
Interactive Rendering of Volumetric Data Sets

Scott Juskiw and Nelson G. Durdle

Department of Electrical Engineering

University of Alberta, Edmonton, Alberta, Canada, T6G-2G7

V. James Raso and Doug L. Hill

Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada, T5G-OB7

ABSTRACT

The bela architecture for interactive rendering of regularly
structured volumetric data sets is presented. The proposed
architecture is scalable and uses custom processors to achieve
high-speed shading, projection. and composition of voxel
primitives. A general purpose image composition network
supports the accumulation of both volumetric and geometric
elements into the final rendered scene. Data access contentions
between processors are eliminated via the use of an enhanced
dual object space and image space partitioning scheme that
does not require replication or redistribution of rendered data.
The bela architecture is intended for rendering large data sets
and meets the performance requirements of a full frame
interactive image generation system.

KEywORDS

volume rendering, image composition. parallel processing,
computer architecture, scientific visualization. medical
imaging.

1. lNrRODUcnoN

Numerous graphics applications including geometric
modeling, scientific visualization, medical imaging, and
virtual reality require the rapid processing and display of a
dynamic computer generated environment. Instantaneous
feedback to operator actions maintains. a sensation of
immediacy by permitting real-time observation, manipUlation,
and analysis. The massive computational requirements
necessary to achieve high resolution images with low latency
and frame rates of thirty or more updates per second for data sets
comprising millions of elements demands a distributed network
of dedicated processors [4.13,17J. Parallel accumulation, or
composition, of multiple individually imaged picture elements
into a final scene is a viable approach to distributed rendering
[18]. View-independent parallel processing of sampled
volumetric or abstract geometric primitives avoids the data
redistribution bottlenecks of conventional rendering
architectures leading to potentially higher performance
systems [16].

The complexity of the rendering algorithm dictates the
maximum number of primitives per processor to maintain
interactive image generation rates. As data set density

increases, the number of processors must rise to accommodate
the load resulting in wider bandwidth requirements for the
image generating system. Volume rendering applications, in
particular, tax the capacity of existing hardware to shade,
resample, and composite discrete three dimensional data sets of
moderate complexity [2,121. In addition, the evolution of
raster display technology to higher resolutions, faster refresh
rates, and deeper bit depths will place additional demands on
graphics systems. An effective means of generating and
composing rendered images from a distributed network of
processors is critical to maintaining real-time visualization
performance.

This paper presents a scalable architecture for high-speed
volumetric rendering of discrete three dimensional data sets.
The system employs custom processors for rendering
volumetric primitives and a high-performance accumulation
network that supports the merging of both volumetric and
geometric elements into a composite image. Data access
contentions are avoided through an enhanced dual partitioning
scheme that enables parallel processing in both object space
and image space without the redistribution or replication of
primitives. The proposed architecture is intended for rendering
data sets comprising 107 to 1()9 elements and meets the
performance requirements of a full frame interactive image
generation system.

An overview of the hybrid rendering architecture with dual
object and image space partitions is presented in section II.
bela, an implementation of the hybrid architecture for
volumetric rendering of regularly structured three dimensional
data sets, is introduced in section III. A discussion follows of
the four main sub-systems in the bela architecture. the shading
processor, the projection processor. the image assembler, and
the hierarchical composition tree. Performance estimates,
including latency and storage requirements, to implement a
bela system are given in section IV. Suggestions for future
enhancements are presented in section V along with a summary
of the bela 1 prototype currently under development. The
structure and benefits of the hybrid rendering architecture are
recapitulated in the final section.

II. OVERVIEW OF HYBRID RENDERING ARCHITECTURE

The rendering task can be partitioned into parallel Object
space or image space processes depending on whether
concurrent jobs are operating on the object space primitives or

86

http://www.eg.org
http://diglib.eg.org

the image space viewing plane. The success of either scheme
depends on a particular implementation's prowess to minimize
object/image access contentions between the multiple
processors. Object space partitioning distributes the
primitives among multiple processors. Each processor renders
its assigned primitives that contribute to the final image.
Memory contentions arise in image space as multiple
processors attempt to access the image plane simultaneously.
Image space partitioning distributes the image plane among
multiple rendering processors. Each processor renders the
primitives which contributes to its assigned portion of the
image plane. Memory contentions arise in object space as
multiple processors attempt to access the object primitives
simultaneously.

