
VIRIM: A Massively Parallel Processor for Real-Time

Volume Visualization in Medicine

T. Giinthert, C. Poliwodat , c. Reinhartt , J. Hessert , R. Mannert1, H.-P. Meinzer*, H.-I. Baur*

t Lehrstuhl fUr Infonnatik V, U niversitiit Mannheim, Mannheim, Germany

1 Interdisziplinares Zentrum fUr Wissenschaftliches Rechnen, Univ. Heidelberg, Heidelberg, Germany

* Abt. Med. u. Biolog. Infonnatik, DKFZ Heidelberg, Heidelberg, Germany

Abstract
Architecture and applications of a massively parallel processor are
described. Volumes of 256x256x 128 voxels can be visualized at a
frame rate of 10 Hz using volume oriented visualization algorithms.
A prototype of the scalable and modular system is currently set up.
3D rotation around an arbilrary rotation axis, perspective, zooming,
and arbilrary gray value mapping are provided in real-time. Multi­
user access over high-speed networks is possible.
A volume oriented visualization algorithm is used that is tailored to
the requirements in medicine [5]. Wrth this algorithm, small
structures of a size down to the pixel resolution, and structures
without defmed surfaces can be visualized as well as semi-trans­
parent objects. One application of the system is therapy planning in
heart surgery.

Introduction
Data drawn from computer tomography (CT) or nuclear magnetic
resonance (MR) allow in principle to look inside the patient's body
using visualization of these data. Today's imaging machines have a
resolution on the mm scale so that many details important for
diagnosis and therapy can be recorded. However limitations of the
visualization process have up to now narrowed the application area of
3D visualization of such data. Typical visualization problems to be
solved in the medical context are e.g. tissues that have no defmed
surface (e.g. mmify into its surrounding healthy tissue) or blood
vessels whose size is close to the limit of imaging resolution. Also,
the visualization of semi-transparent objects, where objects can be
visualized within their anatomical context, has shown to give
decisive information for successful diagnosis or therapy.
Volume visualization is currently done using two different
approaches: surface oriented and volume oriented algorithms.
Surface oriented methods are standard for nearly all 3D visualization
problems. The surfaces of the relevant objects are e::wacted from the
data according to some criteria, and-for visualization-incoming
light intemcts with these surfaces only [1,2,3]. With dedicated vector
hardware. these models can be calculated very efficiently. However,
surface oriented methods leave the typical problems in medical
visualization of the kind described above unsolved.
In contrast, in volume oriented methods [4,5] each voxel is illu­
mirulted and contributes to the fmaIID projection. Although they do
not suffer from the problems of surface oriented methods, they have
not yet found widespread application in medicine. The reason why
they were hindered from introduction into clinical practice is their
immense computational demand wllich is about three orders of
magnitude higher than with surface oriented methods. The
calculation of one 2D projection with the Heidelberg Raytracing
Model [5] e.g. currently takes about 5 minutes for data volumes of
256X256x 128 voxels using a standard workstation like a SUN
Sparc2.

The aspect of computational demand becomes decisive when real­
time visualization is required. Real-time calculation of arbitrary
views not only enables the physician to capture the real 3D shape of
the objects under study but also allows interactive optimization of
visu a1i7Jlt;on parameters.
Despite the demand for real-time volume visualization in medical
applications. only recently have parallel architectures been suggested
for real-time visualization using volume oriented methods, and few
prototypes are currently under development [6,7,8,9].
While real-time visualization hardware using surface oriented
visualization algorithms is state-of-the-art (Reality Engine (SGI), HP,
SUN, IBM, PIXAR) [10,11,12], these systems are far from providing
real-time visualization when running volume based algorithms. One
reason is the sheer computational demand of ..5-10 GFlops, the other
reason is the data communication problem in parallel systems, when
views of the data volume from different angles are desired.
Up to now no commercial system is available for real-time visual­
ization with volume oriented algorithms. The urgency to support the
physician in his interpretation of 3D data from CT or MR lead us to
the design of a massively parallel machine dedicated to this task..
which will be embedded into a clinic information system to provide
full use ofother information techniques.
Below the Heidelberg Rayt:nu::ing Algorithm is described, which is
the underlying volume visualization approach. This is followed by a
detailed description of the architecture of the parallel computer
system and fmally, the application areas of the system are described.

