
Integration of Live Video and Computer Graphics for Video

Effect Generation

Hans-Josef Ackermann and Utz Osterfeld

Fraunhofer Institute for Computer Graphics

Darmstadt, Germany

Abstract

We present the architecture of a system, based on a PC, covering
real-time video processing by integration of live video and
computer graphics. The video processing and integration are
realized by generation and evaluation of an on-line MIPmap
video texture. This new application of a known filtering
technique for still textures in the field of live video processing
permits an easy and high performance integration of video and
graphics to speed up the video processing. The video texture is
mapped on surfaces defined by graphics primitives. The graphics
primitives are processed by a standard graphics pipeline with
special hardware support for the rendering part.

1 Introduction

In the last few years, multi-media became a new keyword and a
new dimension in computing and computer interfaces. After
sound being integrated, the developers went towards the
integration of live video in PCs and workstations. Who ever joint
a computer fair recently and watched the fascination of people
watching themselves or others on a computer monitor or on a
video-phone knows, that the developers hit well. Digitized still
images can be fully integrated and enrich all types of documents
and advertisements. But thinking of live video, there is no
integration with computer-graphics but only a coexistence. This
is due to the technical realization of displaying video on
computers. The video normally is digitized at video frame rate
and stored. During the screen refresh of the graphics image
(normally at a higher refresh rate), the video information from
the buffer is read out and displayed in a window area of the
graphics image as an overlay, separated from the graphics. There
is not even a temporal connection between the graphics frames
and the video frames. This may be sufficient for some
applications, but others like video effect generation and
animation cannot profit from live video this way. In our paper we
outline a system small enough to fit into a PC but powerful
enough to really integrate video and graphics. Moreover the
system offers enough rendering performance and texture
mapping features to support real-time simulation applications.

2 System Features

Our system unites the features of both video processing systems
and graphics systems. The supported video functionality
includes:

• 	 temporal conversion of the video
• 	 arbitrary placement of the video on the screen

• 	 video compression and decompression for sequence
storage and replay

The integration of graphics and video allows to display any video
effects as known from TV and commercials like:

• 	 rotation of the video image with arbitrary angles
• 	 flips, wipes, fly-ins, fly-outs, explosions, etc.
• 	 true perspective mapping of the video on arbitrary objects

like cubes or spheres

Moreover, our system contains a high functionality graphics
system. The real-time video capabilities allow the following
additional features:

• 	 real-time video background for animations and
environmental simulations

• 	 mapping of live video on animated objects within the
graphics scene

• 	 sequence controlling during the integration of video and
graphics

It should be noted, that the main goal of our system is to
demonstrate the benefit of the integration of video and graphics.
Providing facility for cutting and editing of the video is not the
focus. Such features do not influence the hardware architecture
of the system. They require an appropriate piece of software for
the functionality and the user interface. Furthermore, recording
the processed images to video tape requires an additional
temporal conversion and some format conversion circuitry.

3 Functional Architecture

Figure 1 shows the functional architecture of our system that
realizes the features described above. The system consists of a
video module with video preprocessing and video texture
generation, a graphics module with fast graphics generation,
video texture mapping and picture generation.

3.1 Functional Description of the Video-Module

For a flexible and high quality integration of live video and
computer graphics, the video ·processing has to fulfill several
requirements. Displaying video and computer graphics together
on the same monitor requires the adaptation of the video frame
rate to that of the monitor. In order not to lose the image quality
of the video, this adaptation has to be done in real time. That
means, that the frame rate of the processed frames has to be
equal or higher than the original frame rate of the video. This
real time frame rate conversion, in the following referred to as

109

http://www.eg.org
http://diglib.eg.org

Monitor

Figure 1: Functional Architecture
video-preprocessing. is realized in most video overlay boards for
personal computers or workstations. These overlay boards allow
to display the video in a separate window as overlay to the
graphics. To achieve a more flexible integration of video and
computer graphics, we generate one or several textures from the
video. Then, this textures can be mapped on a surface of a
graphics object like an ordinary still texture. To integrate live
video as video texture. some video processing is required. that
generates the textures in real time.

3.1.2 Video Preprocessing

Standard video cameras or video cassette recorders deliver
images as analog video signals coded according to NTSC or PAL
format. To integrate these video images and the graphics images,
the analog video signals have to be digitized first. Afterwards.
they are temporally filtered.