Either approach suffers load imbalance from idle processors
due to strict front-to-back (FTB) or back-to-front (BTF)
primitive rendering sequence for maintaining spatial
coherence. Dynamic allocation of the object primitives can
mitigate these disadvantages by aligning processors to non­
occluding tiles of the image plane. However, this "reallocation
of resources" requires either replication of the object primitives
for each processor or a redistribution of primitives prior to
rendering. Neither approach is acceptable for scenes
comprising millions of primitives as the former has extensive
memory requirements while the latter increases latency and
image generation time.

A rendering engine for visualizing volumetric or geometric
primitives can be constructed using a dual partitioning
system-a hybrid partition. Both object space and image
space processing are combined into a network of rendering and
compositing processors as outlined in Figure 1. This hybrid
architecture uses "slice-based" image composition to achieve
integration of volumetric and geometric objects. The
supposition is that the generation of an image can be
accomplished through the accumulation of numerous
individually rendered point (or atomic) primitives. Point
primitives produce point images; point images are then
accumulated into slice images; slice images are accumulated
into slab images; and slab images are accumulated intc the final
image. Object space partitioning gathers spatially connected
primitives into sub-cubes and distributes these groupings
among multiple object space processors. Each processor
renders the data in its assigned sub-cubes at screen resolution.
Primitives within a sub-cube are processed in orthogonal
planes "most parallel" to the viewing plane. This yields a
series of sub-cube images representing an intermediate view of
object space from image space. Image space partitioning
gathers adjacent viewing plane pixels into sub-screens and
distributes these groupings among multiple image space
processors. Each processor composites a set of parallel sub­
screen images representing slices of the primitive data set
"most parallel" to the viewing plane. The parallel images are
produced by combining relevant portions of the sub-cube
images generated by the object space processors in a process
termed image assembly. The use of intermediate slice images
eliminates memory contentions between object to image space
data transfer. By keeping the point images smaller than the
slice images, no contention arises in the image assembler
interface.

A simplified 2D example of the hybrid partition in object
space is given in Figure 2a. Thirty six primitives are grouped
into four sub-cubes, Co to C3' Processing order is determined by
taking the dot product of the image plane axis Xi with the
object space axes Xo and Yo' In this example, Xi is "more
parallel" to Xo than Yo' hence slices sQ to $5 are defined parallel
to the Xo axis. Image space processing for this example is

given in Figure 2b. The viewing plane is divided into four sub­
screens, each of which receives sub-screen images from two
parallel image planes Po and Pl' The parallel image planes
receive sub-cube images from object space such tha4 for the
given orientation, Co and cJ supply Po, while Cz and c3 supply

Pl'
The object space processors produce fully rendered images in

RGBA format [18] representing a slice of the data. Since slice
planes are parallel amongst the object space processors, each
slice image contains an inherent "depth" value. The rendered
slice images are passed to the composition network which
accumulates the slices in the correct FTB or BTF order for each
pixel to produce the correct image. The composition network
is unaware of the source of the slice images, thus it accumulates
both volumetric and geometric primitives equally. Data
reallocation or replication is unnecessary since the correct
ordering of rendered primitives is removed from the object
space partition to the image assembly and composition
partitions. In addition, load imbalance in object space is
eliminated by providing multiple parallel slice planes for
intermediate images and load imbalance in image space by
providing dedicated parallel compositing planes for each image
space processor. From software simulations, slice-based image
composition does not produce errors beyond those encountered
with traditional rendering techniques, if done correctly.

The scalability of the proposed architecture is linear in both
object and image space. Arbitrarily large data sets are
accommodated by increasing the number of object space
processors to achieve the desired frame rate. The frame rate
also governs the number of image space processors required to
achieve a given image size. Thus the architecture is largely
"technology-driven" in that limitations in object and image
size will be determined by data access times and the available
system bandwidth between processors. In the following
sections a design example for real-time volume rendering using
the hybrid architecture is presented.

III. VOLUME RENDERING OF REGULARLY STRUCIURED GRIDS

The bela architecture is an implementation of the slice-based
hybrid partitioning scheme presented in the previous section.
bela is intended for the rapid image generation of regularly
structured three dimensional data sets. The architecture is
optimized for rendering data sets comprising 107 to 109
elements to frame buffers of 10242 pixels and larger. A bela
system comprises three major components (Figure 3): Object
space shading and projection processors for slice image
generation, an image composition network with integrated
image assembler to accumulate the slice images, and a host
computer. The generation of slice images is handled differently
depending on the source of the primitive data. Slice image
generation of geometric data or discretized geometry [9] is
beyond the scope of this paper; the focus is on volumetric
rendering of discrete three dimensional data sets.

