
1

•

PixelAow
nodes

~.. /~\

The PixelFlow Texture and Image Subsystem

Steven Molnar

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27599-3175

Abstract

Texturing and imaging have become essential tasks for high­
speed, high-quality rendering systems. They make possible
effects such as photo-textures, environment maps, decals,
modulated transparency, shadows, environment maps, and bump
maps, to name just a few.

These operations all require high-speed access to a large "image"
memory closely connected to the rasterizer hardware. The design
of such memory systems is challenging because there are many
competing constraints: memory bandwidth, memory size,
flexibility, and, of course, cost. .

PixelFlow is an experimental hardware architecture designed to
support new levels of geometric complexity and to incorporate
realistic rendering effects such as programmable shading. This
required an extremely flexible and high-performance
texture/image subsystem. This paper describes the PixelFlow
texture/image subsystem, the design decisions behind it and its
advantages and limitations. Future directions are also described.

INTRODUCTION

The PixelFlow architecture was conceived with two principal aims
in mind: 1) to increase the complexity of scenes that can be
rendered in real time (i.e. numbers of primitives per second), and
2) to increase rendering quality through programmable shading,
antialiasing, and a rich set of texture/image operations.

PixelFlow meets the first goal with a scalable rendering
architecture based on image-composition [MOLN92). PixelFlow
consists of a set of independent rendering nodes, each of which
renders a subset of the primitives to be displayed. The partial
images from each rendering node are then merged together over a
high-speed compo siting network to produce a final image
containing all of the primitives. The basic rendering speed of a
PixelFlow node is approximately 0.5 million triangles/second with
8-sample anti aliasing. An N-node system is approximately N
times as fast.

To increase image quality, PixelFlow supports programmable
shading, as advocated by [WHIT82, COOK87, HANR90] and
popularized by the RenderMan shading language [UPST90].
Complex interactions of light with surfaces are supported by
allowing users to write arbitrary programs to compute the color at
each surface. These slratkrs can take into account effects such as

This paper describes the the global shared memory system that
supports texture and imaging operations and makes many of these
effects possible. It is hoped that the ideas, experience (and
mistakes) in developing this texture subsystem will aid the
designers of future graphics systems targeted for high-quality
rendering.

This paper is organized as follows: Section 2 gives an overview
of the PixelFlow hardware. Section 3 describes the design
considerations that led to the texture subsystem design. Sections 4
and 5 describe the texture subsystem itself. Sections 6 and 7 give
a discussion and conclusion.

2 PIXELFLOW OVERVIEW

To make real-time shading possible, PixelFlow uses a technique
called deferred shading [DEER88; TEBB92]. The system boards
are divided into three classes, renderers and slratkrs, and frame
buffers, as shown in Figure L Renderers transform and rasterize
their portions of the display dataset and produce partially rendered
pixels in a form suitable for compositing. These pixels contain
depth values, surface-normal vectors, texture coordinates, and
other parameters needed for shading (these are sometimes called
appearance parameters).

o

Figure 1. Overview of PixelAow system.

anisotropy, textures, local and global lighting, procedural noise
functions, perturbed surface-normal vectors, shadows, etc.

3

http://www.eg.org
http://diglib.eg.org

Figure 2: Scene from bowling video rendered on PixelFlow simulator. Texture/shading effects include: shadow-mapped
lighting (ball, alley, pins), mip-map textures (wood texture, decals and scuff-marks on pins), bump mapping (dents on
pins), reflection mapping (alley), and Phong shading. Simulated performance is 30 msec on a 3-rasterizer/12-shader
PixelFlow system.

These appearance parameters are fed into the image composition
network. Corresponding pixels from each of the renderers are
composited together. and the resulting visible pixels are loaded
onto a designated shader board. The shaders then evaluate a
shading model for the pixels. including texturing. lighting, Phong
or any other type of shading. The shading model may be different
for each pixel and depends on the property of the visible surface.
Shaded pixels are simply RGB values. which then are sent to the
frame buffer for display. Any number of boards can be assigned
to rasterization or shading. PixelFlow will be able to generate
images such as that shown in Figure 2 at rates of 30 Hz or more
[LAST95].

By organizing the system in this way, shading is deferred until
after visible surfaces have been determined. This means that only
visible pixels are shaded, not pixels that later are obscured by
other primitives. It also concentrates the shading operations onto
particular system boards. In the remainder of this paper. we will
focus on the texturing operations that are performed on shader
boards (though texturing sometimes must be performed on
renderer boards, as in texture-modulated transparency).

Each type of PixelFlow board has the same basic hardware.
Figure 3 shows a high-level view of the components on a single
PixelFlow circuit board. There are two main parts: 1) a geometry

processor (GP), a general-purpose floating-point processor. and 2)
a SIMD rasterizer, comprising 32 enhanced-memory chips
(EMCs) and associated texture-lookup hardware.

Video'==l
32blla

101Hz

IINgeeomc=

Rgure 3: Components on a Pixel Flow board.

if

0100

The geometry processor is a high-performance RISC processor
comprising two Hewlett-Packard PA-7200 CPUs and 64 to 128
MBytes of SDRAM memory. On renderer boards, the geometry
processor transforms primitives into screen coordinates and feeds
them to the rasterizer. On all nodes, it controls the rasterizer.

