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ABSTRACT 

The bela architecture for interactive rendering of regularly 
structured volumetric data sets is presented. The proposed 
architecture is scalable and uses custom processors to achieve 
high-speed shading, projection. and composition of voxel 
primitives. A general purpose image composition network 
supports the accumulation of both volumetric and geometric 
elements into the final rendered scene. Data access contentions 
between processors are eliminated via the use of an enhanced 
dual object space and image space partitioning scheme that 
does not require replication or redistribution of rendered data. 
The bela architecture is intended for rendering large data sets 
and meets the performance requirements of a full frame 
interactive image generation system. 

KEywORDS 

volume rendering, image composition. parallel processing, 
computer architecture, scientific visualization. medical 
imaging. 

1. lNrRODUcnoN 

Numerous graphics applications including geometric 
modeling, scientific visualization, medical imaging, and 
virtual reality require the rapid processing and display of a 
dynamic computer generated environment. Instantaneous 
feedback to operator actions maintains. a sensation of 
immediacy by permitting real-time observation, manipUlation, 
and analysis. The massive computational requirements 
necessary to achieve high resolution images with low latency 
and frame rates of thirty or more updates per second for data sets 
comprising millions of elements demands a distributed network 
of dedicated processors [4.13,17J. Parallel accumulation, or 
composition, of multiple individually imaged picture elements 
into a final scene is a viable approach to distributed rendering 
[18]. View-independent parallel processing of sampled 
volumetric or abstract geometric primitives avoids the data 
redistribution bottlenecks of conventional rendering 
architectures leading to potentially higher performance 
systems [16]. 

The complexity of the rendering algorithm dictates the 
maximum number of primitives per processor to maintain 
interactive image generation rates. As data set density 

increases, the number of processors must rise to accommodate 
the load resulting in wider bandwidth requirements for the 
image generating system. Volume rendering applications, in 
particular, tax the capacity of existing hardware to shade, 
resample, and composite discrete three dimensional data sets of 
moderate complexity [2,121. In addition, the evolution of 
raster display technology to higher resolutions, faster refresh 
rates, and deeper bit depths will place additional demands on 
graphics systems. An effective means of generating and 
composing rendered images from a distributed network of 
processors is critical to maintaining real-time visualization 
performance. 

This paper presents a scalable architecture for high-speed 
volumetric rendering of discrete three dimensional data sets. 
The system employs custom processors for rendering 
volumetric primitives and a high-performance accumulation 
network that supports the merging of both volumetric and 
geometric elements into a composite image. Data access 
contentions are avoided through an enhanced dual partitioning 
scheme that enables parallel processing in both object space 
and image space without the redistribution or replication of 
primitives. The proposed architecture is intended for rendering 
data sets comprising 107 to 1()9 elements and meets the 
performance requirements of a full frame interactive image 
generation system. 

An overview of the hybrid rendering architecture with dual 
object and image space partitions is presented in section II. 
bela, an implementation of the hybrid architecture for 
volumetric rendering of regularly structured three dimensional 
data sets, is introduced in section III. A discussion follows of 
the four main sub-systems in the bela architecture. the shading 
processor, the projection processor. the image assembler, and 
the hierarchical composition tree. Performance estimates, 
including latency and storage requirements, to implement a 
bela system are given in section IV. Suggestions for future 
enhancements are presented in section V along with a summary 
of the bela 1 prototype currently under development. The 
structure and benefits of the hybrid rendering architecture are 
recapitulated in the final section. 

II. OVERVIEW OF HYBRID RENDERING ARCHITECTURE 

The rendering task can be partitioned into parallel Object 
space or image space processes depending on whether 
concurrent jobs are operating on the object space primitives or 
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the image space viewing plane. The success of either scheme 
depends on a particular implementation's prowess to minimize 
object/image access contentions between the multiple 
processors. Object space partitioning distributes the 
primitives among multiple processors. Each processor renders 
its assigned primitives that contribute to the final image. 
Memory contentions arise in image space as multiple 
processors attempt to access the image plane simultaneously. 
Image space partitioning distributes the image plane among 
multiple rendering processors. Each processor renders the 
primitives which contributes to its assigned portion of the 
image plane. Memory contentions arise in object space as 
multiple processors attempt to access the object primitives 
simultaneously. 