Numerous techniques for generating images from voxel data
are applicable in the hybrid partition architecture including:
ray casting [12,20,24], energy projection (splatting) [25),
polyhedral decomposition [21,26], and view transformation
[2,10]. bela implements voxel rendering via energy projection
since, for regular grids, it can be largely table driven leading to
significantly fewer calculations. In addition, no data
interpolation (or resampling) is required; only the original
voxel data is rendered--and all of it-leading to fewer artifacts.
As well, rendering time with energy projection is constant for a
given data set regardless of orientation and image size with fme
retention of detail in magnified views.

87

The object space processors generate images at screen
resolution. This entails two operations: shading and
projection. Although the voxel images could be generated
independently of the screen resolution to a neutral plane. this
would introduce an additional resampling/quantizing stage in
the image assembler potentially leading to more artifacts. The
sub-cube is logically partitioned into several sub-cube image
planes, each of which is dynamically allocated according to the
viewing orientation. The voxel data is scanned in a fronHo­
back sequence within each sub-cube image plane and alternately
between planes. Voxels are passed to the shading processor for
conversion from raw discrete data to an RGBA quadruple. These
shaded voxels are then projected to local image planes at screen
resolution via a look-up-table mechanism. Object space
processors generate parallel planes of voxel images, pre-sorted
into sub-cube image planes and correctly ordered from front-to­
back.

The image space partition consists of image assemblers and
a hierarchical tree structure of compositors. After completion
of an entire slice rendering, the image assemblers accumulate
the voxel images, and any rendered geometric primitives, into
slice images. The slice images-though not explicitly
generated-are directly compo sited onto parallel slab buffers
which effectively accumulate all primitives rendered between
slab planes. Successful rendering of all primitives in the scene
signals the hierarchical composition tree to accumulate the
slab images onto the output image buffer.

The bela architecture requires a host computer to perform a
number of non time-critical functions as well as to provide a
user interface to the rendering process. The host also serves as
the destination for the 24-bit colour image produced by the
image space processors. The host has read/write access to the
voxel primitives for maintaining the contents of the data set
and configuring the voxel tags. Tags are necessary to
differentiate voxels via their spatial location in the data set (a
local classification). rather than on their raw voxel value (a
global classification). The host will typically perform a 3D
edge detection [6] or region-growing operation [1] on the
voxel data set to define structures not adequately segmented via
cutting planes or global classification. Tags are used by the
shading processor to apply different rendering parameters to
the segmented structures. The host sends info-packets to the
object space processors and image assembler indicating
changes to the current viewing parameters as set by the
operator. Packet size is small, less than 128 bytes for changes
to the viewing orientation, and less than 1024 bytes to reload a
look-up-table. The host also loads the rendering code into the
shading processor. With the compute-intensive rendering task
transferred to the hybrid partition, the host need not be too
powerful and thus inexpensive.

A. SHADING PROCESSOR

The shading processor is a high performance device
optimized for volumetric rendering algorithms (Figure 4). The
processor's core is programmable with reconfigurable data
paths and an array of mUlti-purpose computational cells (CCs).
A very long instruction word (VLIW) format specifies the
operation performed by each CC and governs the flow of
intermediate data between CCs. Shader programs are typically
very small (less than 10 instructions) and have minimal
branching and comparison operations. Both super-scalar and
super-pipelined methodologies are exploited to maintain
shading at the maximum rate of data retrieval from the voxel
volume. The host administered look-up-tables designate
unshaded RGBA values according to tag and voxel value. Light

source vectors, lighting coefficients, and other shading
parameters are also accessible by CCs via the reconfigurable
data paths. A small register file with programmable levels of
delay latches are provided to store intermediate CC results.