The rasterizer performs all pixel operations. Each of the 32 EMCs
contains 256 8-bit processing elements (PEs) and 384 bytes of
memory per PE. Together the PEs on all 32 EMCs form a SIMD
processor that can operate on arrays of 128x64 pixels in parallel.
The rasterizer is used to scan-convert and shade pixels. It also
contains an 8-bit linear expression evaluator, which can evaluate
expressions of the form F(x, y) = Ax + By + C (where x and yare
the pixel address) for each of the 128x64 pixels in parallel.

For texturing operations, the 32 EMCs are divided into four
groups of eight, called modules. Each module is provided with.its
own (nearly) independent texture subsystem. The texture
subsystem consists of a Texture ASIC (TAS/C) and eight 16 Mbit
lOO-MHz synchronous DRAM (SDRAM) memories. The texture
subsystem receives addresses from the EMCs and looks up the
corresponding texture values while the SIMD array performs
texture setup and shading operations.

On video boards (frame-buffer or frame-grabber boards), SDRAM
memory is used to store pixels, making an external frame buffer
unnecessary. Access to SDRAM memory is time-shared on video
boards between video readslwrites and normal texture accesses.

3 DESIGN CONSIDERATIONS

We now review the major design considerations that led to the
PixelFlow texture subsystem design. The overriding
consideration was memory bandwidth, the rate at which data may
be retrieved from memory. Other secondary, but important,
considerations were the organization of the memory itself, and the
coupling between the memory system and the rasterizer.

3.1 Memory Bandwidth

The major design consideration for a texturing system is the tex­
ture memory bandwidth-the rate at which data must be retrieved
from memory. The target for PixelFlow was to be able to mip­
map texture and shade high-resolution (l28Ox.l024), 5-sample
antialiased images at 30 Hz on four or fewer shader boards.

Mip-map textures of 2D images [WILL83] were chosen as the
canonical texture operation because they are the most bandwidth­
intensive, common texture operation. A single mip-map lookup
requires eight accesses to texture memory, one for each comer of
the two active resolution levels. If texels are 4 bytes, this means
that the shaders together must be able look up
128Oel0240S·30-S·4 = 6.3 GBytesisecond. A single shader, there­
fore, must look up 1.6 GBytesisecond-a formidable number!

To support this amount of bandwidth requires a parallel memory
system. To minimize cost, we wanted to use memories whose I/O
interface was as fast as possible. A wide variety of DRAM parts
are now available with substantially different interfaces. We
chose synchronous DRAMs (SDRAMs) because of their high
speed, high density, relatively low cost, and presumed availability.
A single, byte-wide 100 MHz 16 Mbit SDRAM (the fastest speed
currently available) has a peak read/write bandwidth of 100

MBytesisecond. With a burst size of 4 bytes (for 4-byte texels),
the maximum attainable bandwidth is 8 bytes every 11 clock
cycles, or 72.7 MBytesisecond.

To meet our performance target requires 1.6 GBytes/sec I 72.7
MBytesiseclSDRAM =22 SDRAM chips. Rounding up to the
nearest power of 2 gives a target of 32 SDRAMs per board.

3.2 Interleaved Memory Organization

A second important consideration was maximizing the amount of
useful storage in the memory chips. Given that any pixel can look
up any texel, a naive organization would require that every
SDRAM store identical copies of the same texture data. This
would reduce the 32-2 = 64 MBytes of raw memory to 2 MBytes
of usable storage-a gross waste of memory resources. We
wanted lookups to occur at the maximum rate and to minimize the
amount of redundancy.

Two adjacent
mip-map levels

Four adjacent -G.=~;;:~;;:;;;S7' (bracketing d)
t9xels in level

i+1 map~_

Figure 4: Memory accesses to mip-map one pixel.

We can reduce the redundancy by a factor of eight using memory
interleaving. Consider the memory accesses required to mip-map
a pixel, shown pictorially in Figure 4.

Figure 5: Conventional layout of mip-map in memory.
Level 0 occupies quadrants 1-3; higher levels occupy
quadrant O. which is recursively subdivided for
succeeding levels.

5

Panel 0 Panel 1
SORAMS ()-3 (inteneaved 2x2) SORAMS 4-7 (inteneaved 2x2)
Storage tor: Storage for:
• even levels of 'even' texture maps • odd levels of 'even' texture maps
• odd levels ot 'odd' texture maps • even levels of 'odd' texture maps

Level =0

Level. 1

Closeup of memory array
showing 2x2 inteneaving.

Texets marked '0' - 'S' are
stored in SORAM 0 - 3,
respectively.

Level.O

Figure 6: PixelFlow memory organization: 2 panels of 2x2-interleaved memories.

Four values are retrieved from each of the two adjacent mip-map
levels bracketing the desired resolution level d. Within each reso­
lution level, the texels retrieved are neighbors in u and v, so one
will have an even row address and an even column address, one
will have an even row address and an an odd column address, and
so forth.

If we divide texture memory into eight partitions or banks,
corresponding to each of these eight possibilities (even/odd
resolution level; even/odd row address; even/odd column address),
we are guaranteed that any mip-map lookup will require precisely
one access to each bank.

Mip-map textures normally are stored in the arrangement shown
in Figure 5. The highest resolution map (level = 0) is stored in
any of the three outer quadrants labeled 1, 2, or 3. The level 1
texture map is stored in quadrant O. Lower-resolution maps are
also stored in quadrant 0, which is quadrasected recursively for
each succeeding level. Using this organization, mip-map textures
can be packed into square memory arrays with no wasted storage.
The storage required for a mip-map is 413 the storage required for
its highest-resolution level [WILL83J. Address calculations are
simple as well, since the address of a lower-level texture can be
obtained by shifts and adds.