Either approach suffers load imbalance from idle processors 
due to strict front-to-back (FTB) or back-to-front (BTF) 
primitive rendering sequence for maintaining spatial 
coherence. Dynamic allocation of the object primitives can 
mitigate these disadvantages by aligning processors to non­
occluding tiles of the image plane. However, this "reallocation 
of resources" requires either replication of the object primitives 
for each processor or a redistribution of primitives prior to 
rendering. Neither approach is acceptable for scenes 
comprising millions of primitives as the former has extensive 
memory requirements while the latter increases latency and 
image generation time. 

A rendering engine for visualizing volumetric or geometric 
primitives can be constructed using a dual partitioning 
system-a hybrid partition. Both object space and image 
space processing are combined into a network of rendering and 
compositing processors as outlined in Figure 1. This hybrid 
architecture uses "slice-based" image composition to achieve 
integration of volumetric and geometric objects. The 
supposition is that the generation of an image can be 
accomplished through the accumulation of numerous 
individually rendered point (or atomic) primitives. Point 
primitives produce point images; point images are then 
accumulated into slice images; slice images are accumulated 
into slab images; and slab images are accumulated intc the final 
image. Object space partitioning gathers spatially connected 
primitives into sub-cubes and distributes these groupings 
among multiple object space processors. Each processor 
renders the data in its assigned sub-cubes at screen resolution. 
Primitives within a sub-cube are processed in orthogonal 
planes "most parallel" to the viewing plane. This yields a 
series of sub-cube images representing an intermediate view of 
object space from image space. Image space partitioning 
gathers adjacent viewing plane pixels into sub-screens and 
distributes these groupings among multiple image space 
processors. Each processor composites a set of parallel sub­
screen images representing slices of the primitive data set 
"most parallel" to the viewing plane. The parallel images are 
produced by combining relevant portions of the sub-cube 
images generated by the object space processors in a process 
termed image assembly. The use of intermediate slice images 
eliminates memory contentions between object to image space 
data transfer. By keeping the point images smaller than the 
slice images, no contention arises in the image assembler 
interface. 

A simplified 2D example of the hybrid partition in object 
space is given in Figure 2a. Thirty six primitives are grouped 
into four sub-cubes, Co to C3' Processing order is determined by 
taking the dot product of the image plane axis Xi with the 
object space axes Xo and Yo' In this example, Xi is "more 
parallel" to Xo than Yo' hence slices sQ to $5 are defined parallel 
to the Xo axis. Image space processing for this example is 

given in Figure 2b. The viewing plane is divided into four sub­
screens, each of which receives sub-screen images from two 
parallel image planes Po and Pl' The parallel image planes 
receive sub-cube images from object space such tha4 for the 
given orientation, Co and cJ supply Po, while Cz and c3 supply 

Pl' 
The object space processors produce fully rendered images in 

RGBA format [18] representing a slice of the data. Since slice 
planes are parallel amongst the object space processors, each 
slice image contains an inherent "depth" value. The rendered 
slice images are passed to the composition network which 
accumulates the slices in the correct FTB or BTF order for each 
pixel to produce the correct image. The composition network 
is unaware of the source of the slice images, thus it accumulates 
both volumetric and geometric primitives equally. Data 
reallocation or replication is unnecessary since the correct 
ordering of rendered primitives is removed from the object 
space partition to the image assembly and composition 
partitions. In addition, load imbalance in object space is 
eliminated by providing multiple parallel slice planes for 
intermediate images and load imbalance in image space by 
providing dedicated parallel compositing planes for each image 
space processor. From software simulations, slice-based image 
composition does not produce errors beyond those encountered 
with traditional rendering techniques, if done correctly. 

