bit multiplexed address/data bus. Data are transferred on both 
edges of the clock which can be up to 166 MHz. The random 
access time is about 54 ns. The burst acces time is 6 ns. The 
access time between activated banks is 18 ns. Control of the 
MDRAMs is different and more complex than that of ordinary 
DRAMs. An external controller has to take care of precharge, 
activate and refresh cycles. The electrical interface is CMOS or 
TIL compatible. 

Taking into account the different characteristics of the described 
memory devices, there is no optimum solution. If price and board 
space are of minor importance, SRAMs deliver optimum 

performance for random access. Among the other devices 
standard DRAMs and DRAMs with hyper page mode are the 
cheapest solution if performance is of less importance. EDRAMs 
offer a very good page mode performance and an acceptable 
random access time at moderate costs. Due to their limited 
complexity they require medium board space. MDRAMs seem to 
be a true alternative to SRAMs. They combine excellent page 
mode cycle time with acceptable random access time. Due to the 
internal architecture, the hit rate is high, compared to the other 
devices with internal cache. Board space requirements of the 
MDRAMs are moderate. Costs are expected to be similar to that 
of standard DRAMs. More details are discussed in [10). 

4 System Considerations 

Using the REX chip, a wide variety of system requirements can 
be covered. To design a system utilizing a REX chip or multiple 
REX chips, the most important question is which performance 
should be reached. This determines the number of REX chips in 
the system. A multiple REX approach with 32 REX chips 
increases the pixel generation rate almost linearly up to 1.28 
GpixelS/s. On the other hand, it does not increase the triangle 
performance. Nevertheless, a triangle performance of 400,000 to 
900,000 is already rather high and requires a multiprocessor 
geometry pipeline to be reached as system performance. A 
drawback of the multiple REX approach, as with all similar 
approaches, is the necessity of supplying multiple texture buffers 
as well. The effects of choosing texture memory in terms of 
performance, boardspace and costs have already been outlined in 
the previous paragraph. When using the REX chip in the area 
sampling mode, the up to four fractions per pixel have to be 
blended after the generation of a frame has been finished. For 
this purpose, another ASIC, the Color Blending Unit (CBU) has 
been designed. The blending is done at the frequency of the 
video output. Systems for multi-media applications such as the 
integration of video and graphics using the REX chip have been 
described in [8] and [3]. 

5 Conclusions and Future Work 

I presented a rendering chip which integrates high performance 
shading and texture mapping functionality compatible with 
Intel's 3DR specification. The chip was mainly designed for real 
time applications. The chip integrates support for chip level 
parallelism allowing for a scaleable system performance. 

Future work will focus on two different areas. The most 
important was already discussed in the section Texture Memory 
Considerations. It is necessary to reduce memory costs without a 
significant drop in performance. Therefore, new architectures 
and memory types must be investigated. 

The second topic is the integration of a CPU kernel in order to 
calculate the necessary data structures from the standard vertex 
representation internally. This would improve the interface 
efficiency and increase system performance. 
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