We can retain these advantages and achieve eight-way
interleaving by providing two 2x2 interleaved 'panels' of memory
as shown in Figure 6. Now, level 0 maps can be assigned to
regions marked '0' in either panel. Whichever panel is chosen,
the next resolution level is stored in the opposite panel. The third
resolution level can be stored in the same panel, and so forth, as
shown in the figure.

With this approach, there are two types of maps: even maps and
odd maps. Even maps have their highest-resolution level (and
other even levels) in Panel 0 and their odd levels in Panell. Odd
maps have their highest-resolution (and other even levels) in Panel
I and their odd levels in Panel O.

Interleaving texture memory in this manner reduces the amount of
redundancy by a factor ofeight. Unfortunately for PixelFlow. this
is not enough. Further redundancy is needed to meet the
bandwidth requirements. As a result, the 32 SDRAMs are divided
into four groups or modules of eight chips. with textures stored
redundantly in the four modules. The eight chips within a module
correspond to the eight banks described here. We will return to
the redundancy issue in Section 6.

3.3 Ping-Pong SDRAM Accesses

The SDRAMs contain a feature that accelerates random memory
accesses but complicates a designer's life: each SDRAM memory
contains two internal memory banks. Each bank can be accessed
in a method analogous to fast-page mode of a conventional
DRAM: a row address is given followed by potentially multiple
column addresses. The SDRAMs contain internal column address
counters to generate multiple sequential column addresses for
"burst" operations, a sequence of writes or reads to/from
consecutive memory locations.

The two-bank design of the SDRAMs allows the row address
command to be overlapped with burst reads/writes toIfrom the
other bank, hiding the row access time. If banks are accessed
alternately, this can nearly double the memory bandwidth of each
chip. The problem is ensuring that banks wil1 be hit alternately.
An obvious way to do this is to store data redundantly in the two
banks on each chip and have successive lookups access the data in
whichever bank is next. A more complex method. but one that
makes texture writing more efficient. is to store identical data in
bank 0 of one panel and bank 1 of the other panel l . We have
adopted this latter approach.

1 When writing texture memory. it is desirable to keep both panels
busy. If textures are replicated in both banks of the same chip.
writing a given texture will affect only one of the two panels. To
keep the other panel busy, two texture maps would have to be

6

Replicated textures are slower to write than non-replicated
textures. since the data must be stored twice. They also reduce the
effective amount of texture storage by a factor of two (from 16
MBytes to 8 MBytes). so they are only used when the fastest
random lookups are needed.

3.4 SIMD Control

Another important issue is how to control texture operations.
SDRAMs. like conventional DRAMs, have the property that
successive accesses to the same row in memory are faster than
operations that cross rows. Texture lookups generally exhibit a
good deal of coherence. That is, texture lookups from nearby
pixels are likely to access nearby texels. However, there is no
guarantee that this will occur.

It is possible to organize a memory system that takes advantage of
coherence when it occurs, performing row accesses only where
necessary. This can be done by storing textures so that nearby
texels lie on the same row as far as possible, generally by assign­
ing square arrays of texels to SDRAM rows. Of course,
successive accesses will not always hit the same row, and row
crossings on different memories and different modules will occur
at different times. To take advantage of this requires controlling
the memories independently, akin to MIMD control in a
multiprocessor.

The alternative is to be conservative and to perform a full
row/column access for every texture lookup. This has the advan­
tage of not restricting the way textures are stored in memory; the
organization need not preserve coherence. Also, control of the
memory subsystem is simpler since all texture lookups occur in
lock step. This is akin to SIMD control in a multiprocessor.

We have chosen to use SIMD control because of its simplicity and
because it fits naturally with PixelFlow's SIMD rasterizer engine.

3.5 Address and Filtering Calculations on EMCs

As anyone who has implemented texturing knows, performing the
actual lookups is only one piece of the puzzle. The mip-map
resolution level must be determined. Texture coordinates must be
transformed, taking perspective warping into account. Texture
addresses must be computed from texture coordinates. Finally,
texture values must be ftltered.

All of these steps are compute-intensive. Computing the
resolution level for mip-maps requires a logarithm and several
multiplies. Perspective-correction requires a high-precision
reciprocal z calculation and several multiplies and adds. Filtering
for mip-maps requires trilinear interpolation, another series of
multiplies and adds.

What is worse is that other texture algorithms require other
calculations. Environment maps, depth-map shadows, and bump

paired together and both written at the same time. This has ugly
software implications. With the method we have adopted, the data
is replicated across panels, so a single texture write affects both
panels; the redundant data can be written in a single pass without
wasting one panel's memory cycles.

maps require different address calculations [GREE86; REEV87;
SEGA92]. Non-mip-map textures require different types of
filtering.

It is possible to devise hardware that converts pixel values into
addresses and does the required filtering, but it would require
many modes and would have to be heavily pipelined or highly
parallel to be fast enough. This, indeed, is the approach that most
texture subsystem deSigners have taken [RICH89; LARS90;
AKEL93]. For PixelFlow, we were not content to support only a
few prescribed forms of texture access. We desired texturing to
be as programmable as the rest of the rasterizer to allow flexibility
in devising shading and other pixel/texture manipulation
algorithms.

