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Abstract 

Texturing and imaging have become essential tasks for high­
speed, high-quality rendering systems. They make possible 
effects such as photo-textures, environment maps, decals, 
modulated transparency, shadows, environment maps, and bump 
maps, to name just a few. 

These operations all require high-speed access to a large "image" 
memory closely connected to the rasterizer hardware. The design 
of such memory systems is challenging because there are many 
competing constraints: memory bandwidth, memory size, 
flexibility, and, of course, cost. . 

PixelFlow is an experimental hardware architecture designed to 
support new levels of geometric complexity and to incorporate 
realistic rendering effects such as programmable shading. This 
required an extremely flexible and high-performance 
texture/image subsystem. This paper describes the PixelFlow 
texture/image subsystem, the design decisions behind it and its 
advantages and limitations. Future directions are also described. 

INTRODUCTION 

The PixelFlow architecture was conceived with two principal aims 
in mind: 1) to increase the complexity of scenes that can be 
rendered in real time (i.e. numbers of primitives per second), and 
2) to increase rendering quality through programmable shading, 
antialiasing, and a rich set of texture/image operations. 

PixelFlow meets the first goal with a scalable rendering 
architecture based on image-composition [MOLN92). PixelFlow 
consists of a set of independent rendering nodes, each of which 
renders a subset of the primitives to be displayed. The partial 
images from each rendering node are then merged together over a 
high-speed compo siting network to produce a final image 
containing all of the primitives. The basic rendering speed of a 
PixelFlow node is approximately 0.5 million triangles/second with 
8-sample anti aliasing. An N-node system is approximately N 
times as fast. 

To increase image quality, PixelFlow supports programmable 
shading, as advocated by [WHIT82, COOK87, HANR90] and 
popularized by the RenderMan shading language [UPST90]. 
Complex interactions of light with surfaces are supported by 
allowing users to write arbitrary programs to compute the color at 
each surface. These slratkrs can take into account effects such as 

This paper describes the the global shared memory system that 
supports texture and imaging operations and makes many of these 
effects possible. It is hoped that the ideas, experience (and 
mistakes) in developing this texture subsystem will aid the 
designers of future graphics systems targeted for high-quality 
rendering. 

This paper is organized as follows: Section 2 gives an overview 
of the PixelFlow hardware. Section 3 describes the design 
considerations that led to the texture subsystem design. Sections 4 
and 5 describe the texture subsystem itself. Sections 6 and 7 give 
a discussion and conclusion. 

2 PIXELFLOW OVERVIEW 

To make real-time shading possible, PixelFlow uses a technique 
called deferred shading [DEER88; TEBB92]. The system boards 
are divided into three classes, renderers and slratkrs, and frame 
buffers, as shown in Figure L Renderers transform and rasterize 
their portions of the display dataset and produce partially rendered 
pixels in a form suitable for compositing. These pixels contain 
depth values, surface-normal vectors, texture coordinates, and 
other parameters needed for shading (these are sometimes called 
appearance parameters). 

o 

Figure 1. Overview of PixelAow system. 

anisotropy, textures, local and global lighting, procedural noise 
functions, perturbed surface-normal vectors, shadows, etc. 
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Figure 2: Scene from bowling video rendered on PixelFlow simulator. Texture/shading effects include: shadow-mapped 
lighting (ball, alley, pins), mip-map textures (wood texture, decals and scuff-marks on pins), bump mapping (dents on 
pins), reflection mapping (alley), and Phong shading. Simulated performance is 30 msec on a 3-rasterizer/12-shader 
PixelFlow system. 

These appearance parameters are fed into the image composition 
network. Corresponding pixels from each of the renderers are 
composited together. and the resulting visible pixels are loaded 
onto a designated shader board. The shaders then evaluate a 
shading model for the pixels. including texturing. lighting, Phong 
or any other type of shading. The shading model may be different 
for each pixel and depends on the property of the visible surface. 
Shaded pixels are simply RGB values. which then are sent to the 
frame buffer for display. Any number of boards can be assigned 
to rasterization or shading. PixelFlow will be able to generate 
images such as that shown in Figure 2 at rates of 30 Hz or more 
[LAST95]. 

By organizing the system in this way, shading is deferred until 
after visible surfaces have been determined. This means that only 
visible pixels are shaded, not pixels that later are obscured by 
other primitives. It also concentrates the shading operations onto 
particular system boards. In the remainder of this paper. we will 
focus on the texturing operations that are performed on shader 
boards (though texturing sometimes must be performed on 
renderer boards, as in texture-modulated transparency). 

Each type of PixelFlow board has the same basic hardware. 
Figure 3 shows a high-level view of the components on a single 
PixelFlow circuit board. There are two main parts: 1) a geometry 

processor (GP), a general-purpose floating-point processor. and 2) 
a SIMD rasterizer, comprising 32 enhanced-memory chips 
(EMCs) and associated texture-lookup hardware. 
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Rgure 3: Components on a Pixel Flow board. 
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The geometry processor is a high-performance RISC processor 
comprising two Hewlett-Packard PA-7200 CPUs and 64 to 128 
MBytes of SDRAM memory. On renderer boards, the geometry 
processor transforms primitives into screen coordinates and feeds 
them to the rasterizer. On all nodes, it controls the rasterizer. 