Shading algorithms typically comprise the following
operations: gradient calculation. dot product, scaling, absolute
value. maximum/minimum. power functions, and linear
mixing. The basic implementation of these functions are
decomposed into multiply and accumulate operations that lend
themselves to a regular macrocell layout strategy which
simplifies the design of a large CC shading sub-system. RAM
access times are typically the performance limiting factor in
volume rendering architectures [5,11). The shading
processor's on-chip execution rate is much higher than the
external data rate to minimize the number of CCs required to
maintain complex shading algorithms at the maximum voxel
retrieval rate. Such super-pipelined implementations maximize
CC performance with only a modest increase in circuit
complexity [15J. External to internal access time ratios of
10:1 are easily achievable with readily available technologies
(22] while even greater performance is possible with low
voltage SUb-micron technologies [23].

Memory skewing increases performance through parallelism
[8,10.11]. The voxel sub-cube is stored in a skewed memory
format to achieve parallel access to arbitrary planar or cubic:
groupings of connected voxels, termed sub-cells. Sub-cell
access is key to preserving voxel data flow through the shading
processor when local pseudo-surface information is required by
the rendering algorithm. The skewed memory format permits
parallel access of a voxel and its immediate neighbours for
gradient generation. A dedicated off-chip processor
comprising voxel data substitution tables and a normalized
vector and magnitude generator provides uninterrupted pseudo­
surface generation in tandem with voxel shading. This skewed
memory format requires numerous small capacity devices that
evidently leads to higher performance, although much wider
data paths. The data flow through a shading processor
configured for surface enhancement via local gradient
magnitude [12] with ambient, diffuse, and specular lighting
models [3] is given in Figure 5.

Numerous high speed data paths reside in the shader to
transfer intermediate results between CCs, registers, and look­
up-tables. These data paths are effected as narrow fixed-point
vectors for design simplicity. Narrow data paths do not impair
the quality of the generated images since the output of the
volume rendering engine is a reconstructed image, an
approximation to reality, using rendering parameters that are
determined arbitrarily by the user. Pixel RGB errors less than
2% are difficult to detect with the human eye. The narrow data
paths also enable a greater number of denser CCs to be
constructed on a given die area which increases shader
performance while reducing the number of chips needed to
produce a shading processor. The specific bit-precision
supported by a shading processor to eliminate visible errors is
dependent on the resolution of the voxel data, the minimum
usable level of transparency. and the number of composites
performed per pixel in the image composition network.
Therefore bit-precision must be evaluated and defined on an
application specific basis prior to shader design.

B. PROJECTION PROCESSOR

The projection processor map,s the shaded RGBA voxe) to
image space and generates an energy footprint. or texture map,
indicating the density of energy distributed over a range of
pixels. The contents of the energy footprint depend on the

88

function used for the convolution kernel, the distribution width
of the kernel, the voxel's centre-oJ-projection, and the ratio
of inter-voxel spacing to pixel size. The distribution width
determines the size of the volume encompassed by the
convolution kernel over which the energy is spread in object
space. Generating an energy footprint requires projecting a
voxel's energy distribution onto the viewing plane and
integrating the projection across the bounds of each pixel that
falls under it. This involves a triple integration of the
convolution kernel that is approximated by quantizing the
voxel's centre-of-projection and indexing into a precomputed
look-up table. The basic procedure is outlined in Figure 6.

Aliasing artifacts from the sampling process are largely
eliminated by super·sampling the energy projection.
Subdividing each pixel into four sub-pixels results in four
possible quantized locations for a voxeI's centre-of­
projection. In Figure 6, the voxel's quantized centre-of­
projection resides in sub-pixel 'I which retrieves the
corresponding energy footprint from look-up table #1. A 3x3
pixel region, termed the extent width, is needed to cover all
four possible locations for the centre-of-projection. By
limiting extent widths to odd values. a voxel's centre-of­
projection is guaranteed to lie in the centre of the energy
footprint which simplifies the look-up process. Note that
although there are four look-up tables each containing nine
entries, there can be only six unique values due to symmetry.
This greatly reduces the size of the look-up-tables.

The host creates the energy footprint from the current
viewing parameters assuming isometric spacing of the voxel
volume elements. This simplifies the generation of energy
footprints since equi-spaced elements imply a rotationally
invariant system. All distributions are spherical in object
space and always project to a circle in image space, regardless
of the viewing position. To support data sets with unequal
sample spacing, hardware support for spherical to elliptical
projections is provided via affine transformations to the
projected kernel [7]. By providing transformation and
projection on a voxel-by-voxel basis for later assembly,
projected energy overlap errors are avoided [17].