The temporal filtering is necessary to preserve the image quality.
Without filtering. motions in video images appear jerky. This is
due to the different sampling rates of video and graphics. NTSC
coded video scenes are sampled at 30 frames per second, while
for example advanced PC monitors display" this images at 70
frames per second. The way the frames are generated is different
as well. A video frame consists" of two fields (odd and even
field), which contain odd and even lines. The fields are displayed
at a repetition rate of 60 Hz. Although the information of a whole
frame is displayed at 30 Hz only. the 60 Hz field repetition rate
reduces the flicker of the video without increasing the necessary
bandwidth for transmission. This method is called interlacing.
Most graphics adapters however use a full frame or non­
interlaced mode to display the images. This is the reason why
uniform motions, sampled in TV norm, mostly do not appear as
uniform motions when displayed on a graphics monitor.
Temporal filtering works as a conversion between video frame
rate and graphics frame rate and is done by interpolation between
different input frames.

The digitizing of the analog video signals is performed at :
resolution of up to 768 x 576 pixels per image with 24 bits 0

color depth. Up to three subsequent video frames may be store<
and evaluated for the following temporal filtering. The vi~
images are stored with 24 bits of color depth or dithered t(

reduce the color depth to 8 bits. The dithering algorithm that i:
processed in real-time, is known as ordered dithering.

The temporal filtering converts the frame rate of the video­
images to the frame rate of the video texture.

The texture frame rate can be programmed, to combine the
video- and graphics raster-image of the PC with a minimum 01
temporal aliasing. To display the video textures on graphiQ
monitors, the texture frame rate can be selected from 25 fram~
per second to 38 frames per second. The conversion algorithm
can be programmed as well. The frame rate conversion can be
done with or without interpolation between subsequent vide<:
frames. To generate the texture frames, the conversion uses all
input frames without loss of information.

Conversion without interpolation is done by selecting a video
frame that will become the next texture frame. Conversion with
interpolation is done by weighting the two color values of the
same pixels from subsequent video frames with coefficients and
adding the results. The values of the coefficients represent the
temporal function of the interpolation, which may be linear or
non-linear. This conversion algorithm provides a good trade-off
between flexibility of generating different graphics frame rates
and the necessity of additional bardware for the interpolation.

The image quality depends on the algorithm, the image
information and on the accuracy of the coefficients. Filtering
without interpolation or with non-linear interpolation offers
highest quality if fast motion of high contrast moving edges
exists in the video. Linear interpolation offers best quality with
slow motion of moving edges in the video. The accuracy of the
coefficients determines how often per picture the weighting can
be adapted. We achieved best image quality when the weighting
is adapted at least after eight rows.

3.1.3 Video Texture Generation

The temporally filtered frames are one part of the video texture.
The whole texture is generated as MIPmap structure [6].
MIPmapping is a filtering technique for still textures known
from computer graphics. In this representation, besides the image
with the intrinsic resolution, filtered images with lower
resolutions are available. The filtering is done by simply
accumulating the color values of four adjacent pixels of the
higher resolution image and averaging the result to compute one
pixel at lower resolution. In this way, the size of the different
levels of detail, as the filtered images are called, decreases about
a factor of four from one level to the next. The MIPmap filtering
of textures is normally done off-line. The exact. position­
dependent scale factor for the mapping can be calculated on-line
by interpolating between two pixel values of the two nearest
levels of details. The advantage of the off-line MlPmap
prefiltering is the predictable and short generation time for the
on-line scaling.

To use this algorithm for scaling and manipulating video images
means that for each video frame a MlPmap image has to be
calculated. This leads from off-line MlPmap generation,
proposed for graphics texture prefiltering. to "On-line MJPmap"
generation for live video images [4].

110

3.2 Functional Description of the Graphics-Module

Our basic approach for the integration of graphics and video is to
use the preprocessed video as a texture to be mapped upon
graphics objects. As the real-time requirements imposed by the
live video are handled by the video preprocessing stage, no major
conceptual changes to the classical graphics pipeline are
necessary. The graphics module acts as a MIPmap-evaluator to
map the video texture, preprocessed by the MIPmap-generator to
a surface described in display coordinates forming a 3D-space.
Arbitrary manipulations of the surfaces can be achieved through
proper transformation in 3D space. The surface upon which the
texture is to be mapped is tessellated into triangles. In the most
usual case, the surface is a rectangular window. In this case the
surface is broken down into two triangles covering the area of the
rectangle. A very complex case could be the surface of a sphere.
The sphere has to be approximated by triangles as well.
Depending on the quality that is required, up to thousands of
triangles are necessary to describe the surface.

