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Abstract 
Architecture and applications of a massively parallel processor are 
described. Volumes of 256x256x 128 voxels can be visualized at a 
frame rate of 10 Hz using volume oriented visualization algorithms. 
A prototype of the scalable and modular system is currently set up. 
3D rotation around an arbilrary rotation axis, perspective, zooming, 
and arbilrary gray value mapping are provided in real-time. Multi­
user access over high-speed networks is possible. 
A volume oriented visualization algorithm is used that is tailored to 
the requirements in medicine [5]. Wrth this algorithm, small 
structures of a size down to the pixel resolution, and structures 
without defmed surfaces can be visualized as well as semi-trans­
parent objects. One application of the system is therapy planning in 
heart surgery. 

Introduction 
Data drawn from computer tomography (CT) or nuclear magnetic 
resonance (MR) allow in principle to look inside the patient's body 
using visualization of these data. Today's imaging machines have a 
resolution on the mm scale so that many details important for 
diagnosis and therapy can be recorded. However limitations of the 
visualization process have up to now narrowed the application area of 
3D visualization of such data. Typical visualization problems to be 
solved in the medical context are e.g. tissues that have no defmed 
surface (e.g. mmify into its surrounding healthy tissue) or blood 
vessels whose size is close to the limit of imaging resolution. Also, 
the visualization of semi-transparent objects, where objects can be 
visualized within their anatomical context, has shown to give 
decisive information for successful diagnosis or therapy. 
Volume visualization is currently done using two different 
approaches: surface oriented and volume oriented algorithms. 
Surface oriented methods are standard for nearly all 3D visualization 
problems. The surfaces of the relevant objects are e::wacted from the 
data according to some criteria, and-for visualization-incoming 
light intemcts with these surfaces only [1,2,3]. With dedicated vector 
hardware. these models can be calculated very efficiently. However, 
surface oriented methods leave the typical problems in medical 
visualization of the kind described above unsolved. 
In contrast, in volume oriented methods [4,5] each voxel is illu­
mirulted and contributes to the fmaIID projection. Although they do 
not suffer from the problems of surface oriented methods, they have 
not yet found widespread application in medicine. The reason why 
they were hindered from introduction into clinical practice is their 
immense computational demand wllich is about three orders of 
magnitude higher than with surface oriented methods. The 
calculation of one 2D projection with the Heidelberg Raytracing 
Model [5] e.g. currently takes about 5 minutes for data volumes of 
256X256x 128 voxels using a standard workstation like a SUN 
Sparc2. 

The aspect of computational demand becomes decisive when real­
time visualization is required. Real-time calculation of arbitrary 
views not only enables the physician to capture the real 3D shape of 
the objects under study but also allows interactive optimization of 
visu a1i7Jlt;on parameters. 
Despite the demand for real-time volume visualization in medical 
applications. only recently have parallel architectures been suggested 
for real-time visualization using volume oriented methods, and few 
prototypes are currently under development [6,7,8,9]. 
While real-time visualization hardware using surface oriented 
visualization algorithms is state-of-the-art (Reality Engine (SGI), HP, 
SUN, IBM, PIXAR) [10,11,12], these systems are far from providing 
real-time visualization when running volume based algorithms. One 
reason is the sheer computational demand of ..5-10 GFlops, the other 
reason is the data communication problem in parallel systems, when 
views of the data volume from different angles are desired. 
Up to now no commercial system is available for real-time visual­
ization with volume oriented algorithms. The urgency to support the 
physician in his interpretation of 3D data from CT or MR lead us to 
the design of a massively parallel machine dedicated to this task.. 
which will be embedded into a clinic information system to provide 
full use ofother information techniques. 
Below the Heidelberg Rayt:nu::ing Algorithm is described, which is 
the underlying volume visualization approach. This is followed by a 
detailed description of the architecture of the parallel computer 
system and fmally, the application areas of the system are described. 

Algorithm 
As our basic visna1j7Jlt;on algorithm. we use the Heidelberg Ray­
tmcing Model of Meinzer et aI.. [5]. It has been modified so that 
rotation around an arbitral:y axis. perspective, scaling oforiginal gray 
values, background identification, stereo view, and other features 
became possible. 
The Heidelberg Raytmcing Model is a volume oriented algorithm 
which uses ray tracing and Phong shading (with x and y gradient 
only) for the generation of projections of the 3D data cube. The 
algorithm operates with 2 light sources that enri1 parallel light One 
light source lies in the direction of the viewer, one450 apart. 
Before raytracing, the data cube is rotated and the volume is 
resampled such that the viewer looks along the y axis into the rotated 
data cube. After· the rotation, the bundle of light mys from both 
sources enters the volume parallel to the x-z plane (see Fig. 1). Then, 
it is possible to calculate the interaction between light and optical 
density slice by slice (reflected light does not enter into other planes), 
and the amount of light which is emitted into the viewer's direction 
(y) gives the resulting image. 
For perspective view, x-z planes, which are perpendicular to the 
viewing direction, are resized after rotation. The planes that are next 
to the viewer are expanded, while those that are apart from the user 
are slu:inked (s. Fig. 2). 
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viewer 

light source 45° 

light source 0" 

Fig. 1: Schematic of lighting sources, viewer and rotated data 
cube. 

viewerviewer 

Fig. 2: Schematic of the transformation for the projective view. 
A pyramid out of the rotated data cube is mapped onto a cube. 