Prior to projection, the shaded RGBA voxel is "normalized"
for image composition by pre-multiplying the RGB
components by the opacity term A [18]. The energy footprint
is then retrieved from the look-up-tables and the voxel image is
generated to separate RGB planes in parallel. Due to the
interleaving of voxels within sub-cube image planes, voxel
image generation can occur over several voxel accesses, if
required by the projection hardware.

C. IMAGE AsSEMBLER

The image assembler is essentially a "smart" compositor
whose fundamental operation is to align the voxel images
generated by the projection processor and composite them in
the correct front-to-back order onto a slab buffer. Image
assembly can be performed in either image space scan-line
order or object space primitive order. Scan·line order is
inefficient in that a large number of image space pixels are
typically unaffected by the rendering of individual slices
through an object. Primitive order, as implemented in bela,
focuses on the pixels that may, potentially, be affected by the
current slice rendering and is accommodating to the parallel
projection technique presented in the previous section.

An array of image assemblers are dynamically distributed
across the viewing plane as shown in Figure 7. Each assembler
is responsible for the correct accumulation of primitives in its
assigned sub-screen. Since a full slice of rendered primitives

can be mapped to a small grouping of sub-screens. image
assemblers must be designed to handle this worst case scenario
otherwise the rendering pipeline will stall. The use of mUltiple
sub-cube image planes mitigates this performance bottleneck
by routing rendered slices to alternating image assembly
planes. As well, sub-screens are assigned to alternate
assemblers within image assembly planes to equalize the load.
Within each sub·screen, voxel images are retrieved from the
appropriate sub-cube partition and composited in parallel.
Sub·screen pixels are interleaved in a planar configuration
similar to the voxel volume elements to enable parallel access.
Since voxel image access is directed from image space
processors, no image space data contention is introduced.
Object space contention is avoided by the virtual extension of
"null" voxel images across the viewing plane. Voxel images
completely internal to a sub-screen need only be accessed once.
Voxel images that cross sub-screen boundaries cannot occupy
the same relative spatial location across sub-screens. Since
front·to-back processing is spatially ordered, voxel images are
thus independent across sub-screens and will not normally be
accessed simultaneously from neighbouring sub-screens.

Image assembly is computationally intensive requiring
[extent width]2 compositions per voxel. To maintain
synchronization with object space processing. each assembler
consists of an array of dedicated compositing cells with on­
chip storage. This results in large bandwidth requirements for
the image assembler but is not uncommon for image
composition systems [19J. The on-chip compositor storage
functions as the slab image accumulator. Upon completion of
each slab, the contents are available for readout on a separate
"pixel addressable" port by the hierarchical composition tree.

D. HIERARCHICAL COMPOSmON TREE

The fmal stage in the bela architecture is a hierarchical
composition tree to combine the slab images generated by the
image assemblers into the final image. Both parallel plane and
tree configurations of compositors require N·! compositors to
accumulate N image planes. Tree structures are preferred over
parallel planes as each image plane encounters log2N
compositions to reach the final image which can lead to fewer
round-off errors in narrow fixed-point implementations. The
slab image accumulator and composition tree support image
space partitioning similar to that used in the image assembler.
In most cases, such partitioning is not required since
composition of full frame images (10242 pixels) at 30 Hz is
readily attainable with custom hardware (see section V).

The tree depth is determined by the total number of sub-cube
image planes supported. RGBA pixels are read from the slice
buffers-in scan-line order-into the pipelined composition
tree to yield one RGBA output pixel per cycle. The final image
is then passed through two additional compositors to provide
an overlay and underlay. The overlay is typically a transparent
surface while the underlay is usually an opaque black
background. The most significant eight bits of each RGB
channel are stored in a conventional frame buffer for
manipulation and display by the host.

IV. PERFORMANCE & REsouRCE ESTIMATES

The separation of object image and image space in the bela
architecture enable processors at each level to function at
optimum speed. In most circumstances, the maximum rate is
determined by memory access times and the available system
bandwidth. Once the critical timing constraint is identified in
each stage, the various processors are then synchronized to

89

maintain a constant frame rate. Throughout this discussion,
parallel data transfer is assumed unless otherwise noted. While
this assumption often requires excessive data lines between
processors, it nevertheless serves to indicate an absolute upper
performance limit.