The graphics pipeline can be subdivided in two blocks with
different tasks. The geometry block does all the calculations
related to the different transformations of the objects, the
clipping and, assuming the Gouraud shading model, the lighting
at the vertices of the triangle primitives. These calculations are
normally done by the host or a special accelerator using floating­
point representations.

The second block does the scan conversion of the primitives
including hidden surface removal, shading, blending and texture
mapping functions. All these calculations are done on a pixel by
pixel base. The number of calculations depends on the number of
pixels that have to be actually rendered. As the functions
necessary for rasterization are simple and normally done in
integer representation, they are often realized using proprietary
high speed hardware. The geometry block consisting of
programmable processors is functionally flexible. Consequently,
the rendering hardware determines the functional and
performance differences between different graphics systems. Our
system will support the following features:

• 	 Gouraud shading
• 	 z-buffering
• 	 depth cueing
• 	 perspective correct video-texture mapping with MIPmap

approach and tri-linear interpolation
• 	 flexible texture formats: 32 bit r,g,b,a, 16 bit r,g,b, 8 bit

intensity
• 	 alpha blending for transparency
• 	 intensity manipulation to support lighting effects on

textured surfaces
• 	 anti-aliasing
• 	 scaleable performance
• 	 flexible screen resolutions from 640 x 480 to 1280 x 1024

3.2.1 Performance Requirements

The graphics object upon which the video texture is mapped has
to be generated at a repetition rate equivalent or greater than the
original frame rate of the video. This ensures, that no
information from the video is lost, which would result in jerky
motion. The computational power required for this task depends
only on the number of primitives to be displayed. So its
performance is measured in triangles per second.

To ensure the real-time capabilities assuming a certain frame­
rate, the graphics module has to fulfill two different
requirements:

111

The geometry block must be capable of calculating a sufficient
number of triangles per second. Assuming a frame rate of 30 Hz
and a screen complexity of 1000 triangles per frame, a
performance of 30,000 triangles per second is required. This
sounds not too challenging but to reach this performance using a
single processor like the i860, you have to keep the overhead
small and optimize kernel routines. Furthermore, if there are
curved objects that are approximated by triangles, 1000 triangles
are easily spent for only one globe.

The rendering block must be capable of producing the pixels
required to displaying the scene including the mapped video in
real-time. The number of pixels per second to be generated
mainly depends on three factors: the frame rate, the screen
resolution (if whole frames are generated) and the medium
coverage factor. Assuming a frame rate of 30 Hz, a resolution of
800 by 600 pixels and a coverage factor of 1.4, the required
performance is about 20 Mpixells. That leaves only 50 ns for the
whole calculation of one pixel including texture buffer and z
buffer lookup as well as frame buffer and z buffer write.

3.2.2 Algorithmic Approach

The triangles, being the main graphics pnmlttve, can be
rasterized in two different ways depending on the anti-aliasing
mode. H no anti-aliasing or supersampling is used, the triangles
are rasterized using the exact point sampling technique and
subpixel addressing in order to avoid artifacts. Details of the
algorithm and its hardware realization are described in [1] and
[2]. To support a less costly anti-aliasing method, area-sampling
using stochastically distributed sampling points can be applied to
the triangle edges. The number of triangles that may Contribute
to a single pixel is flexible but for normal scenes, four (that
means four edges meet within a pixel) seems sufficient.
Determination of visible surfaces in case of overlapping objects
is done by applying a z-buffer algorithm. For native shading, the
Gouraud algorithm, that does linear interpolation of the color
values between the vertices of a triangle, is realized. The way the
texture mapping is done, depends on the quality that is required.
According to the interpolated texture addresses, color values are
read from the texture memory that contains the MIPmap
structure. The interpolated z-value determines the level(s) of
detail to be used. According to [3], There are different
possibilities to determine the resulting pixel value.

1. The easiest way is to just read one value from one level of
detail (pointsampling). This algorithm can produce visible
artifacts when objects move within the scene.

2. To increase precision, up to four values from one map can be
weighted according to the fractional parts of u and v addresses
(hi-linear interpolation). This reduces artifacts when objects
move in x and y direction.

