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Abstract 

We present the architecture of a system, based on a PC, covering 
real-time video processing by integration of live video and 
computer graphics. The video processing and integration are 
realized by generation and evaluation of an on-line MIPmap 
video texture. This new application of a known filtering 
technique for still textures in the field of live video processing 
permits an easy and high performance integration of video and 
graphics to speed up the video processing. The video texture is 
mapped on surfaces defined by graphics primitives. The graphics 
primitives are processed by a standard graphics pipeline with 
special hardware support for the rendering part. 

1 Introduction 

In the last few years, multi-media became a new keyword and a 
new dimension in computing and computer interfaces. After 
sound being integrated, the developers went towards the 
integration of live video in PCs and workstations. Who ever joint 
a computer fair recently and watched the fascination of people 
watching themselves or others on a computer monitor or on a 
video-phone knows, that the developers hit well. Digitized still 
images can be fully integrated and enrich all types of documents 
and advertisements. But thinking of live video, there is no 
integration with computer-graphics but only a coexistence. This 
is due to the technical realization of displaying video on 
computers. The video normally is digitized at video frame rate 
and stored. During the screen refresh of the graphics image 
(normally at a higher refresh rate), the video information from 
the buffer is read out and displayed in a window area of the 
graphics image as an overlay, separated from the graphics. There 
is not even a temporal connection between the graphics frames 
and the video frames. This may be sufficient for some 
applications, but others like video effect generation and 
animation cannot profit from live video this way. In our paper we 
outline a system small enough to fit into a PC but powerful 
enough to really integrate video and graphics. Moreover the 
system offers enough rendering performance and texture 
mapping features to support real-time simulation applications. 

2 System Features 

Our system unites the features of both video processing systems 
and graphics systems. The supported video functionality 
includes: 

• 	 temporal conversion of the video 
• 	 arbitrary placement of the video on the screen 

• 	 video compression and decompression for sequence 
storage and replay 

The integration of graphics and video allows to display any video 
effects as known from TV and commercials like: 

• 	 rotation of the video image with arbitrary angles 
• 	 flips, wipes, fly-ins, fly-outs, explosions, etc. 
• 	 true perspective mapping of the video on arbitrary objects 

like cubes or spheres 

Moreover, our system contains a high functionality graphics 
system. The real-time video capabilities allow the following 
additional features: 

• 	 real-time video background for animations and 
environmental simulations 

• 	 mapping of live video on animated objects within the 
graphics scene 

• 	 sequence controlling during the integration of video and 
graphics 

It should be noted, that the main goal of our system is to 
demonstrate the benefit of the integration of video and graphics. 
Providing facility for cutting and editing of the video is not the 
focus. Such features do not influence the hardware architecture 
of the system. They require an appropriate piece of software for 
the functionality and the user interface. Furthermore, recording 
the processed images to video tape requires an additional 
temporal conversion and some format conversion circuitry. 

3 Functional Architecture 

Figure 1 shows the functional architecture of our system that 
realizes the features described above. The system consists of a 
video module with video preprocessing and video texture 
generation, a graphics module with fast graphics generation, 
video texture mapping and picture generation. 

3.1 Functional Description of the Video-Module 

For a flexible and high quality integration of live video and 
computer graphics, the video ·processing has to fulfill several 
requirements. Displaying video and computer graphics together 
on the same monitor requires the adaptation of the video frame 
rate to that of the monitor. In order not to lose the image quality 
of the video, this adaptation has to be done in real time. That 
means, that the frame rate of the processed frames has to be 
equal or higher than the original frame rate of the video. This 
real time frame rate conversion, in the following referred to as 
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Monitor 

Figure 1: Functional Architecture 
video-preprocessing. is realized in most video overlay boards for 
personal computers or workstations. These overlay boards allow 
to display the video in a separate window as overlay to the 
graphics. To achieve a more flexible integration of video and 
computer graphics, we generate one or several textures from the 
video. Then, this textures can be mapped on a surface of a 
graphics object like an ordinary still texture. To integrate live 
video as video texture. some video processing is required. that 
generates the textures in real time. 

3.1.2 Video Preprocessing 

Standard video cameras or video cassette recorders deliver 
images as analog video signals coded according to NTSC or PAL 
format. To integrate these video images and the graphics images, 
the analog video signals have to be digitized first. Afterwards. 
they are temporally filtered. 