The scalability of the proposed architecture is linear in both 
object and image space. Arbitrarily large data sets are 
accommodated by increasing the number of object space 
processors to achieve the desired frame rate. The frame rate 
also governs the number of image space processors required to 
achieve a given image size. Thus the architecture is largely 
"technology-driven" in that limitations in object and image 
size will be determined by data access times and the available 
system bandwidth between processors. In the following 
sections a design example for real-time volume rendering using 
the hybrid architecture is presented. 

III. VOLUME RENDERING OF REGULARLY STRUCIURED GRIDS 

The bela architecture is an implementation of the slice-based 
hybrid partitioning scheme presented in the previous section. 
bela is intended for the rapid image generation of regularly 
structured three dimensional data sets. The architecture is 
optimized for rendering data sets comprising 107 to 109 
elements to frame buffers of 10242 pixels and larger. A bela 
system comprises three major components (Figure 3): Object 
space shading and projection processors for slice image 
generation, an image composition network with integrated 
image assembler to accumulate the slice images, and a host 
computer. The generation of slice images is handled differently 
depending on the source of the primitive data. Slice image 
generation of geometric data or discretized geometry [9] is 
beyond the scope of this paper; the focus is on volumetric 
rendering of discrete three dimensional data sets. 

Numerous techniques for generating images from voxel data 
are applicable in the hybrid partition architecture including: 
ray casting [12,20,24], energy projection (splatting) [25), 
polyhedral decomposition [21,26], and view transformation 
[2,10]. bela implements voxel rendering via energy projection 
since, for regular grids, it can be largely table driven leading to 
significantly fewer calculations. In addition, no data 
interpolation (or resampling) is required; only the original 
voxel data is rendered--and all of it-leading to fewer artifacts. 
As well, rendering time with energy projection is constant for a 
given data set regardless of orientation and image size with fme 
retention of detail in magnified views. 
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The object space processors generate images at screen 
resolution. This entails two operations: shading and 
projection. Although the voxel images could be generated 
independently of the screen resolution to a neutral plane. this 
would introduce an additional resampling/quantizing stage in 
the image assembler potentially leading to more artifacts. The 
sub-cube is logically partitioned into several sub-cube image 
planes, each of which is dynamically allocated according to the 
viewing orientation. The voxel data is scanned in a fronHo­
back sequence within each sub-cube image plane and alternately 
between planes. Voxels are passed to the shading processor for 
conversion from raw discrete data to an RGBA quadruple. These 
shaded voxels are then projected to local image planes at screen 
resolution via a look-up-table mechanism. Object space 
processors generate parallel planes of voxel images, pre-sorted 
into sub-cube image planes and correctly ordered from front-to­
back. 

The image space partition consists of image assemblers and 
a hierarchical tree structure of compositors. After completion 
of an entire slice rendering, the image assemblers accumulate 
the voxel images, and any rendered geometric primitives, into 
slice images. The slice images-though not explicitly 
generated-are directly compo sited onto parallel slab buffers 
which effectively accumulate all primitives rendered between 
slab planes. Successful rendering of all primitives in the scene 
signals the hierarchical composition tree to accumulate the 
slab images onto the output image buffer. 

The bela architecture requires a host computer to perform a 
number of non time-critical functions as well as to provide a 
user interface to the rendering process. The host also serves as 
the destination for the 24-bit colour image produced by the 
image space processors. The host has read/write access to the 
voxel primitives for maintaining the contents of the data set 
and configuring the voxel tags. Tags are necessary to 
differentiate voxels via their spatial location in the data set (a 
local classification). rather than on their raw voxel value (a 
global classification). The host will typically perform a 3D 
edge detection [6] or region-growing operation [1] on the 
voxel data set to define structures not adequately segmented via 
cutting planes or global classification. Tags are used by the 
shading processor to apply different rendering parameters to 
the segmented structures. The host sends info-packets to the 
object space processors and image assembler indicating 
changes to the current viewing parameters as set by the 
operator. Packet size is small, less than 128 bytes for changes 
to the viewing orientation, and less than 1024 bytes to reload a 
look-up-table. The host also loads the rendering code into the 
shading processor. With the compute-intensive rendering task 
transferred to the hybrid partition, the host need not be too 
powerful and thus inexpensive. 