Furthermore, PixelFlow has a tremendous computation resource
available-the SIMD processing elements. The PEs on a single
board provide an aggregate of nearly a trillion 8-bit integer
operations per second. In addition, they are completely
programmable, allowing users to change algorithms at will. We
decided to use the pixel processors for all address and filtering
calculations.

4 SYSTEM COMPONENTS

We now describe the system components in more detail,
emphasizing how they implement the functions above.

4.1 Image Generation Controllers

The texture subsystem (in fact the entire rasterizer) is controlled
by a pair of microcoded sequencers called Image Generation
Controllers (lGes). The IGCs execute high-level instructions for
the EMCs and T ASICs, controlling their cycle-by-cycle operation.
The ElGC controls the EMCs and synchronizes operations over
the image-composition network. The TIGC controls the T ASICs,
the SDRAMs, and handshakes with the optional video port. A set
of semaphores interlocks operation of the two IGCs.

4.2 Enhanced Memory Chips

PlXelFlow EMC

Figure 7: logical diagram of a Pixel Flow EMC (figure
courtesy of John Eyles).

7

--
--

Control InputS
fromTlGC

Control LogicI
t

Internal conIroI- ~~!Io

8x4 bits

ToEMCs

-
16 bits ~ Inter·module

S
e

dng (left) I

16 bitsInter·moduIe
dng (right)

200

(simultaneouSly

bid! I)

Address
Comer­

"""'............."'" """'-...-

­
- Turner­
:(2Kbytes)

ADIIIIHki':O>oc'S:O.

....1:=!-1"
Add_PortI I

SORAM
add_signals

signals
~-

Video ~
FIFO

(8Kbytes) --
r- Data ­..... eomer-

Tumer_;=: ~
r-(2K bytes)­

£OIIaioI<7:Olrto<7:tb !
~
~

I
~

,...

DataPon I I MemCII I
SDRAM SDRAM

data signals oontroI signals

VIdeo~ Interfece

j (S100MHz)

Figure 8: Block: diagram of logical Texture ASIC (two physical TASIC chips).

The EMCs comprise the main computational resource for the
texture subsystem. Each EMC contains 256 processing elements
(PEs), each with its own 8-bit ALU, an output of a linear­
expression evaluator (LEE), 256 bytes of local memory, two 32­
byte transfer buffers, and two 32-byte local-pon buffers. Figure 7
shows a logical diagram of an EMC.

Each PE's ALU is a general-purpose 8-bit processor, including an
enable register which allows operations to be performed on a
subset of the PEs. The PE can use LEE results (described below)
or local memory as operands and can write results back to local
memory. It can also transfer data between memory, the carry
register, and the UO buffers.

The LEE evaluates bilinear expressions Ax + By + C for each PE
of the array in parallel. A, B, and C are coefficients loaded from
the IGC and (x, y) represent the PE's (x, y) address. The LEE is
used primarily to interpolate parameters during rasterization. but
can also be used during shading.

Each PE is provided with 256+4-32 bytes of local memory. The
memory is divided into five partitions: a 256-byte main partition,
which is used for most computation, and four 32-byte partitions
used for external communication. Two of these, the local port
buffers, are connected to the local port. The local port is
connected to the TASICs, so that data can be exchanged between
the local buffer and attached external memory. The other two, the
image-composition buffers, are connected to the image­
composition port.

The image-composition port and local port allow pixel data to be
transferred serially to/from the EMCs to other EMCs (for
compositing) or to/from the T ASICs (to perform texture lookups
or pixel-data writes to texture or video memory). Data from each
PE is presented serially at each port. The number of bytes
transferred to/from each PE and their location in the
communication buffer are configured by software. The image­
composition port is an 8-bit port; the local port is a 4-bit port.
Both run at 200 MHz. with simultaneous bi-directional
communication.

8

The local-port has a special feature that is useful for texture
operations. Each PE has a mark register wbich can be set under
software control to determine whether it will participate in the
next texture operation. Only marked PEs transmit or receive data
over their local port.

4.3 Texture ASICs

The array of eight Texture ASICS (TASICS) implements a data­
parallel communication interface between pixel memory in the
EMCs. texture/video memory. the GP, and optional video
circuitry. The TASICs perform the buffering and data conversion
required to read and write SDRAM memories and contain internal
counters to refresh a video display or read video data from a frame
grabber.

For packaging reasons, the T ASICs are bit-sliced by two; the two
physical TASICs function together as a single logical TASIC.
Throughout the remainder of tbis paper, we will refer to logical
T ASICs (both bit slices), rather than physical T ASICs. Figure 8
shows a block diagram of a logical T ASIC.

The Address Corner Turner (A Cn is a 2K byte dual-ported
memory that "comer-turns" serial addresses arriving from the
EMCs or GNI and buffers them up into the parallel format
required at the SDRAM address pins. Address data from the eight
EMCs in the module stream into tbis memory from the left. The
eight addresses from a single EMC are read out from below.

The Data Corner Turner (DCn is similar to the ACT, except it
buffers data rather than addresses and can transfer data in both
directions, from EMCs to SDRAMs, or vice versa. Like the ACT,
it is a 2K byte dual-ported memory. When writing textures to
SDRAM memory, it receives data from eight EMCs from the left.
The eight data values from a single EMC are read out from below.
The ocr can be configured to send data in either direction and to
transfer either 1, 2. or 4 byte data types.

from to video
TIGC subsystem

J t2

SDRAM addresses (8x12 bits)

Texture

14--+-' ASlCs

(bit­
sliced
by 2)

SDRAM data (8x8 bits)

Inter-module links

(left) (right)

Figure 9: Interconnection between components in a module (one of four modules).