The temporal filtering is necessary to preserve the image quality. 
Without filtering. motions in video images appear jerky. This is 
due to the different sampling rates of video and graphics. NTSC 
coded video scenes are sampled at 30 frames per second, while 
for example advanced PC monitors display" this images at 70 
frames per second. The way the frames are generated is different 
as well. A video frame consists" of two fields (odd and even 
field), which contain odd and even lines. The fields are displayed 
at a repetition rate of 60 Hz. Although the information of a whole 
frame is displayed at 30 Hz only. the 60 Hz field repetition rate 
reduces the flicker of the video without increasing the necessary 
bandwidth for transmission. This method is called interlacing. 
Most graphics adapters however use a full frame or non­
interlaced mode to display the images. This is the reason why 
uniform motions, sampled in TV norm, mostly do not appear as 
uniform motions when displayed on a graphics monitor. 
Temporal filtering works as a conversion between video frame 
rate and graphics frame rate and is done by interpolation between 
different input frames. 

The digitizing of the analog video signals is performed at : 
resolution of up to 768 x 576 pixels per image with 24 bits 0 

color depth. Up to three subsequent video frames may be store< 
and evaluated for the following temporal filtering. The vi~ 
images are stored with 24 bits of color depth or dithered t( 

reduce the color depth to 8 bits. The dithering algorithm that i: 
processed in real-time, is known as ordered dithering. 

The temporal filtering converts the frame rate of the video­
images to the frame rate of the video texture. 

The texture frame rate can be programmed, to combine the 
video- and graphics raster-image of the PC with a minimum 01 
temporal aliasing. To display the video textures on graphiQ 
monitors, the texture frame rate can be selected from 25 fram~ 
per second to 38 frames per second. The conversion algorithm 
can be programmed as well. The frame rate conversion can be 
done with or without interpolation between subsequent vide<: 
frames. To generate the texture frames, the conversion uses all 
input frames without loss of information. 

Conversion without interpolation is done by selecting a video 
frame that will become the next texture frame. Conversion with 
interpolation is done by weighting the two color values of the 
same pixels from subsequent video frames with coefficients and 
adding the results. The values of the coefficients represent the 
temporal function of the interpolation, which may be linear or 
non-linear. This conversion algorithm provides a good trade-off 
between flexibility of generating different graphics frame rates 
and the necessity of additional bardware for the interpolation. 

The image quality depends on the algorithm, the image 
information and on the accuracy of the coefficients. Filtering 
without interpolation or with non-linear interpolation offers 
highest quality if fast motion of high contrast moving edges 
exists in the video. Linear interpolation offers best quality with 
slow motion of moving edges in the video. The accuracy of the 
coefficients determines how often per picture the weighting can 
be adapted. We achieved best image quality when the weighting 
is adapted at least after eight rows. 

3.1.3 Video Texture Generation 

The temporally filtered frames are one part of the video texture. 
The whole texture is generated as MIPmap structure [6]. 
MIPmapping is a filtering technique for still textures known 
from computer graphics. In this representation, besides the image 
with the intrinsic resolution, filtered images with lower 
resolutions are available. The filtering is done by simply 
accumulating the color values of four adjacent pixels of the 
higher resolution image and averaging the result to compute one 
pixel at lower resolution. In this way, the size of the different 
levels of detail, as the filtered images are called, decreases about 
a factor of four from one level to the next. The MIPmap filtering 
of textures is normally done off-line. The exact. position­
dependent scale factor for the mapping can be calculated on-line 
by interpolating between two pixel values of the two nearest 
levels of details. The advantage of the off-line MlPmap 
prefiltering is the predictable and short generation time for the 
on-line scaling. 

To use this algorithm for scaling and manipulating video images 
means that for each video frame a MlPmap image has to be 
calculated. This leads from off-line MlPmap generation, 
proposed for graphics texture prefiltering. to "On-line MJPmap" 
generation for live video images [4]. 
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3.2 Functional Description of the Graphics-Module 

Our basic approach for the integration of graphics and video is to 
use the preprocessed video as a texture to be mapped upon 
graphics objects. As the real-time requirements imposed by the 
live video are handled by the video preprocessing stage, no major 
conceptual changes to the classical graphics pipeline are 
necessary. The graphics module acts as a MIPmap-evaluator to 
map the video texture, preprocessed by the MIPmap-generator to 
a surface described in display coordinates forming a 3D-space. 
Arbitrary manipulations of the surfaces can be achieved through 
proper transformation in 3D space. The surface upon which the 
texture is to be mapped is tessellated into triangles. In the most 
usual case, the surface is a rectangular window. In this case the 
surface is broken down into two triangles covering the area of the 
rectangle. A very complex case could be the surface of a sphere. 
The sphere has to be approximated by triangles as well. 
Depending on the quality that is required, up to thousands of 
triangles are necessary to describe the surface. 