In order to allow arbitrary changes of the transparency of objects., the 
values of the voxels in the data cube can be mapped by a look-up­
table (LUI) before rotation and raytracing. We have therefore the 
following sequence ofoperations before the rayt:racing begins: 

apply LUI' to data cube - > 

rotate data cube - > 


affine transform of data cube for perspective 


During raytracing, each light ray is first attenuated according to the 
density of the voxel passed through. The energy deposited in the 
voxel due to absorption determines the maximal amount of light that 
is scattered in the viewing direction; no scattering components to 
other voxels are considered (low albedo). 

light from the viewing direction is scattered only by diffuse 
scattering while light from 45° is scattered by diffuse and speculw 
scattering. Self-luminosity proportional to the light intensity is the 
fourth component of the scattered light A Phong shading model [13~ 
is used to calcu1ale the first three components whereby the required ~ 
and y gradient is realized by a x and y Sobel operator [13]. The nOIIll 
of the gradient vector is taken as measure for the probability for 8 

SUIface. It is multiplied with the specular scatter component 
To this basic algorithm a background identiftcation step bas beeIl 
added that allows the separation of the background from dat:k fields 
in the image. When the light intensity leaving the most distant depth 
coordinate in an x-z plane is above It certain threshold, a marker is set 
which indicates that the viewer can see the background behind the 
data cube. 
Finally, stereo view of the data is provided by producing two images 
with a 40 inclination angle. 

Visualization System 
In this section, the software and hardware concept of our visual­
ization system are described. Rotation has been identified to consume 
as much as 80% of the computation time for visualization. Being a 
fixed operation for which the best possible algorithm is already 
known, the rotation algorithm is mapped directly into hardware 
(rotator). Raytracing-which should be modifiable-is performed by 
an array of digital signal processors (DSPs). 
One rotator and 16 DSPs constitute one module; linear scaling of the 
system's performance is achieved by addition of further modules. 
Four modules are required for real-time visualization of volume data 
of 256'(256)( 128 voxels. 
The modules are attached to a VME bus which is connected to a host 
system. The host system provides the base for the control software 
and the graphical user-interface. Alternatively, the host system can 
operate as a server allowing multi-user access over high-speed 
networks. 
Our real-time system with four modules will be integzated into one 
crate. At peak speed, 160 million voxelsls can be rotated and a 
floating point performance of25 GFlops is achieved. 
Below the three components of the system, the rotator, the raytracing 
processor, and the software concept are described in detail. 

memory ~ rotator . 
J I 

DSPboard .. 
host 

ray-tracing 

gCOllleuy 
proc­

rotator board 

Fig. 4: Schematic ofthe hardware. 

iotctpOlation 
1---1--......--'1 proce88OI' 

Fig. 5: Schematic ofthe rotator board 
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Rotator Board 
In principle, the rotation and the volume sampling of the data cube 
can be realized in two ways. Either only light sources and viewer are 
rotated, or the data cube is rotated while light source and the viewer 
are fixed [7]. The fll"St choice has the advantage that the position of 
the light sources can be chosen freely without affecting the 
performance. However, for each ray the fraction ofenergy deposited 
in each voxel has to be computed by interpolation. For two light 
soun:es this is twice the number of time critical ~lations 
compared to our choice where only the data cube is rotatedl . 
In principle, the rotation and the volume sampling of the data cube 
can be realized in two ways. Either only light sources and viewer are 
rotated, or the data cube is rotated while light source and the viewer 
are fixed [7]. The first choice has the advantage that the position of 
the light sources can be chosen freely without affecting the 
performance. However, for each ray the fraction of energy deposited 
in each voxel has to be computed by interpolation. For two light 
soun:es this is twice the number of time critical intqpolations 
compared to our choice where only the data cube is rotate<¥. 
For the parallelization of the rotation operation. two different 
approaches are reported in literature. Either the data are distributed 
over many memories which are attached to processor elements over 
interconnection structures [8], or a dedicated hardware rotator is used 
[9,6]. The first approach has the advantage that no data duplication is 
necessary, but it suffers from the problem of the interconnection 
network that states a bottleneck due to high latency times. Moreover, 
communication problems will occur when projection and zooming 
are allowed. As the rotation is a fixed operation, a direct mapping of 
the algorithm into hardware has the advantage that this operation can 
be executed very fast, and only a small number of such rotators is 
necessary for real-time visualization. 
For our system, we chose the latter solution of a hardware rotator. 
Different approaches for the rotation algorithm have been investi­
gated, rotation using distortion matrices [6], trilinear interpolation 
[5], and Gaussian interpolation masks [15]. For the last method, the 
gray value of the voxel V in the rotated coordinate system is 
interpolated by the gray values of its 8 neigbbors vr' in the original 
coordinate system. Here, a 64)(64)(64 mask w with values Wi j ~ ­
exp(i;2 + r + k2}, (i, j, k =0,...,63) is used for the interpolation 
weights of the vr', where il64, jl64, kl64 indicate the x, y, and z 
distance between v and the corresponding vr' 3. The discIetization 
error is invisible if a discretization with 6 or more bits for each 
coordinate is used. 
Distortion matrices smooth the data signiflCantly causing information 
loss, which is not the case for the other two methods. Compared to 
trilinear interpolation, the least artifacts (Moire patterns) are obtained 
by mask interpolation using a Gaussian fIlter mask, which we use for 
oursystem. 