The rasterizer performs all pixel operations. Each of the 32 EMCs 
contains 256 8-bit processing elements (PEs) and 384 bytes of 
memory per PE. Together the PEs on all 32 EMCs form a SIMD 
processor that can operate on arrays of 128x64 pixels in parallel. 
The rasterizer is used to scan-convert and shade pixels. It also 
contains an 8-bit linear expression evaluator, which can evaluate 
expressions of the form F(x, y) = Ax + By + C (where x and yare 
the pixel address) for each of the 128x64 pixels in parallel. 

For texturing operations, the 32 EMCs are divided into four 
groups of eight, called modules. Each module is provided with.its 
own (nearly) independent texture subsystem. The texture 
subsystem consists of a Texture ASIC (TAS/C) and eight 16 Mbit 
lOO-MHz synchronous DRAM (SDRAM) memories. The texture 
subsystem receives addresses from the EMCs and looks up the 
corresponding texture values while the SIMD array performs 
texture setup and shading operations. 

On video boards (frame-buffer or frame-grabber boards), SDRAM 
memory is used to store pixels, making an external frame buffer 
unnecessary. Access to SDRAM memory is time-shared on video 
boards between video readslwrites and normal texture accesses. 

3 DESIGN CONSIDERATIONS 

We now review the major design considerations that led to the 
PixelFlow texture subsystem design. The overriding 
consideration was memory bandwidth, the rate at which data may 
be retrieved from memory. Other secondary, but important, 
considerations were the organization of the memory itself, and the 
coupling between the memory system and the rasterizer. 

3.1 Memory Bandwidth 

The major design consideration for a texturing system is the tex­
ture memory bandwidth-the rate at which data must be retrieved 
from memory. The target for PixelFlow was to be able to mip­
map texture and shade high-resolution (l28Ox.l024), 5-sample 
antialiased images at 30 Hz on four or fewer shader boards. 

Mip-map textures of 2D images [WILL83] were chosen as the 
canonical texture operation because they are the most bandwidth­
intensive, common texture operation. A single mip-map lookup 
requires eight accesses to texture memory, one for each comer of 
the two active resolution levels. If texels are 4 bytes, this means 
that the shaders together must be able look up 
128Oel0240S·30-S·4 = 6.3 GBytesisecond. A single shader, there­
fore, must look up 1.6 GBytesisecond-a formidable number! 

To support this amount of bandwidth requires a parallel memory 
system. To minimize cost, we wanted to use memories whose I/O 
interface was as fast as possible. A wide variety of DRAM parts 
are now available with substantially different interfaces. We 
chose synchronous DRAMs (SDRAMs) because of their high 
speed, high density, relatively low cost, and presumed availability. 
A single, byte-wide 100 MHz 16 Mbit SDRAM (the fastest speed 
currently available) has a peak read/write bandwidth of 100 

MBytesisecond. With a burst size of 4 bytes (for 4-byte texels), 
the maximum attainable bandwidth is 8 bytes every 11 clock 
cycles, or 72.7 MBytesisecond. 

To meet our performance target requires 1.6 GBytes/sec I 72.7 
MBytesiseclSDRAM =22 SDRAM chips. Rounding up to the 
nearest power of 2 gives a target of 32 SDRAMs per board. 

3.2 Interleaved Memory Organization 

A second important consideration was maximizing the amount of 
useful storage in the memory chips. Given that any pixel can look 
up any texel, a naive organization would require that every 
SDRAM store identical copies of the same texture data. This 
would reduce the 32-2 = 64 MBytes of raw memory to 2 MBytes 
of usable storage-a gross waste of memory resources. We 
wanted lookups to occur at the maximum rate and to minimize the 
amount of redundancy. 

Two adjacent 
mip-map levels 

Four adjacent - ......G.=~;;:~;;:;;;S7' (bracketing d)
t9xels in level 


i+1 map ......~_ 


Figure 4: Memory accesses to mip-map one pixel. 

We can reduce the redundancy by a factor of eight using memory 
interleaving. Consider the memory accesses required to mip-map 
a pixel, shown pictorially in Figure 4. 

Figure 5: Conventional layout of mip-map in memory. 
Level 0 occupies quadrants 1-3; higher levels occupy 
quadrant O. which is recursively subdivided for 
succeeding levels. 
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Panel 0 Panel 1 
SORAMS ()-3 (inteneaved 2x2) SORAMS 4-7 (inteneaved 2x2) 
Storage tor: Storage for: 
• even levels of 'even' texture maps • odd levels of 'even' texture maps
• odd levels ot 'odd' texture maps • even levels of 'odd' texture maps 

Level =0 

Level. 1 

Closeup of memory array 
showing 2x2 inteneaving. 

Texets marked '0' - 'S' are 
stored in SORAM 0 - 3, 
respectively. 