Algorithm
As our basic visna1j7Jlt;on algorithm. we use the Heidelberg Ray­
tmcing Model of Meinzer et aI.. [5]. It has been modified so that
rotation around an arbitral:y axis. perspective, scaling oforiginal gray
values, background identification, stereo view, and other features
became possible.
The Heidelberg Raytmcing Model is a volume oriented algorithm
which uses ray tracing and Phong shading (with x and y gradient
only) for the generation of projections of the 3D data cube. The
algorithm operates with 2 light sources that enri1 parallel light One
light source lies in the direction of the viewer, one450 apart.
Before raytracing, the data cube is rotated and the volume is
resampled such that the viewer looks along the y axis into the rotated
data cube. After· the rotation, the bundle of light mys from both
sources enters the volume parallel to the x-z plane (see Fig. 1). Then,
it is possible to calculate the interaction between light and optical
density slice by slice (reflected light does not enter into other planes),
and the amount of light which is emitted into the viewer's direction
(y) gives the resulting image.
For perspective view, x-z planes, which are perpendicular to the
viewing direction, are resized after rotation. The planes that are next
to the viewer are expanded, while those that are apart from the user
are slu:inked (s. Fig. 2).

103

http://www.eg.org
http://diglib.eg.org

viewer

light source 45°

light source 0"

Fig. 1: Schematic of lighting sources, viewer and rotated data
cube.

viewerviewer

Fig. 2: Schematic of the transformation for the projective view.
A pyramid out of the rotated data cube is mapped onto a cube.

In order to allow arbitrary changes of the transparency of objects., the
values of the voxels in the data cube can be mapped by a look-up­
table (LUI) before rotation and raytracing. We have therefore the
following sequence ofoperations before the rayt:racing begins:

apply LUI' to data cube - >

rotate data cube - >

affine transform of data cube for perspective

During raytracing, each light ray is first attenuated according to the
density of the voxel passed through. The energy deposited in the
voxel due to absorption determines the maximal amount of light that
is scattered in the viewing direction; no scattering components to
other voxels are considered (low albedo).

light from the viewing direction is scattered only by diffuse
scattering while light from 45° is scattered by diffuse and speculw
scattering. Self-luminosity proportional to the light intensity is the
fourth component of the scattered light A Phong shading model [13~
is used to calcu1ale the first three components whereby the required ~
and y gradient is realized by a x and y Sobel operator [13]. The nOIIll
of the gradient vector is taken as measure for the probability for 8

SUIface. It is multiplied with the specular scatter component
To this basic algorithm a background identiftcation step bas beeIl
added that allows the separation of the background from dat:k fields
in the image. When the light intensity leaving the most distant depth
coordinate in an x-z plane is above It certain threshold, a marker is set
which indicates that the viewer can see the background behind the
data cube.
Finally, stereo view of the data is provided by producing two images
with a 40 inclination angle.

Visualization System
In this section, the software and hardware concept of our visual­
ization system are described. Rotation has been identified to consume
as much as 80% of the computation time for visualization. Being a
fixed operation for which the best possible algorithm is already
known, the rotation algorithm is mapped directly into hardware
(rotator). Raytracing-which should be modifiable-is performed by
an array of digital signal processors (DSPs).
One rotator and 16 DSPs constitute one module; linear scaling of the
system's performance is achieved by addition of further modules.
Four modules are required for real-time visualization of volume data
of 256'(256)(128 voxels.
The modules are attached to a VME bus which is connected to a host
system. The host system provides the base for the control software
and the graphical user-interface. Alternatively, the host system can
operate as a server allowing multi-user access over high-speed
networks.
Our real-time system with four modules will be integzated into one
crate. At peak speed, 160 million voxelsls can be rotated and a
floating point performance of25 GFlops is achieved.
Below the three components of the system, the rotator, the raytracing
processor, and the software concept are described in detail.

memory ~ rotator .
J I

DSPboard ..
host

ray-tracing

gCOllleuy
proc­

rotator board

Fig. 4: Schematic ofthe hardware.

iotctpOlation
1---1--......--'1 proce88OI'