3. To reduce artifacts when objects move in z direction as well,
values from the two nearest levels of detail can be interpolated
using weighting factors depending on the fractional part of the z­
address (point sampling, MlPmap).

4. The most complex algorithm is the combination of 2. and 3.
In this case four values from .two different levels are used to
determine the resulting pixel (tri-linear interpolation). This
produces the best result but requires eight reads, calculation of
10 weighting factors, 10 multiplications, 7 additions and 3 shift
operations for each separate color value (r,g,b,a) of each pixel.

Textures can represent a certain intensity distribution that
modulates the intrinsic color and the intensity as result of the
lighting. In this case an 8 bit value seems sufficient. Where

4

texture is used to generate a photo-realistic image, like in
environmental simulation, the texture consists of are true color
values. Lighting effects are modeled assuming, that the surface,
on which the texture is to be mapped, has an intrinsic white color
and calculating the effects of the light sources for this surface.
The texture value and the value from the lighting calculation are
then blended together. For the video textures it depends on the
application whether they are mapped unchanged or blended with
the result of a lighting calculation. Both possibilities can be
realized.

While texture mapping helps to gain a more realistic image of a
scene without the necessity of very complex models. there exists
one problem. If the scene consists only of a few big surfaces,
perspective distortions will be visible. The distortions increase
with the difference of the extreme z-values within a surface
where the z-values are linearly interpolated. That is due to the
fact, that the linear approximation of the perspective equation.
which requires to calculate the reciprocal of z, is rather bad
where the derivation of the function is big. Subdividing the area
covered by a triangle in a way, that the range of its z-values is
small. decreases visible artifacts but burdens the geometry unit
by the higher amount of triangles. An other way is to
approximate the perspective equation with a quadratic
interpolation. This approach avoids division and works better
than linear interpolation. The effort in hardware is medium.
However significant errors occur in critical cases. To gain the
most precise results, the exact perspective equation can be
realized. This however requires a division and some
multiplications/accumulations per pixel which means a big
expense of hardware.

Hardware Architecture

Figure 2 shows the block diagram of our system architecture. Our
two modules are connected to the system bus of the host to
provide an interface for control data. The graphics-module reads
texture data using a separate 32 bit connection to the texture­
buffer. The camera is connected to the analog interface of the
video module. It accepts PAL and NTSC coded FBAS signals as
well as separate luminance and chrominance signals for SVHS
qUality. The monitor is connected to the r,g,b outputs of the
display controller included in the graphics module. Depending on
the configuration of the system. the output of the graphics
module displays both system information and processed
application image (single display configuration) or a separate
monitor for system messages and user interface is connected to
the system display adapter (dual display configuration).

o

IS? J

Monitor

Figure 2: Hardware Architecture

112

4.1 Video Module

The video module consists of the video preprocessing and thc
texture generation. The video preprocessing comprises the vide(
input circuit, the video buffer and the temporal filtering circuit
The texture generation comprises the MIPmap generation cireui'
and the MIPmap double buffer. Figure 3 shows the connection oj

the units and the signal flow through the circuits. The videc
module is realized using standard logic components ane
programmable logic devices.

Data to and from

graphics module

Figure 3: Architecture of the Video Module

The functionality the video module provides is:

• 	 support of standard video formats (PAL, NTSC) in quality
uptoSVHS

• support of 24 bit color depth for the video images
• optional dithering of the video images to 8 bit color depth
• 	 generation of on-line video textures with formats up to

768x576 and 35 Hz non-interlaced
• 	 generation of MIPmap textures

4.1.1 Video Input Circuit

To implement the video input circuit, we chose a chipset from
Philips Semiconductors, which offers high quality raster image
generation and programmable digital color filtering with only a
few components. The analog camera signals, FBAS, or
luminance chrominance are digitized, digitally filtered to YlN
and color converted to RGB24.

AT-bus

Control from
graphics-module

The chipset is programmable to digitize NTSC or PAL coded
video. For software controlled initialization, the chipset is
connected to the AT-bus of the PC. The optional real time
dithering to 8 bit (3 bit R, 3 bit G, 2 bit B) is done in hardware.
The raster images of 768x567 size are stored in the video buffer.
The video buffer connects the video input unit and the temporal
filtering unit. Because the video buffer is written and read
asynchronously from different units, it requires independent
interfaces for read and write operations. As best choice for the
memory, we found field memories by Texas Instruments. These
field memories have independent and asynchronous interfaces for
read and write operations and, since they work like FIFOs, they
do not need an address generation.