Level.O 

Figure 6: PixelFlow memory organization: 2 panels of 2x2-interleaved memories. 

Four values are retrieved from each of the two adjacent mip-map 
levels bracketing the desired resolution level d. Within each reso­
lution level, the texels retrieved are neighbors in u and v, so one 
will have an even row address and an even column address, one 
will have an even row address and an an odd column address, and 
so forth. 

If we divide texture memory into eight partitions or banks, 
corresponding to each of these eight possibilities (even/odd 
resolution level; even/odd row address; even/odd column address), 
we are guaranteed that any mip-map lookup will require precisely 
one access to each bank. 

Mip-map textures normally are stored in the arrangement shown 
in Figure 5. The highest resolution map (level = 0) is stored in 
any of the three outer quadrants labeled 1, 2, or 3. The level 1 
texture map is stored in quadrant O. Lower-resolution maps are 
also stored in quadrant 0, which is quadrasected recursively for 
each succeeding level. Using this organization, mip-map textures 
can be packed into square memory arrays with no wasted storage. 
The storage required for a mip-map is 413 the storage required for 
its highest-resolution level [WILL83J. Address calculations are 
simple as well, since the address of a lower-level texture can be 
obtained by shifts and adds. 

We can retain these advantages and achieve eight-way 
interleaving by providing two 2x2 interleaved 'panels' of memory 
as shown in Figure 6. Now, level 0 maps can be assigned to 
regions marked '0' in either panel. Whichever panel is chosen, 
the next resolution level is stored in the opposite panel. The third 
resolution level can be stored in the same panel, and so forth, as 
shown in the figure. 

With this approach, there are two types of maps: even maps and 
odd maps. Even maps have their highest-resolution level (and 
other even levels) in Panel 0 and their odd levels in Panell. Odd 
maps have their highest-resolution (and other even levels) in Panel 
I and their odd levels in Panel O. 

Interleaving texture memory in this manner reduces the amount of 
redundancy by a factor ofeight. Unfortunately for PixelFlow. this 
is not enough. Further redundancy is needed to meet the 
bandwidth requirements. As a result, the 32 SDRAMs are divided 
into four groups or modules of eight chips. with textures stored 
redundantly in the four modules. The eight chips within a module 
correspond to the eight banks described here. We will return to 
the redundancy issue in Section 6. 

3.3 Ping-Pong SDRAM Accesses 

The SDRAMs contain a feature that accelerates random memory 
accesses but complicates a designer's life: each SDRAM memory 
contains two internal memory banks. Each bank can be accessed 
in a method analogous to fast-page mode of a conventional 
DRAM: a row address is given followed by potentially multiple 
column addresses. The SDRAMs contain internal column address 
counters to generate multiple sequential column addresses for 
"burst" operations, a sequence of writes or reads to/from 
consecutive memory locations. 

The two-bank design of the SDRAMs allows the row address 
command to be overlapped with burst reads/writes toIfrom the 
other bank, hiding the row access time. If banks are accessed 
alternately, this can nearly double the memory bandwidth of each 
chip. The problem is ensuring that banks wil1 be hit alternately. 
An obvious way to do this is to store data redundantly in the two 
banks on each chip and have successive lookups access the data in 
whichever bank is next. A more complex method. but one that 
makes texture writing more efficient. is to store identical data in 
bank 0 of one panel and bank 1 of the other panel l . We have 
adopted this latter approach. 

1 When writing texture memory. it is desirable to keep both panels 
busy. If textures are replicated in both banks of the same chip. 
writing a given texture will affect only one of the two panels. To 
keep the other panel busy, two texture maps would have to be 
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Replicated textures are slower to write than non-replicated 
textures. since the data must be stored twice. They also reduce the 
effective amount of texture storage by a factor of two (from 16 
MBytes to 8 MBytes). so they are only used when the fastest 
random lookups are needed. 

3.4 SIMD Control 

Another important issue is how to control texture operations. 
SDRAMs. like conventional DRAMs, have the property that 
successive accesses to the same row in memory are faster than 
operations that cross rows. Texture lookups generally exhibit a 
good deal of coherence. That is, texture lookups from nearby 
pixels are likely to access nearby texels. However, there is no 
guarantee that this will occur. 

It is possible to organize a memory system that takes advantage of 
coherence when it occurs, performing row accesses only where 
necessary. This can be done by storing textures so that nearby 
texels lie on the same row as far as possible, generally by assign­
ing square arrays of texels to SDRAM rows. Of course, 
successive accesses will not always hit the same row, and row 
crossings on different memories and different modules will occur 
at different times. To take advantage of this requires controlling 
the memories independently, akin to MIMD control in a 
multiprocessor. 

The alternative is to be conservative and to perform a full 
row/column access for every texture lookup. This has the advan­
tage of not restricting the way textures are stored in memory; the 
organization need not preserve coherence. Also, control of the 
memory subsystem is simpler since all texture lookups occur in 
lock step. This is akin to SIMD control in a multiprocessor. 

We have chosen to use SIMD control because of its simplicity and 
because it fits naturally with PixelFlow's SIMD rasterizer engine. 