The T ASIC has connections to the EMCs and the SDRAMs of the
module. It also has connections to the T ASICs of the other
modules via a 16-bit ring network called the inter-module ring.
This ring network provides communication between modules and
the GP, allowing pixel data to be shared between modules and
allowing the GP to participate in pixel calculations. Like the
EMC-to-TASIC connections, the inter-module ring operates at
200 MHz, bidirectionally.

The datapath between the EMC port, the inter-module ring, and
the ACfIDCf is configurable to allow data to be transferred in a
variety of directions between the modules of a rasterizer and the
GP.

Under certain circumstances, such as block texture writes
(explained in Section 5) and transfers of texel data to and from the
GP, it is impractical to provide memory addresses from the EMCs.
To support these kinds of operations, the T ASIC contains an in­
ternal address generator, consisting of programmable registers and
counters.

Multiplexing circuitry at the memory address outputs selects
among the different possible address sources. Some address
sources can be XORed together as well, providing more flexibility
when generating addresses.

The TASICs' video interface consists of an 8K byte video FIFO
(VFIFO) and a set of registers and counters to keep track of pixel
addresses within scanlines and video fields. The VFIFO buffers
pixels into batches and handles the asynchronous boundary
between the rasterizer and video subsystems. The video address
registers store the row/column addresses of the starting scan line
of up to eight independent video fields. Additional counters store
the address of the current scan line and pixel. A set of registers
also stores the order in which up to eight fields are to be
displayed, so interleaved and/or stereo displays can be refreshed
continuously without intervention by the GP. Special TIGC

9

instructions update these address and field registers. They are
used to swap buffers when double-buffering and to synchronize
GP operation with video scanout when desired.

4.4 SDRAM Memory

The module is the "functional unit" of the texture subsystem.
The eight SDRAM memories of each module are connected to the
module's TASIC, as shown in Figure 9. The chips are controlled
globally by the TIGC, so that all the SDRAMs on a board do a
memory operation at the same time, but the addresses for each
SDRAM are independent. The total storage per module' is 16
MBytes. Each SDRAM can read or write data to/from a random
location in memory at a peak rate of 100 Mbyteslsec, so the raw
memory bandwidth per module is 8 • 100 MBytes/sec = 800
MByte/sec. The attainable memory bandwidth per module for
four-byte readslwrites is approximately 580 MByteslsec.

Addresses for texture readslwrites can come from one of three
sources: 1) computed on EMCs and sent over the local-port to
T ASICs, 2) sent to T ASICs over the geometry network, 3)
generated on the TASICs themselves using their internal address
generators.

Analog
video out
(360 MHz)

360 MHz
1.."......~ RAMDAC r:E::::::::~...

x3
(forRGB)

..

IiiI

Figure 10: Video connections for a 2K x 2K-pixel
frame-buffer board.

Marked PE's IOcaI-port
OUIput buffer (eight
row/col addresses)

Eight2Mx8
SDRAMs

Marked PE's local­
port Input buffer

(eight data values)

Figure 11: Basic filtered texture read. Each PE specifies eight independent row/column addresses and
receives a data value from each of the eight SORAMs in the module.

4.5 Video Interface

On frame-buffer and frame-grabber boards (boards with an
optional video interface), the SDRAMs store video data as well as
textures. The SDRAMs provide storage for 4Kx4K 32-bit pixels,
sufficient to double-buffer images for any display up to 4Kx2K
pixels.

The TASICs of each module provide a 32-bit bidirectional video
interface that can be clocked by an external video clock at up to
100 MHz. The pixels in a scan line are interleaved over the
modules, so that every 4 (contiguous) pixels on a horizontal scan
line come from different modules. By multiplexing the outputs of
the four modules together, as shown in Figure lO, the overall pixel
rate can be as high as 4 • 100 Mpixelslsec =400 Mpixelslsec,
sufficient to update a 2K x 2K monitor at 60 Hz.

When driving less aggressive video devices, video scan-out/scan­
in requires only a fraction of the SDRAM bandwidth. For
example, when refreshing a I280xlO24 at 60 Hz, video scanout
requires less than 10% of SDRAM memory bandwidth. In such
cases, portions of memory not needed for storing images can store
texels for image-based texturing or other data as in any other
system board.

5 ALGORITHMS AND PERFORMANCE

As discussed before, the most common texture operation is the 2D
mip-map lookup, in which each PE looks up a value from a
random location in each of the eight SDRAMs in its module. We
will describe this basic operation first and variations later.

First, each PE calculates eight independent row and column
addresses for the eight SDRAMs in its module. It then copies
these into its local port buffer. Next. the texture subsystem reads
these addresses from the local-port, applies them to the eight
SDRAM memories, and reads the eight corresponding data values
from the SDRAMs. It then loads these eight data values into the
PEs' local-port input buffer. These operations are depicted
schematically in Figure 11.

The texture subsystem performs this type of lookup at the
maximum rate supported by the SDRAMs. Other classes of
memory operation exhibit more coherence and can run faster, or
require communication across module boundaries. We describe
these variations in the following sections.

5.1 Coherent vs. Non-Coherent ReadslWrites

Mip-map and other texture lookups require that each texel be
addressed independently. However. when writing texture data or
frame-buffer data, the data generally is in array form already.
There is no need to specify a row address for each data element.
Rather, we can use fast-page mode to transfer data more rapidly.