The graphics pipeline can be subdivided in two blocks with 
different tasks. The geometry block does all the calculations 
related to the different transformations of the objects, the 
clipping and, assuming the Gouraud shading model, the lighting 
at the vertices of the triangle primitives. These calculations are 
normally done by the host or a special accelerator using floating­
point representations. 

The second block does the scan conversion of the primitives 
including hidden surface removal, shading, blending and texture 
mapping functions. All these calculations are done on a pixel by 
pixel base. The number of calculations depends on the number of 
pixels that have to be actually rendered. As the functions 
necessary for rasterization are simple and normally done in 
integer representation, they are often realized using proprietary 
high speed hardware. The geometry block consisting of 
programmable processors is functionally flexible. Consequently, 
the rendering hardware determines the functional and 
performance differences between different graphics systems. Our 
system will support the following features: 

• 	 Gouraud shading 
• 	 z-buffering 
• 	 depth cueing 
• 	 perspective correct video-texture mapping with MIPmap 

approach and tri-linear interpolation 
• 	 flexible texture formats: 32 bit r,g,b,a, 16 bit r,g,b, 8 bit 

intensity 
• 	 alpha blending for transparency 
• 	 intensity manipulation to support lighting effects on 

textured surfaces 
• 	 anti-aliasing 
• 	 scaleable performance 
• 	 flexible screen resolutions from 640 x 480 to 1280 x 1024 

3.2.1 Performance Requirements 

The graphics object upon which the video texture is mapped has 
to be generated at a repetition rate equivalent or greater than the 
original frame rate of the video. This ensures, that no 
information from the video is lost, which would result in jerky 
motion. The computational power required for this task depends 
only on the number of primitives to be displayed. So its 
performance is measured in triangles per second. 

To ensure the real-time capabilities assuming a certain frame­
rate, the graphics module has to fulfill two different 
requirements: 
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The geometry block must be capable of calculating a sufficient 
number of triangles per second. Assuming a frame rate of 30 Hz 
and a screen complexity of 1000 triangles per frame, a 
performance of 30,000 triangles per second is required. This 
sounds not too challenging but to reach this performance using a 
single processor like the i860, you have to keep the overhead 
small and optimize kernel routines. Furthermore, if there are 
curved objects that are approximated by triangles, 1000 triangles 
are easily spent for only one globe. 

The rendering block must be capable of producing the pixels 
required to displaying the scene including the mapped video in 
real-time. The number of pixels per second to be generated 
mainly depends on three factors: the frame rate, the screen 
resolution (if whole frames are generated) and the medium 
coverage factor. Assuming a frame rate of 30 Hz, a resolution of 
800 by 600 pixels and a coverage factor of 1.4, the required 
performance is about 20 Mpixells. That leaves only 50 ns for the 
whole calculation of one pixel including texture buffer and z 
buffer lookup as well as frame buffer and z buffer write. 

3.2.2 Algorithmic Approach 

The triangles, being the main graphics pnmlttve, can be 
rasterized in two different ways depending on the anti-aliasing 
mode. H no anti-aliasing or supersampling is used, the triangles 
are rasterized using the exact point sampling technique and 
subpixel addressing in order to avoid artifacts. Details of the 
algorithm and its hardware realization are described in [1] and 
[2]. To support a less costly anti-aliasing method, area-sampling 
using stochastically distributed sampling points can be applied to 
the triangle edges. The number of triangles that may Contribute 
to a single pixel is flexible but for normal scenes, four (that 
means four edges meet within a pixel) seems sufficient. 
Determination of visible surfaces in case of overlapping objects 
is done by applying a z-buffer algorithm. For native shading, the 
Gouraud algorithm, that does linear interpolation of the color 
values between the vertices of a triangle, is realized. The way the 
texture mapping is done, depends on the quality that is required. 
According to the interpolated texture addresses, color values are 
read from the texture memory that contains the MIPmap 
structure. The interpolated z-value determines the level(s) of 
detail to be used. According to [3], There are different 
possibilities to determine the resulting pixel value. 