A. SHADING PROCESSOR 

The shading processor is a high performance device 
optimized for volumetric rendering algorithms (Figure 4). The 
processor's core is programmable with reconfigurable data 
paths and an array of mUlti-purpose computational cells (CCs). 
A very long instruction word (VLIW) format specifies the 
operation performed by each CC and governs the flow of 
intermediate data between CCs. Shader programs are typically 
very small (less than 10 instructions) and have minimal 
branching and comparison operations. Both super-scalar and 
super-pipelined methodologies are exploited to maintain 
shading at the maximum rate of data retrieval from the voxel 
volume. The host administered look-up-tables designate 
unshaded RGBA values according to tag and voxel value. Light 

source vectors, lighting coefficients, and other shading 
parameters are also accessible by CCs via the reconfigurable 
data paths. A small register file with programmable levels of 
delay latches are provided to store intermediate CC results. 

Shading algorithms typically comprise the following 
operations: gradient calculation. dot product, scaling, absolute 
value. maximum/minimum. power functions, and linear 
mixing. The basic implementation of these functions are 
decomposed into multiply and accumulate operations that lend 
themselves to a regular macrocell layout strategy which 
simplifies the design of a large CC shading sub-system. RAM 
access times are typically the performance limiting factor in 
volume rendering architectures [5,11). The shading 
processor's on-chip execution rate is much higher than the 
external data rate to minimize the number of CCs required to 
maintain complex shading algorithms at the maximum voxel 
retrieval rate. Such super-pipelined implementations maximize 
CC performance with only a modest increase in circuit 
complexity [15J. External to internal access time ratios of 
10:1 are easily achievable with readily available technologies 
(22] while even greater performance is possible with low 
voltage SUb-micron technologies [23]. 

Memory skewing increases performance through parallelism 
[8,10.11]. The voxel sub-cube is stored in a skewed memory 
format to achieve parallel access to arbitrary planar or cubic: 
groupings of connected voxels, termed sub-cells. Sub-cell 
access is key to preserving voxel data flow through the shading 
processor when local pseudo-surface information is required by 
the rendering algorithm. The skewed memory format permits 
parallel access of a voxel and its immediate neighbours for 
gradient generation. A dedicated off-chip processor 
comprising voxel data substitution tables and a normalized 
vector and magnitude generator provides uninterrupted pseudo­
surface generation in tandem with voxel shading. This skewed 
memory format requires numerous small capacity devices that 
evidently leads to higher performance, although much wider 
data paths. The data flow through a shading processor 
configured for surface enhancement via local gradient 
magnitude [12] with ambient, diffuse, and specular lighting 
models [3] is given in Figure 5. 

Numerous high speed data paths reside in the shader to 
transfer intermediate results between CCs, registers, and look­
up-tables. These data paths are effected as narrow fixed-point 
vectors for design simplicity. Narrow data paths do not impair 
the quality of the generated images since the output of the 
volume rendering engine is a reconstructed image, an 
approximation to reality, using rendering parameters that are 
determined arbitrarily by the user. Pixel RGB errors less than 
2% are difficult to detect with the human eye. The narrow data 
paths also enable a greater number of denser CCs to be 
constructed on a given die area which increases shader 
performance while reducing the number of chips needed to 
produce a shading processor. The specific bit-precision 
supported by a shading processor to eliminate visible errors is 
dependent on the resolution of the voxel data, the minimum 
usable level of transparency. and the number of composites 
performed per pixel in the image composition network. 
Therefore bit-precision must be evaluated and defined on an 
application specific basis prior to shader design. 

B. PROJECTION PROCESSOR 

The projection processor map,s the shaded RGBA voxe) to 
image space and generates an energy footprint. or texture map, 
indicating the density of energy distributed over a range of 
pixels. The contents of the energy footprint depend on the 
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function used for the convolution kernel, the distribution width 
of the kernel, the voxel's centre-oJ-projection, and the ratio 
of inter-voxel spacing to pixel size. The distribution width 
determines the size of the volume encompassed by the 
convolution kernel over which the energy is spread in object 
space. Generating an energy footprint requires projecting a 
voxel's energy distribution onto the viewing plane and 
integrating the projection across the bounds of each pixel that 
falls under it. This involves a triple integration of the 
convolution kernel that is approximated by quantizing the 
voxel's centre-of-projection and indexing into a precomputed 
look-up table. The basic procedure is outlined in Figure 6. 