3.5 Address and Filtering Calculations on EMCs 

As anyone who has implemented texturing knows, performing the 
actual lookups is only one piece of the puzzle. The mip-map 
resolution level must be determined. Texture coordinates must be 
transformed, taking perspective warping into account. Texture 
addresses must be computed from texture coordinates. Finally, 
texture values must be ftltered. 

All of these steps are compute-intensive. Computing the 
resolution level for mip-maps requires a logarithm and several 
multiplies. Perspective-correction requires a high-precision 
reciprocal z calculation and several multiplies and adds. Filtering 
for mip-maps requires trilinear interpolation, another series of 
multiplies and adds. 

What is worse is that other texture algorithms require other 
calculations. Environment maps, depth-map shadows, and bump 

paired together and both written at the same time. This has ugly 
software implications. With the method we have adopted, the data 
is replicated across panels, so a single texture write affects both 
panels; the redundant data can be written in a single pass without 
wasting one panel's memory cycles. 

maps require different address calculations [GREE86; REEV87; 
SEGA92]. Non-mip-map textures require different types of 
filtering. 

It is possible to devise hardware that converts pixel values into 
addresses and does the required filtering, but it would require 
many modes and would have to be heavily pipelined or highly 
parallel to be fast enough. This, indeed, is the approach that most 
texture subsystem deSigners have taken [RICH89; LARS90; 
AKEL93]. For PixelFlow, we were not content to support only a 
few prescribed forms of texture access. We desired texturing to 
be as programmable as the rest of the rasterizer to allow flexibility 
in devising shading and other pixel/texture manipulation 
algorithms. 

Furthermore, PixelFlow has a tremendous computation resource 
available-the SIMD processing elements. The PEs on a single 
board provide an aggregate of nearly a trillion 8-bit integer 
operations per second. In addition, they are completely 
programmable, allowing users to change algorithms at will. We 
decided to use the pixel processors for all address and filtering 
calculations. 

4 SYSTEM COMPONENTS 

We now describe the system components in more detail, 
emphasizing how they implement the functions above. 

4.1 Image Generation Controllers 

The texture subsystem (in fact the entire rasterizer) is controlled 
by a pair of microcoded sequencers called Image Generation 
Controllers (lGes). The IGCs execute high-level instructions for 
the EMCs and T ASICs, controlling their cycle-by-cycle operation. 
The ElGC controls the EMCs and synchronizes operations over 
the image-composition network. The TIGC controls the T ASICs, 
the SDRAMs, and handshakes with the optional video port. A set 
of semaphores interlocks operation of the two IGCs. 

4.2 Enhanced Memory Chips 

PlXelFlow EMC 

Figure 7: logical diagram of a Pixel Flow EMC (figure 
courtesy of John Eyles). 
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Figure 8: Block: diagram of logical Texture ASIC (two physical TASIC chips). 

The EMCs comprise the main computational resource for the 
texture subsystem. Each EMC contains 256 processing elements 
(PEs), each with its own 8-bit ALU, an output of a linear­
expression evaluator (LEE), 256 bytes of local memory, two 32­
byte transfer buffers, and two 32-byte local-pon buffers. Figure 7 
shows a logical diagram of an EMC. 

Each PE's ALU is a general-purpose 8-bit processor, including an 
enable register which allows operations to be performed on a 
subset of the PEs. The PE can use LEE results (described below) 
or local memory as operands and can write results back to local 
memory. It can also transfer data between memory, the carry 
register, and the UO buffers. 

The LEE evaluates bilinear expressions Ax + By + C for each PE 
of the array in parallel. A, B, and C are coefficients loaded from 
the IGC and (x, y) represent the PE's (x, y) address. The LEE is 
used primarily to interpolate parameters during rasterization. but 
can also be used during shading. 

Each PE is provided with 256+4-32 bytes of local memory. The 
memory is divided into five partitions: a 256-byte main partition, 
which is used for most computation, and four 32-byte partitions 
used for external communication. Two of these, the local port 
buffers, are connected to the local port. The local port is 
connected to the TASICs, so that data can be exchanged between 
the local buffer and attached external memory. The other two, the 
image-composition buffers, are connected to the image­
composition port. 

The image-composition port and local port allow pixel data to be 
transferred serially to/from the EMCs to other EMCs (for 
compositing) or to/from the T ASICs (to perform texture lookups 
or pixel-data writes to texture or video memory). Data from each 
PE is presented serially at each port. The number of bytes 
transferred to/from each PE and their location in the 
communication buffer are configured by software. The image­
composition port is an 8-bit port; the local port is a 4-bit port. 
Both run at 200 MHz. with simultaneous bi-directional 
communication. 
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The local-port has a special feature that is useful for texture 
operations. Each PE has a mark register wbich can be set under 
software control to determine whether it will participate in the 
next texture operation. Only marked PEs transmit or receive data 
over their local port. 