For these reasons, PixelFlow provides two types of texture
commands: scatter commands. which perform a full row/column
access for each data item transferred, and block commands. which
use fast-page mode to store coherent data. Scatter commands use
addresses computed by the EMCs and transferred to the T ASICs
along with the data. Block commands use the T ASICs' internal
address generator to generate addresses.

5.2 Local vs. Global Writes

Data can be written from the EMCs of all modules to the modules'
SDRAMs in a manner similar to texture reads. Alternatively, it
can be broadcast from the EMCs of one module to the SDRAMs
of all modules. This is useful for converting rendered images into
textures. Other data transfer modes are available for sending data
from one module to another and to transfer data to/from the GP.

5.3 Immediate Texturing

So far, we have assumed that texturing is done during deferred
shading-after visible surfaces have been determined. An
important class of texture operations, texture operations that affect
viSibility, do not fit this model. Texture-modulated transparency
is an important algorithm of this type. The solution is to perform
immediate texturlng-texturlng during rasterization. This is what
virtually all other texture engines do. PixelFlow can do it also, but
performance issues arise.

First, immediate texturing means texturing all rasterized pixels.
whether they are visible in the final image or not. Second,
partially transparent objects have to be blended properly with
objects in front of and behind them. To do this properly requires
front-to-back traversal, negating the benefits of the z-buffer
algorithm. A common solution is to use screen-door transparency,
enabling a fraction of the sub-pixel samples when antialiasing.
This permits only a few levels of transparency, however, (as many
as there are sub-pixel samples) and can produce artifacts when
multiple transparent objects .;:over each other.

10

Operation

Data size

(bytes)
Texture time (J.l.sec)

Formula 50-pixel triangle 128x64 pixel region
Scatter read
(mip-map)

8x2
8x4

0.92 + 0.32n
0.92 + 0.48n

3.5
4.8

82.8
123.8

Local block read/write
(backing-store or video transfer)

2
4

0.65 + 0.025n
0.65 + 0.045n

N/A
NlA

7.1
12.3

Global block write
(texture write to all modules)

2
4

2.6 + 0.100n
2.6+ 0.182n

NlA
N/A

28.2
49.1

Rgure 12: Times for various texture operations.

Operation
EMCI

TASIC
Compute time (J.l.Sec)

50-pixel triangle 128x64 pixel region
Invert 4-byte Z EMC 9.9 9.9
Multiply u, v by invertex Z EMC 4.1 4.1

Compute mip level EMC 3.8 3.8
Compute texture addresses EMC 12.2 12.2

Texture lookup TASIC 5.3 141.7

Trilinear interpolate EMC 4.5 4.5

Total EMC time EMC 34.5 34.5

Total TASIC time TASIC 3.5 123.8

Max of EMC and TASIC times 34.5J.l.Sec 123.8 J.l.Sec

Rgure 13: Comparison of immediate-texturing and deferred shading performance.

There are additional perfonnance issues particular to PixelFlow.
When doing immediate texturing, only a fraction of the PEs are
involved at any given time. The mark register in the EMCs can be
used to identify pixels that need texturing. However, this is one
case where using PEs to calculate addresses and filter texture
values really hurts: the SIMD array is utilized very poorly. Also,
the pipelined nature of the texture lookup engine (particularly the
serial transfer of address and data to/from the ACfIDCT) adds
latency. This latency of approximately 80 cycles is insignificant
when texturing a whole 128x64 array of pixels, but becomes
important when only a few PEs are enabled.

As a result, the rasterizer perfonnance of 0.5 million polygons/sec
falls to about 25,000 polygons/sec when immediate texturing. A
useful optimization is available if partially transparent object are
tiled with primitives that do not overlap. The primitives can be
rasterized sequentially and textured as a single batch, obtaining
many of the benefits of deferred texturing. A major goal of any
future texture subsystem for PixelFlow will be to improve
immediate texturing perfonnance.

5.4 Performance

Figure 12 gives the raw speed of the basic texture instructions on
one rasterizer. For scatter reads, eight values (sufficient for a mip­
map lookup) are assumed to be read or written per PE. For block
reads/writes, one value is assumed to be read/written per PE.
'Local' block read/writes transfer data between the EMCs and
SDRAMs of all four modules in parallel. This is typical of video
and pixel-memory backing-store transfers. 'Global' block writes
write data redundantly from the EMCs of one module to the
SDRAMS of all four modules. This is typically done when a

11

rendered image is converted into a texture. The times here are
four times longer because texels from only one module can be
written at a time.

The 'data size' column gives the texel size in bytes. In all cases,
the amount of time required for the texture operation depends on
the maximum number of marked PEs n in each EMC in the
participating module (or modules). The 'fonnula' column gives
the texture time as a function of n. The '50-pixel triangle' column
assumes n = 8, typical when immediate-texturing 50-pixel
triangles. The '128x64-pixel-region' column assumes n =256
(full-sized region).

Figure 13 gives overall texturing times (including time for EMCs
to compute texture addresses and to filter looked-up data) for two
types of texture operations: immediate-texturing 50-pixel
triangles and deferred texturing 128x64 regions. These times
were obtained by running code fragments on the PixelFlow
hardware simulator.

There are several things to notice from this table. First, note that

the time required for EMCs to compute addresses and filter

texture data is the same no matter how many PEs are marked.