The maximum time intervals to shade a voxel (Ts), project a
pixel (Ip), assemble a projection element (TA), and composite a
pixel (Te) are given by:

3 3n n pv;
Ts = N 3f Tp =N3fw2

j2pvin m2

TA = N 3fw2 Te = M2f

where

w =extent width =z[2:J+ 1

P=sub cube image planes

vp = voxel projection parallelism, M =image size

vA =voxel assembler parallelism, N =volume size

n =object space partition, z =magnification

j =image assembler partition, f = frame rate

m = image space partition, k:: distribution width

For simplicity, the voxel volume is assumed to be cubic,
although not a requirement. In the ideal case, the voxel
projection parallelism is equal to the extent width, i.e .. the
entire projection is processed in parallel. Similarly, if the
voxel assembler parallelism is equal to the extent width, the
entire voxel image is compo sited in parallel. A magnification
level of 1.0 sets the inter-voxel to pixel size ratio such that the
rendered volume completely fills the image plane. Simulations
indicate that distribution widths of 1.0 to 1.4 are suitable for
most convolution kernels.

Equally important to frame rate is system latency; the time
interval between when the operator first makes a change to the
viewing parameters and when the image is finally updated to
reflect that change. Assuming a system designed such that all
processes are synchronized without stalling the rendering
pipeline, minimum latency (LMlN) in bela is dependent on: the
reaction time of the host to inform the system of an update
(Tv), the time to shade a sub-cube, the time to project a voxel,
the time to assemble a slice image, and the time to composite
the slab buffers.

N 3 N 2 2w M2
LMIN =Tv +TS - 3 +Tp +TA --;rr+Td-+log2pn]2 n I Vc m

The dominant terms are volume shading and slab buffer
composition. At best, minimum latency is slightly more than
one frame if fast compositors with large m are used, and two
frames at worst.

Volumetric rendering via image composition demands
extensive memory resources for storage of the voxel volume
and the subsequent voxel images. Ignoring shader and
projector look-up-tables (considered diminutive by
comparison), memory requirements, in bits, for the volume
storage (Ms), voxel images (Mp), slab buffers (MA), and frame
buffer (Me) are estimated by:

Ms =N3bvr Mp =dpnN2w2bRGBA

MA =dpnM2bRGBA Me =dM2bFB

where

bvr =bits per voxel and tag

bRGBA = bits per RGBA component

= bits per frame buffer pixel

d =2 if double buffered, otherwise 1

bPB

Single buffering voxel images and slab buffers almost halves
the storage requirements but significantly reduces the frame rate
while processors idle.

From the above discussion and formulae, the performance of
bela systems can be estimated. Given a voxel data set with
N=256, a desired image size of M=512, and using 40 ns RAM.
a frame rate of 12 Hz is achieved with eight shading processors,
eight projection processors, eight image assemblers, and one
hierarchical compositor. System latency is estimated at 95 ms,
or 1.13 frames. In terms of storage, with double buffered 16 bit
precision, 24 MBytes are needed for the voxel volume (four bit
tags), 50 MBytes for the voxel images (w::5), 8 MBytes for the
slab buffers, and 1.5 MBytes for the frame buffer. A data set
with N=1024 and a desired image size of M=1024 rendered at
the same frame rate with 40 ns RAM requires considerably
more resources. Since object space has increased sixty four
times, the number of shading and projection processors
increases accordingly to 512. Similarly, the number of image
assemblers increases to 512 despite image space only
quadrupling in size. Seven compositors are required in the
hierarchical composition tree to accumulate eight slab buffers;
no image space partitioning is required. System latency is
estimated at 126 ms or 15 frames. Storage increases to 1536
MBytes for the voxel volume, 1152 MBytes for the voxel
images (w=3), 128 MBytes for slab buffers, and 6 MBytes for
the frame buffer. The assembly of a system with these
processing and storage requirements represents the limit of
what can reasonably be achieved with the bela architecture.

V. THE FuruRE

The bela architecture is continually evolving to increase
functionality and frame rate. Enhancements currently under
investigation include: object space support for irregular grids,
sparse grids, perspective projection, and hardware for slice
image generation of geometric primitives. The
implementation of a "smarter" scan-line ordered image
assembler that avoids compositing transparent pixels onto the
slab buffer and skips over slab buffer pixels that reach an
opacity threshold [14] is also under consideration.