1. The easiest way is to just read one value from one level of 
detail (pointsampling). This algorithm can produce visible 
artifacts when objects move within the scene. 

2. To increase precision, up to four values from one map can be 
weighted according to the fractional parts of u and v addresses 
(hi-linear interpolation). This reduces artifacts when objects 
move in x and y direction. 

3. To reduce artifacts when objects move in z direction as well, 
values from the two nearest levels of detail can be interpolated 
using weighting factors depending on the fractional part of the z­
address (point sampling, MlPmap). 

4. The most complex algorithm is the combination of 2. and 3. 
In this case four values from .two different levels are used to 
determine the resulting pixel (tri-linear interpolation). This 
produces the best result but requires eight reads, calculation of 
10 weighting factors, 10 multiplications, 7 additions and 3 shift 
operations for each separate color value (r,g,b,a) of each pixel. 

Textures can represent a certain intensity distribution that 
modulates the intrinsic color and the intensity as result of the 
lighting. In this case an 8 bit value seems sufficient. Where 
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texture is used to generate a photo-realistic image, like in 
environmental simulation, the texture consists of are true color 
values. Lighting effects are modeled assuming, that the surface, 
on which the texture is to be mapped, has an intrinsic white color 
and calculating the effects of the light sources for this surface. 
The texture value and the value from the lighting calculation are 
then blended together. For the video textures it depends on the 
application whether they are mapped unchanged or blended with 
the result of a lighting calculation. Both possibilities can be 
realized. 

While texture mapping helps to gain a more realistic image of a 
scene without the necessity of very complex models. there exists 
one problem. If the scene consists only of a few big surfaces, 
perspective distortions will be visible. The distortions increase 
with the difference of the extreme z-values within a surface 
where the z-values are linearly interpolated. That is due to the 
fact, that the linear approximation of the perspective equation. 
which requires to calculate the reciprocal of z, is rather bad 
where the derivation of the function is big. Subdividing the area 
covered by a triangle in a way, that the range of its z-values is 
small. decreases visible artifacts but burdens the geometry unit 
by the higher amount of triangles. An other way is to 
approximate the perspective equation with a quadratic 
interpolation. This approach avoids division and works better 
than linear interpolation. The effort in hardware is medium. 
However significant errors occur in critical cases. To gain the 
most precise results, the exact perspective equation can be 
realized. This however requires a division and some 
multiplications/accumulations per pixel which means a big 
expense of hardware. 

Hardware Architecture 

Figure 2 shows the block diagram of our system architecture. Our 
two modules are connected to the system bus of the host to 
provide an interface for control data. The graphics-module reads 
texture data using a separate 32 bit connection to the texture­
buffer. The camera is connected to the analog interface of the 
video module. It accepts PAL and NTSC coded FBAS signals as 
well as separate luminance and chrominance signals for SVHS 
qUality. The monitor is connected to the r,g,b outputs of the 
display controller included in the graphics module. Depending on 
the configuration of the system. the output of the graphics 
module displays both system information and processed 
application image (single display configuration) or a separate 
monitor for system messages and user interface is connected to 
the system display adapter (dual display configuration). 

o

IS? J 

Monitor 

Figure 2: Hardware Architecture 

112 


4.1 Video Module 

The video module consists of the video preprocessing and thc 
texture generation. The video preprocessing comprises the vide( 
input circuit, the video buffer and the temporal filtering circuit 
The texture generation comprises the MIPmap generation cireui' 
and the MIPmap double buffer. Figure 3 shows the connection oj 

the units and the signal flow through the circuits. The videc 
module is realized using standard logic components ane 
programmable logic devices. 

Data to and from 

graphics module 


Figure 3: Architecture of the Video Module 

The functionality the video module provides is: 

• 	 support of standard video formats (PAL, NTSC) in quality 
uptoSVHS 

• support of 24 bit color depth for the video images 
• optional dithering of the video images to 8 bit color depth 
• 	 generation of on-line video textures with formats up to 

768x576 and 35 Hz non-interlaced 
• 	 generation of MIPmap textures 

4.1.1 Video Input Circuit 

To implement the video input circuit, we chose a chipset from 
Philips Semiconductors, which offers high quality raster image 
generation and programmable digital color filtering with only a 
few components. The analog camera signals, FBAS, or 
luminance chrominance are digitized, digitally filtered to YlN 
and color converted to RGB24. 