4.3 Texture ASICs 

The array of eight Texture ASICS (TASICS) implements a data­
parallel communication interface between pixel memory in the 
EMCs. texture/video memory. the GP, and optional video 
circuitry. The TASICs perform the buffering and data conversion 
required to read and write SDRAM memories and contain internal 
counters to refresh a video display or read video data from a frame 
grabber. 

For packaging reasons, the T ASICs are bit-sliced by two; the two 
physical TASICs function together as a single logical TASIC. 
Throughout the remainder of tbis paper, we will refer to logical 
T ASICs (both bit slices), rather than physical T ASICs. Figure 8 
shows a block diagram of a logical T ASIC. 

The Address Corner Turner (A Cn is a 2K byte dual-ported 
memory that "comer-turns" serial addresses arriving from the 
EMCs or GNI and buffers them up into the parallel format 
required at the SDRAM address pins. Address data from the eight 
EMCs in the module stream into tbis memory from the left. The 
eight addresses from a single EMC are read out from below. 

The Data Corner Turner (DCn is similar to the ACT, except it 
buffers data rather than addresses and can transfer data in both 
directions, from EMCs to SDRAMs, or vice versa. Like the ACT, 
it is a 2K byte dual-ported memory. When writing textures to 
SDRAM memory, it receives data from eight EMCs from the left. 
The eight data values from a single EMC are read out from below. 
The ocr can be configured to send data in either direction and to 
transfer either 1, 2. or 4 byte data types. 



from to video 
TIGC subsystem 

J t2 

SDRAM addresses (8x12 bits) 

Texture 

14--+-' ASlCs 


(bit­
sliced 
by 2) 

SDRAM data (8x8 bits) 

Inter-module links 

(left) (right) 

Figure 9: Interconnection between components in a module (one of four modules). 

The T ASIC has connections to the EMCs and the SDRAMs of the 
module. It also has connections to the T ASICs of the other 
modules via a 16-bit ring network called the inter-module ring. 
This ring network provides communication between modules and 
the GP, allowing pixel data to be shared between modules and 
allowing the GP to participate in pixel calculations. Like the 
EMC-to-TASIC connections, the inter-module ring operates at 
200 MHz, bidirectionally. 

The datapath between the EMC port, the inter-module ring, and 
the ACfIDCf is configurable to allow data to be transferred in a 
variety of directions between the modules of a rasterizer and the 
GP. 

Under certain circumstances, such as block texture writes 
(explained in Section 5) and transfers of texel data to and from the 
GP, it is impractical to provide memory addresses from the EMCs. 
To support these kinds of operations, the T ASIC contains an in­
ternal address generator, consisting of programmable registers and 
counters. 

Multiplexing circuitry at the memory address outputs selects 
among the different possible address sources. Some address 
sources can be XORed together as well, providing more flexibility 
when generating addresses. 

The TASICs' video interface consists of an 8K byte video FIFO 
(VFIFO) and a set of registers and counters to keep track of pixel 
addresses within scanlines and video fields. The VFIFO buffers 
pixels into batches and handles the asynchronous boundary 
between the rasterizer and video subsystems. The video address 
registers store the row/column addresses of the starting scan line 
of up to eight independent video fields. Additional counters store 
the address of the current scan line and pixel. A set of registers 
also stores the order in which up to eight fields are to be 
displayed, so interleaved and/or stereo displays can be refreshed 
continuously without intervention by the GP. Special TIGC 
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instructions update these address and field registers. They are 
used to swap buffers when double-buffering and to synchronize 
GP operation with video scanout when desired. 

4.4 SDRAM Memory 

The module is the "functional unit" of the texture subsystem. 
The eight SDRAM memories of each module are connected to the 
module's TASIC, as shown in Figure 9. The chips are controlled 
globally by the TIGC, so that all the SDRAMs on a board do a 
memory operation at the same time, but the addresses for each 
SDRAM are independent. The total storage per module' is 16 
MBytes. Each SDRAM can read or write data to/from a random 
location in memory at a peak rate of 100 Mbyteslsec, so the raw 
memory bandwidth per module is 8 • 100 MBytes/sec = 800 
MByte/sec. The attainable memory bandwidth per module for 
four-byte readslwrites is approximately 580 MByteslsec. 

Addresses for texture readslwrites can come from one of three 
sources: 1) computed on EMCs and sent over the local-port to 
T ASICs, 2) sent to T ASICs over the geometry network, 3) 
generated on the TASICs themselves using their internal address 
generators. 

Analog 
video out 
(360 MHz) 

360 MHz 
1.."......~ RAMDAC r:E::::::::~... 

x3 
(forRGB) 

.. 

IiiI 


Figure 10: Video connections for a 2K x 2K-pixel 
frame-buffer board. 
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Figure 11: Basic filtered texture read. Each PE specifies eight independent row/column addresses and 
receives a data value from each of the eight SORAMs in the module. 

4.5 Video Interface 

On frame-buffer and frame-grabber boards (boards with an 
optional video interface), the SDRAMs store video data as well as 
textures. The SDRAMs provide storage for 4Kx4K 32-bit pixels, 
sufficient to double-buffer images for any display up to 4Kx2K 
pixels. 