A prototype system, bela_l, based on the N=256 example
presented in section IV is currently under construction.
Extensive bit level software simulations have been completed
to verify the correct operation of the hybrid architecture and to
determine processor bit precision to eliminate visible artifacts
from fixed-point round-off error. A general purpose 16-bit
compositing cell, Compose16, has been designed in 1.211
CMOS and is undergoing fabrication. Compose16 achieves a
non-pipelined composition in 8.5 ns, on-chip, and will be used
in the hierarchical composition tree. The shading processor,
Shade16, is being designed in a O.8J.l. BiCMOS technology to
be fabricated in the fall of 1994. An on-chip execution rate of

90

200 MHz provides 25 million shaded voxels per second,
according to the algorithm in Figure 5. With simpler
algorithms, up to 50 million voxels can be shaded per second.
Design and fabrication of the image assembler and projection
processor will follow completion of the shading processor.
Expected completion date of the prototype is spring 1995.

VI. CONCLUSIONS

The scalable bela architecture for high-speed volumetric
rendering of discrete three dimensional data sets was presented.
bela comprises custom processors for rendering volumetric
primitives and a high-performance composition network for
merging volumetric and geometric elements. Data access
contentions are avoided through an enhanced dual partitioning
scheme that enables parallel processing in both object space
and image space without the redistribution or replication of
primitives. Object space parallelism and versatility is
achieved via allocation of primitives to programmable shading
processors. Primitive projections are spatially ordered for
efficient slice-based accumulation via the image assembler and
hierarchical composition tree.

bnage composition networks permit a high degree of parallel
processing to achieve interactive volume rendering generation
at the expense of memory resources and system bandwidth. The
proposed architecture attempts to allay these limiting criteria
through hierarchical accumulation of rendered primitives. bela
is suitable for rendering data sets comprising 10' to 109

elements at interactive rates.

ACKNOWLEDGMEl\'TS

This work was supported by the Natural Sciences and
Engineering Research Council (N S E R C), the Alberta
Microelectronic Centre (A M C), and the Canadian
Microelectronics Corporation (CMC).

REFERENCES

nJ M.F. Cohen, J. Painter, M. Mehta, and K.L. Ma, "Volume
Seedlings," in Computer Graphics Special Issue on 1992
Symposium on Interactive 3D Graphics,
ACM SIGGRAPH, 139-145, 1992.

[2J R.A. Drebin, 1. Carpenter, and P. Hanrahan, "Volume
Rendering," Computer Graphics, vol. 22, no. 4, 65-74,
August 1988.

[3] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer
Graphics, Principles and Practice. Addison-Wesley,
1990.

[4] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, and 1. Israel,
"Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-Enhanced Memories,"
Computer Graphics, vol. 23, no. 3, 79-88, July 1989.

[5] S.M. Goldwasser and R.A. Reynolds, "Real-Time Display
and Manipulation of 3-D Medical Objects: The Voxel
Processor Architecture," Computer Vision, Graphics, and
Image Processing, voL 39, 1-27, 1987.

[6] K.H. Hohne, M. Bomans, A. Pommert, M. Riemer, C.
Shiers, U. Tiede, and G. Wiebecke, "3D Visualization of
Tomographic Volume Data Using the Generalized Voltel
Model," The Visual Computer, vol. 6, no. 2, 28-36, Feb
1990.

[7] P. Hanrahan, "Three-Pass Affine Transforms for Volume
Rendering," Computer Graphics, vol. 24, no. 5, 71-78,
November 1990.

[8] 	 D. Jackel. "Reconstructing Solids from Tomographic
Scans, The P ARCUM II System." in Advances in
Computer Graphics Hardware II, 101-109, 1988.

[9] 	 A. Kaufman and E. Shimony, "3D Scan-Conversion
Algorithms for Voxel-Based Graphics," in A C M
Workshop on Interactive 3D Graphics, 45-76, 1986.

[10] 	 A. Kaufman and R. Bakalash, "Memory and Processing
Architecture for 3D Voxel-Based Imagery," IEEE
Computer Graphics and Applications, vol. 8, 10-23,
November 1988.

[11] 	 G. Knittel, "Verve: Voxel Engine for Real-time
Visualization and Examination," Computer Graphics
Forum, vol. 12, no. 3, C37-C48, 1993, Proceedings of
Eurographics '93.

[12) 	 M. Levoy, "Display of Surfaces from Volume Data," IEEE
Computer Graphics and Applications, vol. 8, no. 3, 29­
37, May 1988.