AT-bus 

Control from 
graphics-module 



The chipset is programmable to digitize NTSC or PAL coded 
video. For software controlled initialization, the chipset is 
connected to the AT-bus of the PC. The optional real time 
dithering to 8 bit (3 bit R, 3 bit G, 2 bit B) is done in hardware. 
The raster images of 768x567 size are stored in the video buffer. 
The video buffer connects the video input unit and the temporal 
filtering unit. Because the video buffer is written and read 
asynchronously from different units, it requires independent 
interfaces for read and write operations. As best choice for the 
memory, we found field memories by Texas Instruments. These 
field memories have independent and asynchronous interfaces for 
read and write operations and, since they work like FIFOs, they 
do not need an address generation. 

The video digitizing runs asynchronously to the temporal 
filtering. The stored video images have to be accessed 
independently from the digitizing unit and the temporal filtering 
unit. 

4.1.2 Temporal Filtering Circuit 

The write control signals of the video buffer are derived from the 
video synchronization signals. The read control signals of the 
video buffer are generated by the temporal filtering controller. 
The interpolation for the temporal filtering is done by the 
interpolator. The interpolator reads the color values of two video 
pixels, stored in the video buffer, weights this pixels with 

.coefficients, adds the result and writes one pixel to the texture 
buffer. The coefficients to weight the color values are stored in a 
coefficient memory. The addresses for the coefficient memory are 
generated by the temporal filtering controller. The interpolator is 
realized with special multiplier accumulator chips from TRW 
LSI Products. The temporal filtering controller is realized using 
programmable logic devices from AMD and Lattice. The 
temporal filtered image, stored by the interpolator in the texture 
buffer, is the first level of detail of the Mlpmap texture. 

4.1.3 MlPmap Generation Circuit 

The lower levels of detail are generated successively from the 
higher ones. This means, the second level of detail is calculated 
from the first. the third is calculated from the second, and so on. 
All levels of detail are stored in the MIpmap buffer. As 
described, the calculation of one pixel at lower resolution is done 
by interpolation among 4 pixels from a level of detail with higher 
resolution. This interpolation is done by the interpolator of the 
temporal filtering unit and controlled by the MIPrnap controller. 
This controller includes a state machine and an address generator 
to control the read and write operations of the texture buffer. The 
MIPrnap controller is realized using programmable logic devices 

Data from 
Texture 
Buffer 
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4.1.4 Texture Buffer 

Since the MIPrnap generation and the spatial conversion need 
fast random access to the texture buffer, the buffer is designed 
with an interleave of four and built of fast SRAM. To achieve a 
texture generation- and evaluation in real-time, texture­
generation and evaluation have to be done in parallel and so the 
texture buffer is realized as double buffer. 

4.2 Graphics Module 

The graphics module comprises three units, the geometry unit, 
the rendering unit and the display controller unit. Figure 4 shows 
the architecture of the graphics module. 

4.2.1 Geometry Unit 

As mentioned above. the geometry calculations are either done 
on the host CPU or on a special accelerator module. We realized 
several accelerator modules employing floating point processors 
like the i860 in a single processor configuration or the 
TMS32OC40 in a multiprocessor configuration with up to four 
processors. Since the announcement of the TMS320C80 this new 
generation multiprocessor seems most suitable as features like 
real-time MPEG decompression fit to our system very well. The 
geometry stage and the rendering stage are decoupled by a FIFO 
memory that buffers the triangle data sets necessary for the 
rendering module. Typical scenes normally consist of very 
different sized triangles [5]. The FIFO prevents the geometry 
module from waiting for the rendering device during the 
processing of big triangles. Vice versa, the rendering module can 
still render if there are data in the FIFO although the geometry 
module produces small triangles that take longer to calculate 
than to render. 