The TASICs of each module provide a 32-bit bidirectional video 
interface that can be clocked by an external video clock at up to 
100 MHz. The pixels in a scan line are interleaved over the 
modules, so that every 4 (contiguous) pixels on a horizontal scan 
line come from different modules. By multiplexing the outputs of 
the four modules together, as shown in Figure lO, the overall pixel 
rate can be as high as 4 • 100 Mpixelslsec =400 Mpixelslsec, 
sufficient to update a 2K x 2K monitor at 60 Hz. 

When driving less aggressive video devices, video scan-out/scan­
in requires only a fraction of the SDRAM bandwidth. For 
example, when refreshing a I280xlO24 at 60 Hz, video scanout 
requires less than 10% of SDRAM memory bandwidth. In such 
cases, portions of memory not needed for storing images can store 
texels for image-based texturing or other data as in any other 
system board. 

5 ALGORITHMS AND PERFORMANCE 

As discussed before, the most common texture operation is the 2D 
mip-map lookup, in which each PE looks up a value from a 
random location in each of the eight SDRAMs in its module. We 
will describe this basic operation first and variations later. 

First, each PE calculates eight independent row and column 
addresses for the eight SDRAMs in its module. It then copies 
these into its local port buffer. Next. the texture subsystem reads 
these addresses from the local-port, applies them to the eight 
SDRAM memories, and reads the eight corresponding data values 
from the SDRAMs. It then loads these eight data values into the 
PEs' local-port input buffer. These operations are depicted 
schematically in Figure 11. 

The texture subsystem performs this type of lookup at the 
maximum rate supported by the SDRAMs. Other classes of 
memory operation exhibit more coherence and can run faster, or 
require communication across module boundaries. We describe 
these variations in the following sections. 

5.1 Coherent vs. Non-Coherent ReadslWrites 

Mip-map and other texture lookups require that each texel be 
addressed independently. However. when writing texture data or 
frame-buffer data, the data generally is in array form already. 
There is no need to specify a row address for each data element. 
Rather, we can use fast-page mode to transfer data more rapidly. 

For these reasons, PixelFlow provides two types of texture 
commands: scatter commands. which perform a full row/column 
access for each data item transferred, and block commands. which 
use fast-page mode to store coherent data. Scatter commands use 
addresses computed by the EMCs and transferred to the T ASICs 
along with the data. Block commands use the T ASICs' internal 
address generator to generate addresses. 

5.2 Local vs. Global Writes 

Data can be written from the EMCs of all modules to the modules' 
SDRAMs in a manner similar to texture reads. Alternatively, it 
can be broadcast from the EMCs of one module to the SDRAMs 
of all modules. This is useful for converting rendered images into 
textures. Other data transfer modes are available for sending data 
from one module to another and to transfer data to/from the GP. 

5.3 Immediate Texturing 

So far, we have assumed that texturing is done during deferred 
shading-after visible surfaces have been determined. An 
important class of texture operations, texture operations that affect 
viSibility, do not fit this model. Texture-modulated transparency 
is an important algorithm of this type. The solution is to perform 
immediate texturlng-texturlng during rasterization. This is what 
virtually all other texture engines do. PixelFlow can do it also, but 
performance issues arise. 

First, immediate texturing means texturing all rasterized pixels. 
whether they are visible in the final image or not. Second, 
partially transparent objects have to be blended properly with 
objects in front of and behind them. To do this properly requires 
front-to-back traversal, negating the benefits of the z-buffer 
algorithm. A common solution is to use screen-door transparency, 
enabling a fraction of the sub-pixel samples when antialiasing. 
This permits only a few levels of transparency, however, (as many 
as there are sub-pixel samples) and can produce artifacts when 
multiple transparent objects .;:over each other. 
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Operation 

Data size 

(bytes) 
Texture time (J.l.sec) 

Formula 50-pixel triangle 128x64 pixel region 
Scatter read 
(mip-map) 

8x2 
8x4 

0.92 + 0.32n 
0.92 + 0.48n 

3.5 
4.8 

82.8 
123.8 

Local block read/write 
(backing-store or video transfer) 

2 
4 

0.65 + 0.025n 
0.65 + 0.045n 

N/A 
NlA 

7.1 
12.3 

Global block write 
(texture write to all modules) 

2 
4 

2.6 + 0.100n 
2.6+ 0.182n 

NlA 
N/A 

28.2 
49.1 

Rgure 12: Times for various texture operations. 

Operation 
EMCI 

TASIC 
Compute time (J.l.Sec) 

50-pixel triangle 128x64 pixel region 
Invert 4-byte Z EMC 9.9 9.9 
Multiply u, v by invertex Z EMC 4.1 4.1 

Compute mip level EMC 3.8 3.8 
Compute texture addresses EMC 12.2 12.2 

Texture lookup TASIC 5.3 141.7 

Trilinear interpolate EMC 4.5 4.5 

Total EMC time EMC 34.5 34.5 

Total TASIC time TASIC 3.5 123.8 

Max of EMC and TASIC times 34.5J.l.Sec 123.8 J.l.Sec 

Rgure 13: Comparison of immediate-texturing and deferred shading performance. 