This follows from the SIMD nature of the rasterizer. Also, note

that the EMC time is insignificant compared to the texture lookup

time when deferred shading. When deferred shading,

. approximately 8,000 regions can be textured per second, which

meets our goal of mip-map texturing 1280xl024 images with 5

samples per pixel at 30 Hz on four shaders.

However, when immediate texturing, the EMC time dominates,
limiting the number of polygons that can be immediate-textured
per second. From these results, we predict a maximum immediate

texturing rate of about 28,000 triangles per second, a factor of
almost 20 below the raw rasterization rate. We will discuss ways
to improve this performance in the following section.

6 DISCUSSION

The PixelRow texture subsystem met Our primary design goals:
to perform near the theoretical maximum for mip-map textures
when deferred shading, and to be sufficiently programmable and
flexible that it can be used for a wide variety of realistic-rendering
effects. Members of our software team have written code to
exercise it and have generated numerous images that demonstrate
its features, such as the image shown in Figure 2.

6.1 Comparison with Previous Approaches

Our texture subsystem departs from the mainstream in two
important ways: it uses deferred shading to minimize the number
of texture/shading calculations that need to be performed and it
uses a SIMD rasterizer engine to minimize the cost per processing
element.

These characteristics.give it a very different performance envelope
than the texture systems on most commercial machines. On
commercial machines that use immediate texturing, effects such
as texture~modulated transparency are no more expensive than
normal texture lookups. Immediate texturing on PixeiRow is
costly, but PixelFlow's deferred texturing performance is much
higher, particularly when multiple shaders are used in parallel.

Antialiasing has different ramifications for the different
approaches. Immediate texturing systems generally texture and
shade a single sample in each rasterized pixel and share this
information among all the samples within the pixel. On
PixelFlow, every sample can correspond to a different surface,
and in the general case, must be textured/shaded independently.
This can erase the benefit of deferred shading. For example, if
pixels are sampled eight times, this could require the same work
as immediate shading with a depth complexity of eight. So
immediate texturing favors scenes with large primitives and low
depth complexity and deferred shading favors scenes with small
primitives and high depth complexity. We are exploring
optimizations in which only the k dominant (most visible) surfaces
in a pixel are shaded. Preliminary results indicate that shading
three surfaces per pixel gets the vast majority of pixels right and
there are ways to approximate the pixels that are wrong.

The programmable nature of the EMCs and the fact that they do
all address and filter calculations makes the PixelRow texture
subsystem extremely flexible. We plan to experiment, and hope
others will experiment. with a wide variety of algorithms that span
the domains of rendering and imaging.

6.2 Implementation Lessons

The design presented here is the third in a series of evolving
designs. The earlier designs had a simpler, cleaner software
interface, but were slower. In the previous designs. virtually all of
the details of the ACfIDCf. address generation, etc. were hidden
from the user, but texture writes utilized less than half of the
SDRAMs' write bandwidth, since addresses had to be provided by
the EMCs. Henry Rich, of IVEX Corporation, proposed adding

12

address generation logic to the T ASICs to enable the use of block
transfer commands. These indeed improved the texture subsystem
write performance by nearly the theoretical factor of two for block
texture writes, but made the system more difficult to program.
Fortunately, much of this difficulty is hidden within a library that
implements higher.level texture commands.

The inclusion of the video FIFO and registers and counters to
generate addresses for video scan-inlscan-out proved to be a great
win. These allow a wide variety of frame-buffer/frame-grabbers
to be built by adding only a small amount of external hardware on
an attached 110 card. For most frame-bufferslframe·grabbers, the
only external logic that is needed is a timing generator and the
analog video components. Since the amount of bandwidth
required for video is a small fraction of the overall texture
bandwidth for most viden devices, the impact on the system is
low. This approach has been used successfully by others
[LARS90]; we recommend it.

Implementing the video subsystem was not without problems,
however. Details such as supporting genlock, the desire for video
scanout to continue even if the rest of the system is hung, and the
asynchronous interface between the rasterizer and video
subsystem added troublesome constraints to the design and took
us several design iterations to get right.

The idiosyncratic nature of SDRAMs proved challenging. We
committed to SDRAMs early and were thrashed about by ever·
changing specifications. The dual-bank nature of SDRAMs, while
improving peak bandwidth, complicates the memory system
design and the user's programming model. It will be interesting to
see whether other memory families currently being introduced,
such as RAMBUS, extended output DRAM, etc. can provide the
advantages of SDRAMs without the headaches.

6.3 Limitations and Future Work

The texture subsystem described here has three main
shortcomings: slow immediate texturing, redundant calculations
when supersampling, and painful replication of textures. We are
reasonably confident that all of these can be solved in the future.

To make immediate texturing faster, we must add dedicated
circuitry for address calculations and filtering. As mentioned
before, other rendering systems do this already [RICH89;
LARS90; AKEL93]. We hope to learn from their experience as
they publish details on their work. At the same time, we hope to
learn from our users. We have endeavored to give them a very
general platform for texturing with capabilities not found on other
machines. It will be interesting to see what features and modes
they exercise and find useful. We will take these into account
when we design future hardware for immediate texturing.

We believe that dominant-surface shading can eliminate many of
the redundant calculations performed when supersarnpling.

We are pursuing two methods to reduce the resplication of
textures: the use of a memory hierarchy and increased use of
memory interleaving.

It may be possible to have a single, large texture repository with
multiple, fast local caches of modest size. The large repository
would store the bulk of the texture data, while only relatively
small working sets would be stored in the caches. The success of

7

this approach depends on tbe working set being manageably small
and not changing rapidly. The replacement criteria would be
different than for standard caches.