Fig. 5: Schematic ofthe rotator board

104

gradient •
proce$ICr

gradient J

gradient}

density

Rotator Board
In principle, the rotation and the volume sampling of the data cube
can be realized in two ways. Either only light sources and viewer are
rotated, or the data cube is rotated while light source and the viewer
are fixed [7]. The fll"St choice has the advantage that the position of
the light sources can be chosen freely without affecting the
performance. However, for each ray the fraction ofenergy deposited
in each voxel has to be computed by interpolation. For two light
soun:es this is twice the number of time critical ~lations
compared to our choice where only the data cube is rotatedl .
In principle, the rotation and the volume sampling of the data cube
can be realized in two ways. Either only light sources and viewer are
rotated, or the data cube is rotated while light source and the viewer
are fixed [7]. The first choice has the advantage that the position of
the light sources can be chosen freely without affecting the
performance. However, for each ray the fraction of energy deposited
in each voxel has to be computed by interpolation. For two light
soun:es this is twice the number of time critical intqpolations
compared to our choice where only the data cube is rotate<¥.
For the parallelization of the rotation operation. two different
approaches are reported in literature. Either the data are distributed
over many memories which are attached to processor elements over
interconnection structures [8], or a dedicated hardware rotator is used
[9,6]. The first approach has the advantage that no data duplication is
necessary, but it suffers from the problem of the interconnection
network that states a bottleneck due to high latency times. Moreover,
communication problems will occur when projection and zooming
are allowed. As the rotation is a fixed operation, a direct mapping of
the algorithm into hardware has the advantage that this operation can
be executed very fast, and only a small number of such rotators is
necessary for real-time visualization.
For our system, we chose the latter solution of a hardware rotator.
Different approaches for the rotation algorithm have been investi­
gated, rotation using distortion matrices [6], trilinear interpolation
[5], and Gaussian interpolation masks [15]. For the last method, the
gray value of the voxel V in the rotated coordinate system is
interpolated by the gray values of its 8 neigbbors vr' in the original
coordinate system. Here, a 64)(64)(64 mask w with values Wi j ~ ­
exp(i;2 + r + k2}, (i, j, k =0,...,63) is used for the interpolation
weights of the vr', where il64, jl64, kl64 indicate the x, y, and z
distance between v and the corresponding vr' 3. The discIetization
error is invisible if a discretization with 6 or more bits for each
coordinate is used.
Distortion matrices smooth the data signiflCantly causing information
loss, which is not the case for the other two methods. Compared to
trilinear interpolation, the least artifacts (Moire patterns) are obtained
by mask interpolation using a Gaussian fIlter mask, which we use for
oursystem.

In the following the realization of the rotator 'board as a parallel

pipeline processor is described. The board consists of three pamIlel

pipeline processors, a geometry proCessor, an interpolation processor,

and a gradient processor.

In our case we use 0° and 45° light sources. Here, the ray passes
through the center of each voxel on its way, and therefore no
partitioning between neighboring voxeIs is necessary.

2 	 In our case we use 0° and 45° light sources. Here, the ray passes
through the center of each voxel on its way, and therefore no
partitioning between neighboring voxeIs is necessary.

3 	 Cases where the distance = 1 for one coordinate are handled
separately.

105

The geometry processor calculates the addresses of the voxeIs to be
interpolated using the rotation matrix, the matrix for the perspective,
and the zooming factor. The addressees are fed into the eight-fold
divided data RAM coutaining the data cube. Each RAM unit coutains
only 1/8th of the whole data such that each eight-neighborhood can
be accessed in parallet4. The eight values from the RAM are mapped
onto density values using a freely modif:table LUT. Besides, the
geometry processor additionally generates eight interpolation weight
addresses for weight memories. Using eight density values and eight
weights the interpollrion processor interpolates the density values
and produces the density ofone rotated voxeL
Finally, the gradient processor applies the Sobel operator for x and y
direction, which serve as the x and y gradient for Phong shading.
An three pipeline processors are controlled by a local bus master that
is additionally responsible for the communication with the host
system e.g. to read parameters for rotation. perspective, and zoom.
The data produced by the rotation board-density value plus x and y
gradient-is transfeu:ed over a 48 bit wide unidirectional rotator-DSP
bus with a peak transfer rate of 240 MBis. 16 DSPs are attached to
this bus whereby only the selected DSP receives the data.

DSPBoard
The DSP board is a multiprocessor board that executes the raytrac:ing
part of our algorithm. Its flexibility allows the implementation of
different visualization modeIs, e.g., the Heidelberg Raytrac:ing
Algorithm [5] or the volume visualization algorithm of Levoy [4].
One board consists of 8 digital signal processors (DSPS) and a local
bus master CPU that handles all communication. ie., the distribution
ofvisualization parameters among the DSPs, and the transfer ofparts
of the fInal 2D image calculated by the DSPs. That way the full
performance of the DSPs can be dedicated to the raytracing itself.
Data from the rotator board arrives over the rotator-DSP bus and are
temporarily stored in a FIFO. Using the internal parallelity of the
DSP (two floating point operations together with two move
operations) the ray tracing and scattering of the light is calculated.
Additional devices perform data format mapping (16 bit integer to
floating point) and the branch operations, which are unsuited for
DSPs but nevertheless substantial to our algorithm. Running at a
speed of 40 MHz, each DSP with its additional devices calculates
one line (256 pixel) of the fmal2D image within 50 ms (0066 million
operations/s).