The video digitizing runs asynchronously to the temporal
filtering. The stored video images have to be accessed
independently from the digitizing unit and the temporal filtering
unit.

4.1.2 Temporal Filtering Circuit

The write control signals of the video buffer are derived from the
video synchronization signals. The read control signals of the
video buffer are generated by the temporal filtering controller.
The interpolation for the temporal filtering is done by the
interpolator. The interpolator reads the color values of two video
pixels, stored in the video buffer, weights this pixels with

.coefficients, adds the result and writes one pixel to the texture
buffer. The coefficients to weight the color values are stored in a
coefficient memory. The addresses for the coefficient memory are
generated by the temporal filtering controller. The interpolator is
realized with special multiplier accumulator chips from TRW
LSI Products. The temporal filtering controller is realized using
programmable logic devices from AMD and Lattice. The
temporal filtered image, stored by the interpolator in the texture
buffer, is the first level of detail of the Mlpmap texture.

4.1.3 MlPmap Generation Circuit

The lower levels of detail are generated successively from the
higher ones. This means, the second level of detail is calculated
from the first. the third is calculated from the second, and so on.
All levels of detail are stored in the MIpmap buffer. As
described, the calculation of one pixel at lower resolution is done
by interpolation among 4 pixels from a level of detail with higher
resolution. This interpolation is done by the interpolator of the
temporal filtering unit and controlled by the MIPrnap controller.
This controller includes a state machine and an address generator
to control the read and write operations of the texture buffer. The
MIPrnap controller is realized using programmable logic devices

Data from
Texture
Buffer

fromAMD.

4.1.4 Texture Buffer

Since the MIPrnap generation and the spatial conversion need
fast random access to the texture buffer, the buffer is designed
with an interleave of four and built of fast SRAM. To achieve a
texture generation- and evaluation in real-time, texture­
generation and evaluation have to be done in parallel and so the
texture buffer is realized as double buffer.

4.2 Graphics Module

The graphics module comprises three units, the geometry unit,
the rendering unit and the display controller unit. Figure 4 shows
the architecture of the graphics module.

4.2.1 Geometry Unit

As mentioned above. the geometry calculations are either done
on the host CPU or on a special accelerator module. We realized
several accelerator modules employing floating point processors
like the i860 in a single processor configuration or the
TMS32OC40 in a multiprocessor configuration with up to four
processors. Since the announcement of the TMS320C80 this new
generation multiprocessor seems most suitable as features like
real-time MPEG decompression fit to our system very well. The
geometry stage and the rendering stage are decoupled by a FIFO
memory that buffers the triangle data sets necessary for the
rendering module. Typical scenes normally consist of very
different sized triangles [5]. The FIFO prevents the geometry
module from waiting for the rendering device during the
processing of big triangles. Vice versa, the rendering module can
still render if there are data in the FIFO although the geometry
module produces small triangles that take longer to calculate
than to render.

4.2.2 Rendering Unit

The main component of the rendering module is an ASIC that
does the rasterizing of the triangles and the interpolation of the
texture pixels according to the algorithms described above.
Moreover it is a rendering and shading processor. It performs
Gouraud shading, texture mapping as described above, alpha
blending and antialiasing. It receives input and command data
through the 32 bit input interface connected to the decoupling
FIFO. The results of rasterization and mapping are written to the
image buffer. The 32 bit image buffer is a double buffer and
consists ofEnhanced DRAMs or SRAMs. To achieve a sufficient
memory bandwidth, the memories are two times interleaved.

Figure 4: Architecture of the Graphics Module

113

When the area sampling algorithm is used for anti-aliasing.
multiple area information has to be stored per pixel. After the
generation of a complete frame. a postprocessing step is required
to blend the different colors to the resulting color for the
respective pixel. This blending is done by a blending ASIC
during copying the frame to the display buffer. The z-buffer is
organized similar to the image buffer. It contains 20 bits of z­
information. 28 bits that logically belong to the image buffer
contain status information. pointer to additional area information
and memory space for accumulation. The texture buffer interface
is two times 32 bit wide. The texture buffer can either consist of
SRAM or of EDRAM. Because a random access is required, the
SRAM is preferable but expensive. 16 Mwords of texture buffer
can be addressed. For the video textures, a double buffer is
required to decouple generation of the video MIPmap from the
rendering device. As mentioned above, the textures can range
from 8 bits to 32 bits of color. In the 8 bit mode, four values can
be read in parallel. To increase performance for 32 bit modes. a
preprocessor chip can be installed, which reads eight 32 bit
values in parallel and blends them according to the tri-linear
interpolation algorithm. The result is then read by the texture
interface of the rendering chip.