4.2.2 Rendering Unit 

The main component of the rendering module is an ASIC that 
does the rasterizing of the triangles and the interpolation of the 
texture pixels according to the algorithms described above. 
Moreover it is a rendering and shading processor. It performs 
Gouraud shading, texture mapping as described above, alpha 
blending and antialiasing. It receives input and command data 
through the 32 bit input interface connected to the decoupling 
FIFO. The results of rasterization and mapping are written to the 
image buffer. The 32 bit image buffer is a double buffer and 
consists ofEnhanced DRAMs or SRAMs. To achieve a sufficient 
memory bandwidth, the memories are two times interleaved. 

Figure 4: Architecture of the Graphics Module 
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When the area sampling algorithm is used for anti-aliasing. 
multiple area information has to be stored per pixel. After the 
generation of a complete frame. a postprocessing step is required 
to blend the different colors to the resulting color for the 
respective pixel. This blending is done by a blending ASIC 
during copying the frame to the display buffer. The z-buffer is 
organized similar to the image buffer. It contains 20 bits of z­
information. 28 bits that logically belong to the image buffer 
contain status information. pointer to additional area information 
and memory space for accumulation. The texture buffer interface 
is two times 32 bit wide. The texture buffer can either consist of 
SRAM or of EDRAM. Because a random access is required, the 
SRAM is preferable but expensive. 16 Mwords of texture buffer 
can be addressed. For the video textures, a double buffer is 
required to decouple generation of the video MIPmap from the 
rendering device. As mentioned above, the textures can range 
from 8 bits to 32 bits of color. In the 8 bit mode, four values can 
be read in parallel. To increase performance for 32 bit modes. a 
preprocessor chip can be installed, which reads eight 32 bit 
values in parallel and blends them according to the tri-linear 
interpolation algorithm. The result is then read by the texture 
interface of the rendering chip. 

The number of triangles, which can be processed is determined 
by the time for loading the initialization data. The actual limit is 
about 500,000 triangles per second. The rendering chip largely 
exploits parallelism and pipelining. In best case, it is able to 
produce one pixel per clock cycle that is 25 ns. A potential 
bottleneck is the memory access. The need to access more than 
one z-value or texture value per pixel will drop the performance. 
This design decision was a compromise between pin count of the 
rendering chip and performance. To increase system rendering 
performance, provisions have been taken, to provide support for 
parallelism on rendering chip level. The rendering chips can be 
configured to work in an interleaved fashion, each chip 
producing only certain lines of the resulting image. This image 
space partitioning requires no overhead in the geometry 
calculations. Furthermore, as each rendering chip works upon its 
own local part of the z- and image buffer no memory conflicts 
occur as with object space partitioning approaches. One 
drawback is the fact. that each rendering chip requires an own 
complete copy of the texture buffer because there is no fixed 
association between texture and image rows. As long as the 
triangles, that are to be rendered are not too flat. a linear speed­
up can be reached. The system can be configured to employ up to 
16 rendering chips for one display channel. With such a highly 
parallel system, a performance of 640 Mpixels per second is 
possible. 

4.2.3 	 Display Controller Unit 

The display controller unit handl.es the screen refresh. provides 
standard 2D-graphics functionality and manages the interfacing 
to a windows environment. We chose a TMS34020 graphics 
processor as main component. It combines ease of use with high 
performance and functionality. The host interface of the 
processor is connected to the AT bus. The local memory interface 
is connected to two banks of lK by lK by 24 bit VRAM display 
buffer. The data from the image buffer of the rendering unit are 
transferred to the display buffer using the serial ports of the 
VRAMs. The processor is provided with 4 Mbytes of DRAM for 
code and data storage. The controller runs a standard TIGA 
graphics interface to support MS-Windows and other 
applications that make use of this high level interface. 

5 State of Realization 

The video module is completely implemented as evaluatiOi 
board and tested. A user interface for the system, under MS 
Windows, is under development. An integration of tempora 
filtering controller, interpolator and an integration of the 
MlPmap controller as ASIC is planned. 

Geometry accelerator and display controller are available anc 
used for code development. 

The functional and interface specifications for the renderinl! 
ASIC have been finished. The design has been described usin~ 
VHDL. Simulation and synthesis using the Synopsys VHDL 
simulator and silicon compiler are on the way. The expected gate 
count is about 500.000 gate equivalents. For the realization. a 
0.6m CMOS standard cell process will be used. First silicon will 
be available in March 95. We expect a prototype of the whole 
system running in May 95. 
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