4 	 Each RAM unit contains one-combination of even/odd data cube
addressed voxeIs. To allow fast rJw accesses, each unit is
subdivided into two banks that each contains half the data. This
way a ping-pong readout is possible. Accesses on the same
address are suppressed and the old data is held on the line;
addresses that lie out of the data cube range (determined by
software) produce a 0 as data value. Using these additional
features, the mean access time can be reduced by more than a
factor of two.

Fig. 6: The DSP board

Communication structure and User
Interface
The control software of the visualization system is organized into two
layers, a user-interface layer UIL and a communication layer CL The
UIL bandIes the user input over input devices like a mouse or
keyboard, and converts these signals into control parameters like
rotation angles etc. These signals are transferred to the
communication structure that bandles all communication between
host and visualization system. Due to the separation of both layers,
remote access to the visualization system is possible. Here, the UlL
operates e.g. on an X-terminal and communicates over a high-speed
network with the host computer where the communication layer
resides.
The UIL provides three different interaction components to the user.
WIth the flISt component the user can modify freely the weights of
the reflection parameters (diffuse and specular parts for each light
source). The second component allows arbit:nu:y rotation, moving.
and zooming of the data cube; with a 3D mouse as input device.
Finally, the third component enables the user to directly modify the
data cube. Arbit:nu:y cubic regions of the original data cube can be
selected for visualization. Moreover, the UlL supports simple 3D
segmentation. Our segmentation approach is based on an arbitrary
mapping of feature vectors onto density values. Feature vectors
which consist of elements like gray value, local variance, or texture
measures are calculated and mapped to a density value for each voxel
before visualization.
Besides standard 110 functions-loading the data cube, storing the
result image-, a recording feature has been added. This feature
allows to record the visualization result while manipulating the

control parameters, e.g., reflection parameters, rotation parameteD
etc.
For visualization each 100 ms the user input is transferred to tilt
communication layer. This layer maps the parameters obtained fron
the UIL into the control structure used by rota1or and DSP board, an<
it bandles all communication protocols between host an(
visualization hardware. DSP and rotator board read actively theiJ
parameters from the structure and calculate the resulting 2I
projection according to the underlying algorithm. The 2D projectiol:
is transferred to the communication unit which passes the dati
through to the UIL for representation on the screen.

Medical Applications
The system described here has a wide range of applications in the
medical field WIth the user interface UIL, it becomes possible fOl
the physician to use the real-time rotator/raytracer as a 'digital
endoscope', enabling him to navigate through any hollow orgaJI
found in the human body. Moreover, if resolution of the CT and MR
scanners is accordingly improved, it is conceivable to simulate
operations like catheterizing a hollow organ or a vessel in the digital,
virtual world This opens a wide field of application in education and
training of physicians.
More precisely, heart surgery, e.g., can benefit substantially from the
work described here. The surgeons would appreciate an interactive
method of presenting cardiac morphology in a way that allows
detailed preoperative study. This intravital study would support
planning and execution of surgical. procedures in several aspects [16]:
- the presentation ofthe morphology is directly transferable to the in

vivo situation, in contrast to the intraoperative situation in which
the cardioplegic heart lies in the thorax with an altered form,

- complete preoperative information reduces the time of intra­
operative evaluation and thus the time of aortic cross-clamp time,

- preoperative decision about the optimal surgical access to the heart
increases surgical success rate,

- in complex malformations, complete and reliable diagnosis can be
facilitated.