[13) 	 M. Levoy, "Design for a Real-Time High-Quality Volume
Rendering Workstation," in Chapel Hill Workshop on
Volume Visualization, 85-92, 1989.

[14J 	 M. Levoy, "Efficient Ray Tracing of Volume Data," ACM
Transactions on Graphics, vol. 9, no. 3, 245-261, July
1990.

[15] 	 F. Lu and H. Samueli, "A 200-MHz CMOS Pipelined
Multiplier-Accumulator Using a Quasi-Domino Dynamic
Full-Adder Cell Design," IEEE Journal of Solid-State
Circuits, vol. 28, no. 2, 123-132, February 1993.

[16J 	 S. Molnar, J. Eyles, and J. Poulton, "PixelFlow: High­
Speed Rendering Using Image Composition," Computer
Graphics, vol. 26, no. 2, 231-240, July 1992.

[17] 	 U. Neumann, "Interactive Volume Rendering on a
Multicomputer," in Computer Graphics Special Issue on
1992 Symposium on Interactive 3D Graphics,
ACM SIGGRAPH, 87-93, 1992.

[18] 	 T. Porter and T. Duff, "Compositing Digital Images,"
Computer Graphics, vol. 18, no. 3, 253-260, July 1984.

[19J 	 J. Poulton, J. Eyles, S. Molnar, and H. Fuchs, "Breaking
the Frame-Buffer Bottleneck with Logic-Enhanced
Memories," IEEE Computer Graphics and Applications,
vol. 12, no. 6, 65-74, November 1992.

[20] 	 P. Sabella, "A Rendering Algorithm for Visualizing 3D
Scalar Fields," Computer Graphics, vol. 22, no. 4, 51­
58, August 1988.

(21) 	 P. Shirley and A. Tuchman, "A Polygonal Approximation
to Direct Scalar Volume Rendering," Computer Graphics,
vol. 24, no. 5, 60-70, November 1990.

[22] 	 D. Somasekhar and V. Visvanathan, "A 230-MHz Half­
Bit Level Pipelined Multiplier Using True Single-Phase
Clocking," IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 1, no. 4, 415-422,
December 1993.

[23] 	 M. Suzuki, N. Ohkubo, T. Shinbo, T. Yamanaka, A.
Shimizu, K. Sasaki, and Y. Nakagome, "A 1.5-n8 32-b
CMOS ALU in Double Pass-Transistor Logic," IEEE
Journal of Solid-State Circuits, vol. 28, no. 11, 1145­
1151, November 1993.

[24] 	 C. Upson and M. Keeler, "V-BUFFER: Visible Volume
Rendering," Computer Graphics, voL 22, no. 4, 59-64,
August 1988. .

[25] 	 L. Westover, "Footprint Evaluation for Volume
Rendering," Computer Graphics, vol. 24, no. 4, 367­
376, August 1990.

[26J 	 J. Wilhelms and A. van Gelder, "A Coherent Projection
Approach for Direct Voiume Rendering," Computer
Graphics, vol. 25, no. 4, 275-284, July 1991.

91

Object Space Partition .. Image Space PartitionI... "'1 ...
Render Assemble Accumulate Composite

..
[[0

•[[0 tEE ijtlJ

~:~?:~~.~

Primitives Point Images Slice Images Slab Images Final Image

Figure 1. Hybrid Partition for Slice-Based Rendering

Xo

Xi

Object Space Primitives Viewing Plane Viewer

Figure 2a. Simplified 2D Example of the Hybrid Partition in Object Space

S5

s So
S 82 1

S4 3

sub·screen {
Xi

P1 Po

Parallel Image Planes Viewing Plane Viewer

Figure 2b. Example of the Hybrid Partition in Image Space

92

Host

-_I _-­
Shade Project

-­.......... ---­ • ..
Composite

-
-_I~ · til

Slice Rasterize

..

--­~ -III
Object Space Processing Image Space Processing

Figure 3. bela Architectural Overview

Host Host Host

Figure 4. Shading Processor

93

Voxel&
Tag

Gradient
Generator I '.....r· """ 1

Look Up
Table

LookUp
Table

Figure 5. Shader Data Flow Example

l:ixe~1 LUT#1

Figure 6. Quantized Centre-of-Projection

Figure 7. Image Assembler

(Sub-Screens = 1234, voxel FTB order =ABCD)

94