There are additional perfonnance issues particular to PixelFlow. 
When doing immediate texturing, only a fraction of the PEs are 
involved at any given time. The mark register in the EMCs can be 
used to identify pixels that need texturing. However, this is one 
case where using PEs to calculate addresses and filter texture 
values really hurts: the SIMD array is utilized very poorly. Also, 
the pipelined nature of the texture lookup engine (particularly the 
serial transfer of address and data to/from the ACfIDCT) adds 
latency. This latency of approximately 80 cycles is insignificant 
when texturing a whole 128x64 array of pixels, but becomes 
important when only a few PEs are enabled. 

As a result, the rasterizer perfonnance of 0.5 million polygons/sec 
falls to about 25,000 polygons/sec when immediate texturing. A 
useful optimization is available if partially transparent object are 
tiled with primitives that do not overlap. The primitives can be 
rasterized sequentially and textured as a single batch, obtaining 
many of the benefits of deferred texturing. A major goal of any 
future texture subsystem for PixelFlow will be to improve 
immediate texturing perfonnance. 

5.4 Performance 

Figure 12 gives the raw speed of the basic texture instructions on 
one rasterizer. For scatter reads, eight values (sufficient for a mip­
map lookup) are assumed to be read or written per PE. For block 
reads/writes, one value is assumed to be read/written per PE. 
'Local' block read/writes transfer data between the EMCs and 
SDRAMs of all four modules in parallel. This is typical of video 
and pixel-memory backing-store transfers. 'Global' block writes 
write data redundantly from the EMCs of one module to the 
SDRAMS of all four modules. This is typically done when a 
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rendered image is converted into a texture. The times here are 
four times longer because texels from only one module can be 
written at a time. 

The 'data size' column gives the texel size in bytes. In all cases, 
the amount of time required for the texture operation depends on 
the maximum number of marked PEs n in each EMC in the 
participating module (or modules). The 'fonnula' column gives 
the texture time as a function of n. The '50-pixel triangle' column 
assumes n = 8, typical when immediate-texturing 50-pixel 
triangles. The '128x64-pixel-region' column assumes n =256 
(full-sized region). 

Figure 13 gives overall texturing times (including time for EMCs 
to compute texture addresses and to filter looked-up data) for two 
types of texture operations: immediate-texturing 50-pixel 
triangles and deferred texturing 128x64 regions. These times 
were obtained by running code fragments on the PixelFlow 
hardware simulator. 

There are several things to notice from this table. First, note that 

the time required for EMCs to compute addresses and filter 

texture data is the same no matter how many PEs are marked. 

This follows from the SIMD nature of the rasterizer. Also, note 

that the EMC time is insignificant compared to the texture lookup 

time when deferred shading. When deferred shading, 


. approximately 8,000 regions can be textured per second, which 

meets our goal of mip-map texturing 1280xl024 images with 5 

samples per pixel at 30 Hz on four shaders. 

However, when immediate texturing, the EMC time dominates, 
limiting the number of polygons that can be immediate-textured 
per second. From these results, we predict a maximum immediate 



texturing rate of about 28,000 triangles per second, a factor of 
almost 20 below the raw rasterization rate. We will discuss ways 
to improve this performance in the following section. 

6 DISCUSSION 

The PixelRow texture subsystem met Our primary design goals: 
to perform near the theoretical maximum for mip-map textures 
when deferred shading, and to be sufficiently programmable and 
flexible that it can be used for a wide variety of realistic-rendering 
effects. Members of our software team have written code to 
exercise it and have generated numerous images that demonstrate 
its features, such as the image shown in Figure 2. 

6.1 Comparison with Previous Approaches 

Our texture subsystem departs from the mainstream in two 
important ways: it uses deferred shading to minimize the number 
of texture/shading calculations that need to be performed and it 
uses a SIMD rasterizer engine to minimize the cost per processing 
element. 

These characteristics.give it a very different performance envelope 
than the texture systems on most commercial machines. On 
commercial machines that use immediate texturing, effects such 
as texture~modulated transparency are no more expensive than 
normal texture lookups. Immediate texturing on PixeiRow is 
costly, but PixelFlow's deferred texturing performance is much 
higher, particularly when multiple shaders are used in parallel. 

Antialiasing has different ramifications for the different 
approaches. Immediate texturing systems generally texture and 
shade a single sample in each rasterized pixel and share this 
information among all the samples within the pixel. On 
PixelFlow, every sample can correspond to a different surface, 
and in the general case, must be textured/shaded independently. 
This can erase the benefit of deferred shading. For example, if 
pixels are sampled eight times, this could require the same work 
as immediate shading with a depth complexity of eight. So 
immediate texturing favors scenes with large primitives and low 
depth complexity and deferred shading favors scenes with small 
primitives and high depth complexity. We are exploring 
optimizations in which only the k dominant (most visible) surfaces 
in a pixel are shaded. Preliminary results indicate that shading 
three surfaces per pixel gets the vast majority of pixels right and 
there are ways to approximate the pixels that are wrong. 