The number of triangles, which can be processed is determined
by the time for loading the initialization data. The actual limit is
about 500,000 triangles per second. The rendering chip largely
exploits parallelism and pipelining. In best case, it is able to
produce one pixel per clock cycle that is 25 ns. A potential
bottleneck is the memory access. The need to access more than
one z-value or texture value per pixel will drop the performance.
This design decision was a compromise between pin count of the
rendering chip and performance. To increase system rendering
performance, provisions have been taken, to provide support for
parallelism on rendering chip level. The rendering chips can be
configured to work in an interleaved fashion, each chip
producing only certain lines of the resulting image. This image
space partitioning requires no overhead in the geometry
calculations. Furthermore, as each rendering chip works upon its
own local part of the z- and image buffer no memory conflicts
occur as with object space partitioning approaches. One
drawback is the fact. that each rendering chip requires an own
complete copy of the texture buffer because there is no fixed
association between texture and image rows. As long as the
triangles, that are to be rendered are not too flat. a linear speed­
up can be reached. The system can be configured to employ up to
16 rendering chips for one display channel. With such a highly
parallel system, a performance of 640 Mpixels per second is
possible.

4.2.3 	 Display Controller Unit

The display controller unit handl.es the screen refresh. provides
standard 2D-graphics functionality and manages the interfacing
to a windows environment. We chose a TMS34020 graphics
processor as main component. It combines ease of use with high
performance and functionality. The host interface of the
processor is connected to the AT bus. The local memory interface
is connected to two banks of lK by lK by 24 bit VRAM display
buffer. The data from the image buffer of the rendering unit are
transferred to the display buffer using the serial ports of the
VRAMs. The processor is provided with 4 Mbytes of DRAM for
code and data storage. The controller runs a standard TIGA
graphics interface to support MS-Windows and other
applications that make use of this high level interface.

5 State of Realization

The video module is completely implemented as evaluatiOi
board and tested. A user interface for the system, under MS
Windows, is under development. An integration of tempora
filtering controller, interpolator and an integration of the
MlPmap controller as ASIC is planned.

Geometry accelerator and display controller are available anc
used for code development.

The functional and interface specifications for the renderinl!
ASIC have been finished. The design has been described usin~
VHDL. Simulation and synthesis using the Synopsys VHDL
simulator and silicon compiler are on the way. The expected gate
count is about 500.000 gate equivalents. For the realization. a
0.6m CMOS standard cell process will be used. First silicon will
be available in March 95. We expect a prototype of the whole
system running in May 95.

6 References

[1] 	 Ackermann, H.-J., Hornung. Ch.: The Triangle Shading
Engine. In R.L. Grimsdale. A. Kaufman, (Eds.):
Advances in Computer Graphics Hardware V, Springer­
Verlag, Berlin, 1991, p.3-13.

[2] 	 Ackermann, H.-J., Hornung, Ch.: An Architecture for a
High Performance Rendering Engine. In A. Kaufman,
(Ed.): Rendering, Visualization and Rasterization
Hardware. Springer-Verlag. Berlin, 1993. p.3-13.

[3] 	 Heckbert, P. S.: Survey of Texture Mapping. Computer
Graphics & Applications, 6(11), November 1986. pp. 56­
67.

[4] 	 Jager. M., Osterfeld, U., Ackermann, H.-J .• Hornung, C.:
Building a Multimedia ISDN PC. Computer Graphics
andApplication. 13(5). September 1993, pp. 24-33.

[5] 	 Selzer. H.: Dynamic Load Balancing within a High
Performance Graphics System. In A. Kaufman, (Ed.):
Rendering. Visualization and Rasterization Hardware.
Springer-Verlag, Berlin, 1993, p.37-53.

[6] 	 Williams, L,: Pyramidal Parametrics. Computer
Graphics, Proc. SIGGRAPH'83, 17(3), July 1983, pp. I­
ll.

114

http:handl.es