Another field of application in which we are presently working is
orthopedics. The meniscus of the knee, for example, can be diag­
nosed with the tool presented here.
Presently, we are developing the user interface to our real-time
visualization system which can be intuitively operated by e.g. the
cardiac surgeon. A flISt prototype will use a 3D mouse for the
interactive navigation through the digital data volume, and zooming
inloot can be set with a slider.
The non-invasive 'digital endoscope" applied to study the anatomy
and morphology of organs without harm to the patient (in fact, the
patient can leave the hospital after the CT or MR scan was taken) is a
first step to be taken in the direction of introducing virtual reality to
medicine. Here, volume based rendering of the data has undoubtedly
advantages against vector based models which are today standard in
virtual reality applications. For reliable diagnosis, the texture and
morphology of organ or vessel surfaces is essential and has to be
presented as realistically as possi­

106

Fig. 7: Two modules of the user interface for the modiflcation of the light components and the gray value mapping.

hIe. In this sense, vectorized models seem to be of limited application Once real-time visualization is available, the next step in the
in the medical field direction of virtual reality in medicine is interactive manipulation of

the data. Appropriate tools for resection or imp1antation of material

107

have to be designed in order to provide a realistic means of
preoperative simulation of surgical actions. The volume data model
has to be extended in order to be able to specify features like tissue
elasticity or flexibility for every voxel in the data cube.

Conclusions
Our visualization system will be operable as a prototype by autumn
1994. Its application in clinical routine is planned for 1995.
A full system amounts to about tOO kECU and has currently three
limitations, the z gradient is not used. only two fixed light sources are
considered, and the size of the image memory in the rotator
processors limit the maximal cube size. We are currently investi­
gating a system without these limitations.

Acknowledgments
We gratefully acknowledge the support of R. W. Gnnther and M.
Drobnitzky from RWTH Aachen who provided the MR data set of
the heart shown in Fig. 7.

References
[1] 	 A. Watt, M. Watt. Advanced Animation and Rendering

Techniques: Theory and Practice. ACM Press, NY, 1992.
[2] 	 G.T. Herman, D. Webster. Surfaces of Organs in Discrete

Three-Dimensional Spaces. In G.T. Herman, F. Natterer
(Ed): Mathematical Aspects of Computerized Tomography,
Springer, Berlin, 1980, pp. 204.

[3] 	 M.W. Vannier, J.L Marsh, M.H. Gado, W.G. Totty, LA
Gilula, R.G. Evens. Clinical applications of 3-dimensional
surface reconstruction from CT-scans. Electromedica 4 83,
1983, pp. 121.

{4] 	 M. Levoy. Design for a real-time high-quality volume
rendering workstation. Conf. Proc. of the Chapel Hill
Workshop on Volume ViS7J!ljzatioll, Chapel Hill, North
Carolina, May 18-19, 1989, pp. 85.

[5] 	 H.-P. Meinzer, K. Meetz, D. Scheppelmann, U. Engelmann,
HJ. Baur. The Heidelberg Ray Tracing ModeL IEEE Compo
Graphics&AppL. Nov. '91, pp. 34.

[6] 	 J. Lichtermann. G. Mittelhiu.6er. Ene Hardwarearchitektur
zur Echtzeitvisualisierung von Volumendaten durch "Direct
Volume Rendering". Workshop Visualisierungstecbniken,
Anwendungen und Entwickiungstendenzen, Stuttgart, 1991.

[7] 	 J. Lichtermann, priv. camm.
[8] 	 W.L. Nowinski A SIMD Architecture for Medical Imaging.

Lecture Notes in Computer Science 634, Parallel Processing:
CONPAR 92 - VAPPV, Springer, 1992.

[9) 	 W.L. Nowinski Design for a ray casting integrated circuit.
Institute of Systems Science, National University of
Singapore, Singapore, 1992.

[10] 	 N. Ewart, L. Thayer; B. Fleming; D. Vqorhies. Three Ways
to 3-D. Byte, Nov. '93, pp. 215.

[11] 	 R. Yoshida, T. Miyazawa. A. Dei, T. Otsuki Clinical
Planning Support System-CliPSS. IEEE Compo Graph­
ics&AppL, Nov. '93, pp.76.

[12] 	 SGI priv. camm.
[13] 	 Foley, van Dam, Feiner, Hughes. Computer Graphics:

Principles and Practice. Add&Wesley, Reading, MA, 2d
ed,1990.

[14) 	 G. Zorpette. The power of parallelism. IEEE Spectrum, Sept.
'92,pp.28.

[IS] 	 P.-E Danie1sson, M. Hammerin. High Accuracy Rotation of
Images. In Graphical Models and Image Processing, VoL 54,
Nr. 4, July 1992.

[16] 	 C.F. Vahl, H.-P. Meinzer, S. HagL Three-dimensional
Presentation of Cardiac Morphology. Thorac. cardiovasc.
Surgeon, VoL 39 (Suppl.), 1991, pp. 198

108

http:92,pp.28