The programmable nature of the EMCs and the fact that they do 
all address and filter calculations makes the PixelRow texture 
subsystem extremely flexible. We plan to experiment, and hope 
others will experiment. with a wide variety of algorithms that span 
the domains of rendering and imaging. 

6.2 Implementation Lessons 

The design presented here is the third in a series of evolving 
designs. The earlier designs had a simpler, cleaner software 
interface, but were slower. In the previous designs. virtually all of 
the details of the ACfIDCf. address generation, etc. were hidden 
from the user, but texture writes utilized less than half of the 
SDRAMs' write bandwidth, since addresses had to be provided by 
the EMCs. Henry Rich, of IVEX Corporation, proposed adding 
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address generation logic to the T ASICs to enable the use of block 
transfer commands. These indeed improved the texture subsystem 
write performance by nearly the theoretical factor of two for block 
texture writes, but made the system more difficult to program. 
Fortunately, much of this difficulty is hidden within a library that 
implements higher.level texture commands. 

The inclusion of the video FIFO and registers and counters to 
generate addresses for video scan-inlscan-out proved to be a great 
win. These allow a wide variety of frame-buffer/frame-grabbers 
to be built by adding only a small amount of external hardware on 
an attached 110 card. For most frame-bufferslframe·grabbers, the 
only external logic that is needed is a timing generator and the 
analog video components. Since the amount of bandwidth 
required for video is a small fraction of the overall texture 
bandwidth for most viden devices, the impact on the system is 
low. This approach has been used successfully by others 
[LARS90]; we recommend it. 

Implementing the video subsystem was not without problems, 
however. Details such as supporting genlock, the desire for video 
scanout to continue even if the rest of the system is hung, and the 
asynchronous interface between the rasterizer and video 
subsystem added troublesome constraints to the design and took 
us several design iterations to get right. 

The idiosyncratic nature of SDRAMs proved challenging. We 
committed to SDRAMs early and were thrashed about by ever· 
changing specifications. The dual-bank nature of SDRAMs, while 
improving peak bandwidth, complicates the memory system 
design and the user's programming model. It will be interesting to 
see whether other memory families currently being introduced, 
such as RAMBUS, extended output DRAM, etc. can provide the 
advantages of SDRAMs without the headaches. 

6.3 Limitations and Future Work 

The texture subsystem described here has three main 
shortcomings: slow immediate texturing, redundant calculations 
when supersampling, and painful replication of textures. We are 
reasonably confident that all of these can be solved in the future. 

To make immediate texturing faster, we must add dedicated 
circuitry for address calculations and filtering. As mentioned 
before, other rendering systems do this already [RICH89; 
LARS90; AKEL93]. We hope to learn from their experience as 
they publish details on their work. At the same time, we hope to 
learn from our users. We have endeavored to give them a very 
general platform for texturing with capabilities not found on other 
machines. It will be interesting to see what features and modes 
they exercise and find useful. We will take these into account 
when we design future hardware for immediate texturing. 

We believe that dominant-surface shading can eliminate many of 
the redundant calculations performed when supersarnpling. 

We are pursuing two methods to reduce the resplication of 
textures: the use of a memory hierarchy and increased use of 
memory interleaving. 

It may be possible to have a single, large texture repository with 
multiple, fast local caches of modest size. The large repository 
would store the bulk of the texture data, while only relatively 
small working sets would be stored in the caches. The success of 
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this approach depends on tbe working set being manageably small 
and not changing rapidly. The replacement criteria would be 
different than for standard caches. 

Interleaving by eight, as done in the PixelFlow design, works 
because of the nature of the mip-map algorithm. It may be 
possible to interleave further by hashing addresses, statistically 
distributing memory accesses over number of interleaved memory 
banks. This would require a MIMD control model, as opposed to 
the SIMD model we currently use, but has the potential to 
significantly diminish the amount of texture memory replication. 
This approach may be particularly attractive for systems that 
already use MlMD control. 

CONCLUSION 

The PixelFlow texture subsystem was designed to provide 
flexible, high-speed access to a large, shared texture/image 
memory. It allows PixelFlow to compute images such as the 
bowling image (Figure 2) in real time. With sufficiently clever 
programming. it can be used for a variety of other image-based 
algorithms, including: shadows, general function lookups, inter­
PE communication, backing store for EMC memory, image 
resampling, optical predistortion, remapping for low latency, 
bump mapping, environment mapping, lightsource mapping, and 
hopefully others that are yet to be invented. 

The system's SIMD control made the design simple and matched 
well to the existing SIMD rasterizer, but sacrificed some 
performance available in coherence between neighboring pixels. 
The 8-way interleaved memory design we use appears to reduce 
memory replication as much as possible while retaining SIMD 
control. The system's main limitations are poor performance 
when immediate texturing, the need to texture each sample when 
supersampling, and an eight-fold replication of texture data. We 
don't believe these limitations are intrinsic and hope to solve them 
in the future. In the meantime, we hope that the experience gained 
here will be useful to designers of texture subsystems on other 
high-performance rendering systems. 
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