In the following the realization of the rotator 'board as a parallel 

pipeline processor is described. The board consists of three pamIlel 

pipeline processors, a geometry proCessor, an interpolation processor, 

and a gradient processor. 

In our case we use 0° and 45° light sources. Here, the ray passes 
through the center of each voxel on its way, and therefore no 
partitioning between neighboring voxeIs is necessary. 

2 	 In our case we use 0° and 45° light sources. Here, the ray passes 
through the center of each voxel on its way, and therefore no 
partitioning between neighboring voxeIs is necessary. 

3 	 Cases where the distance = 1 for one coordinate are handled 
separately. 
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The geometry processor calculates the addresses of the voxeIs to be 
interpolated using the rotation matrix, the matrix for the perspective, 
and the zooming factor. The addressees are fed into the eight-fold 
divided data RAM coutaining the data cube. Each RAM unit coutains 
only 1/8th of the whole data such that each eight-neighborhood can 
be accessed in parallet4. The eight values from the RAM are mapped 
onto density values using a freely modif:table LUT. Besides, the 
geometry processor additionally generates eight interpolation weight 
addresses for weight memories. Using eight density values and eight 
weights the interpollrion processor interpolates the density values 
and produces the density ofone rotated voxeL 
Finally, the gradient processor applies the Sobel operator for x and y 
direction, which serve as the x and y gradient for Phong shading. 
An three pipeline processors are controlled by a local bus master that 
is additionally responsible for the communication with the host 
system e.g. to read parameters for rotation. perspective, and zoom. 
The data produced by the rotation board-density value plus x and y 
gradient-is transfeu:ed over a 48 bit wide unidirectional rotator-DSP 
bus with a peak transfer rate of 240 MBis. 16 DSPs are attached to 
this bus whereby only the selected DSP receives the data. 

DSPBoard 
The DSP board is a multiprocessor board that executes the raytrac:ing 
part of our algorithm. Its flexibility allows the implementation of 
different visualization modeIs, e.g., the Heidelberg Raytrac:ing 
Algorithm [5] or the volume visualization algorithm of Levoy [4]. 
One board consists of 8 digital signal processors (DSPS) and a local 
bus master CPU that handles all communication. ie., the distribution 
ofvisualization parameters among the DSPs, and the transfer ofparts 
of the fInal 2D image calculated by the DSPs. That way the full 
performance of the DSPs can be dedicated to the raytracing itself. 
Data from the rotator board arrives over the rotator-DSP bus and are 
temporarily stored in a FIFO. Using the internal parallelity of the 
DSP (two floating point operations together with two move 
operations) the ray tracing and scattering of the light is calculated. 
Additional devices perform data format mapping (16 bit integer to 
floating point) and the branch operations, which are unsuited for 
DSPs but nevertheless substantial to our algorithm. Running at a 
speed of 40 MHz, each DSP with its additional devices calculates 
one line (256 pixel) of the fmal2D image within 50 ms (0066 million 
operations/s). 

4 	 Each RAM unit contains one-combination of even/odd data cube 
addressed voxeIs. To allow fast rJw accesses, each unit is 
subdivided into two banks that each contains half the data. This 
way a ping-pong readout is possible. Accesses on the same 
address are suppressed and the old data is held on the line; 
addresses that lie out of the data cube range (determined by 
software) produce a 0 as data value. Using these additional 
features, the mean access time can be reduced by more than a 
factor of two. 