Interleaving by eight, as done in the PixelFlow design, works
because of the nature of the mip-map algorithm. It may be
possible to interleave further by hashing addresses, statistically
distributing memory accesses over number of interleaved memory
banks. This would require a MIMD control model, as opposed to
the SIMD model we currently use, but has the potential to
significantly diminish the amount of texture memory replication.
This approach may be particularly attractive for systems that
already use MlMD control.

CONCLUSION

The PixelFlow texture subsystem was designed to provide
flexible, high-speed access to a large, shared texture/image
memory. It allows PixelFlow to compute images such as the
bowling image (Figure 2) in real time. With sufficiently clever
programming. it can be used for a variety of other image-based
algorithms, including: shadows, general function lookups, inter­
PE communication, backing store for EMC memory, image
resampling, optical predistortion, remapping for low latency,
bump mapping, environment mapping, lightsource mapping, and
hopefully others that are yet to be invented.

The system's SIMD control made the design simple and matched
well to the existing SIMD rasterizer, but sacrificed some
performance available in coherence between neighboring pixels.
The 8-way interleaved memory design we use appears to reduce
memory replication as much as possible while retaining SIMD
control. The system's main limitations are poor performance
when immediate texturing, the need to texture each sample when
supersampling, and an eight-fold replication of texture data. We
don't believe these limitations are intrinsic and hope to solve them
in the future. In the meantime, we hope that the experience gained
here will be useful to designers of texture subsystems on other
high-performance rendering systems.

ACKNOWLEDGEMENTS

PixelFlow is a large team effort. Many people have contributed to
the final form of the PixelFlow texture subsystem: John Eyles and
John Poulton were instrumental in developing the initial design.
Yulan Wang, Greg Welch, Brian Jones, Bruce Ledet, Lawrence
Kesteloot, and Paul Keller wrote software to exercise the design
(and exorcise bugs). Henry Rich argued for maximizing texture
bandwidth at almost any cost and spurred a major set of revisions
that allow us to capture the full bandwidth of the SDRAMs when
writing as well as reading. Trey Greer contributed ideas on
improving immediate-rendering performance and avoiding texture
replication.

This research is supported by the Advanced Research Projects
Agency, ISTO Order No. A41O, the National Science Foundation,
Grant No. MIP-9306208, and by generous grants of equipment
from Hewlett-Packard and Digital Equipment Corporation.

13

REFERENCES

AKEL93 	 Akeley, K., "RealityEngine Graphics. "SIGGRAPH
93, pp. 109-116.

COOK87 	 Cook, R.L., Carpenter L., and Catmull E., "The Reyes
Image Rendering Architecture", SIGGRAPH 87, Vol.
21, No.4, pp. 95-102.

DEER88 	 Deering, M., S. Winner, B. Schediwy, C. Duffy, and N.
Hunt, "The Triangle Processor and Normal Vector
Shader: A VLSI System for High Performance
Graphics," SIGGRAPH 88, Vol. 22, No.4, pp. 21-30.

GREE86 	 Greene, N., "Environment Mapping and Other
Applications of World Projections", IEEE CG&A, Vol.
6, No. II, Nov, 1986, pp. 21 - 29.

HANR90 	Hanrahan, P. and Jim L., "A Language for Shading and
Lighting Calculations", SIGGRAPH 90, Vol. 24, No.4,
pp. 289-298.

LARS90 	 Larson, R., B. MOrrison, and A. Goris, "Hardware
Texture Mapping," Hewlett-Packard Internal Report,
Hewlett-Packard Company, Ft Collins, CO, 1990.

LAST95 	 Lastra, A., S. Molnar, Y. Wang, and M. Olano, "Real­
Time Programmable Shading," Proceedings of the
1995 Symposium on Interactive Computer Graphics,
April 1995.

MOLN92 Molnar, S., Eyles J., and Poulton 1., "PixeIFlow: High­
Speed Rendering Using Image Composition,"
SIGGRAPH92, Vol. 26. No.3, pp. 231-240.

REEV87 	 Reeves W.T., Salesin D. H., and Cook R. L.,
"Rendering Antialiased Shadows With Depth Maps,"
SIGGRAPH 87, Vol. 21, No.4, pp. 283-291.

RICH89 	 Rich, H., "Tradeoffs in Creating a Low-Cost Visual
Simulator," Proceedings of the I ltk
Interservicellndustry Training Systems Conference,
1989, pp. 214-223.

SEGA92 	 Segal, M., C. Korobkin, R. van Widenfelt, J. Foran,
and P. Haeberli, "Fast Shadows and Lighting Effects
using Texture Mapping," SIGGRAPH 92, Vol. 26, No.
3, pp. 249-252.

TEBB92 	 Tebbs. B., U. Neumann, J. Eyles. G. Turk, and D.
Ellsworth, "Parallel Architectures and Algorithms for
Real-Time Synthesis of High Quality Images using
Deferred Shading," UNC CS Technical Report TR92­
034.

UPST90 	 Upstill S.. The RenderMan Companion, Addison­
Wesley, 1990.

WHIT82 	 Whitted, T., and Weimer D. M., .. A software Testbed
for the development of 3D Raster Graphics Systems".
ACM Transaction on Graphics, Vol. I, No. I, Jan.
1982, pp. 43-58.

WILL83 	 Williams, L .• "Pyramidal Parametrics,", SIGGRAPH
83, Vol. 17, No.3, pp. 1-11.