Fig. 6: The DSP board 

Communication structure and User 
Interface 
The control software of the visualization system is organized into two 
layers, a user-interface layer UIL and a communication layer CL The 
UIL bandIes the user input over input devices like a mouse or 
keyboard, and converts these signals into control parameters like 
rotation angles etc. These signals are transferred to the 
communication structure that bandles all communication between 
host and visualization system. Due to the separation of both layers, 
remote access to the visualization system is possible. Here, the UlL 
operates e.g. on an X-terminal and communicates over a high-speed 
network with the host computer where the communication layer 
resides. 
The UIL provides three different interaction components to the user. 
WIth the flISt component the user can modify freely the weights of 
the reflection parameters (diffuse and specular parts for each light 
source). The second component allows arbit:nu:y rotation, moving. 
and zooming of the data cube; with a 3D mouse as input device. 
Finally, the third component enables the user to directly modify the 
data cube. Arbit:nu:y cubic regions of the original data cube can be 
selected for visualization. Moreover, the UlL supports simple 3D 
segmentation. Our segmentation approach is based on an arbitrary 
mapping of feature vectors onto density values. Feature vectors 
which consist of elements like gray value, local variance, or texture 
measures are calculated and mapped to a density value for each voxel 
before visualization. 
Besides standard 110 functions-loading the data cube, storing the 
result image-, a recording feature has been added. This feature 
allows to record the visualization result while manipulating the 

control parameters, e.g., reflection parameters, rotation parameteD 
etc. 
For visualization each 100 ms the user input is transferred to tilt 
communication layer. This layer maps the parameters obtained fron 
the UIL into the control structure used by rota1or and DSP board, an< 
it bandles all communication protocols between host an( 
visualization hardware. DSP and rotator board read actively theiJ 
parameters from the structure and calculate the resulting 2I 
projection according to the underlying algorithm. The 2D projectiol: 
is transferred to the communication unit which passes the dati 
through to the UIL for representation on the screen. 

Medical Applications 
The system described here has a wide range of applications in the 
medical field WIth the user interface UIL, it becomes possible fOl 
the physician to use the real-time rotator/raytracer as a 'digital 
endoscope', enabling him to navigate through any hollow orgaJI 
found in the human body. Moreover, if resolution of the CT and MR 
scanners is accordingly improved, it is conceivable to simulate 
operations like catheterizing a hollow organ or a vessel in the digital, 
virtual world This opens a wide field of application in education and 
training of physicians. 
More precisely, heart surgery, e.g., can benefit substantially from the 
work described here. The surgeons would appreciate an interactive 
method of presenting cardiac morphology in a way that allows 
detailed preoperative study. This intravital study would support 
planning and execution of surgical. procedures in several aspects [16]: 
- the presentation ofthe morphology is directly transferable to the in 

vivo situation, in contrast to the intraoperative situation in which 
the cardioplegic heart lies in the thorax with an altered form, 

- complete preoperative information reduces the time of intra­
operative evaluation and thus the time of aortic cross-clamp time, 

- preoperative decision about the optimal surgical access to the heart 
increases surgical success rate, 

- in complex malformations, complete and reliable diagnosis can be 
facilitated. 

Another field of application in which we are presently working is 
orthopedics. The meniscus of the knee, for example, can be diag­
nosed with the tool presented here. 
Presently, we are developing the user interface to our real-time 
visualization system which can be intuitively operated by e.g. the 
cardiac surgeon. A flISt prototype will use a 3D mouse for the 
interactive navigation through the digital data volume, and zooming 
inloot can be set with a slider. 
The non-invasive 'digital endoscope" applied to study the anatomy 
and morphology of organs without harm to the patient (in fact, the 
patient can leave the hospital after the CT or MR scan was taken) is a 
first step to be taken in the direction of introducing virtual reality to 
medicine. Here, volume based rendering of the data has undoubtedly 
advantages against vector based models which are today standard in 
virtual reality applications. For reliable diagnosis, the texture and 
morphology of organ or vessel surfaces is essential and has to be 
presented as realistically as possi­
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Fig. 7: Two modules of the user interface for the modiflcation of the light components and the gray value mapping. 

hIe. In this sense, vectorized models seem to be of limited application Once real-time visualization is available, the next step in the 
in the medical field direction of virtual reality in medicine is interactive manipulation of 

the data. Appropriate tools for resection or imp1antation of material 
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have to be designed in order to provide a realistic means of 
preoperative simulation of surgical actions. The volume data model 
has to be extended in order to be able to specify features like tissue 
elasticity or flexibility for every voxel in the data cube. 

Conclusions 
Our visualization system will be operable as a prototype by autumn 
1994. Its application in clinical routine is planned for 1995. 
A full system amounts to about tOO kECU and has currently three 
limitations, the z gradient is not used. only two fixed light sources are 
considered, and the size of the image memory in the rotator 
processors limit the maximal cube size. We are currently investi­
gating a system without these limitations. 
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