Aliasing artifacts from the sampling process are largely 
eliminated by super·sampling the energy projection. 
Subdividing each pixel into four sub-pixels results in four 
possible quantized locations for a voxeI's centre-of­
projection. In Figure 6, the voxel's quantized centre-of­
projection resides in sub-pixel 'I which retrieves the 
corresponding energy footprint from look-up table #1. A 3x3 
pixel region, termed the extent width, is needed to cover all 
four possible locations for the centre-of-projection. By 
limiting extent widths to odd values. a voxel's centre-of­
projection is guaranteed to lie in the centre of the energy 
footprint which simplifies the look-up process. Note that 
although there are four look-up tables each containing nine 
entries, there can be only six unique values due to symmetry. 
This greatly reduces the size of the look-up-tables. 

The host creates the energy footprint from the current 
viewing parameters assuming isometric spacing of the voxel 
volume elements. This simplifies the generation of energy 
footprints since equi-spaced elements imply a rotationally 
invariant system. All distributions are spherical in object 
space and always project to a circle in image space, regardless 
of the viewing position. To support data sets with unequal 
sample spacing, hardware support for spherical to elliptical 
projections is provided via affine transformations to the 
projected kernel [7]. By providing transformation and 
projection on a voxel-by-voxel basis for later assembly, 
projected energy overlap errors are avoided [17]. 

Prior to projection, the shaded RGBA voxel is "normalized" 
for image composition by pre-multiplying the RGB 
components by the opacity term A [18]. The energy footprint 
is then retrieved from the look-up-tables and the voxel image is 
generated to separate RGB planes in parallel. Due to the 
interleaving of voxels within sub-cube image planes, voxel 
image generation can occur over several voxel accesses, if 
required by the projection hardware. 

C. IMAGE AsSEMBLER 

The image assembler is essentially a "smart" compositor 
whose fundamental operation is to align the voxel images 
generated by the projection processor and composite them in 
the correct front-to-back order onto a slab buffer. Image 
assembly can be performed in either image space scan-line 
order or object space primitive order. Scan·line order is 
inefficient in that a large number of image space pixels are 
typically unaffected by the rendering of individual slices 
through an object. Primitive order, as implemented in bela, 
focuses on the pixels that may, potentially, be affected by the 
current slice rendering and is accommodating to the parallel 
projection technique presented in the previous section. 

An array of image assemblers are dynamically distributed 
across the viewing plane as shown in Figure 7. Each assembler 
is responsible for the correct accumulation of primitives in its 
assigned sub-screen. Since a full slice of rendered primitives 

can be mapped to a small grouping of sub-screens. image 
assemblers must be designed to handle this worst case scenario 
otherwise the rendering pipeline will stall. The use of mUltiple 
sub-cube image planes mitigates this performance bottleneck 
by routing rendered slices to alternating image assembly 
planes. As well, sub-screens are assigned to alternate 
assemblers within image assembly planes to equalize the load. 
Within each sub·screen, voxel images are retrieved from the 
appropriate sub-cube partition and composited in parallel. 
Sub·screen pixels are interleaved in a planar configuration 
similar to the voxel volume elements to enable parallel access. 
Since voxel image access is directed from image space 
processors, no image space data contention is introduced. 
Object space contention is avoided by the virtual extension of 
"null" voxel images across the viewing plane. Voxel images 
completely internal to a sub-screen need only be accessed once. 
Voxel images that cross sub-screen boundaries cannot occupy 
the same relative spatial location across sub-screens. Since 
front·to-back processing is spatially ordered, voxel images are 
thus independent across sub-screens and will not normally be 
accessed simultaneously from neighbouring sub-screens. 

Image assembly is computationally intensive requiring 
[extent width]2 compositions per voxel. To maintain 
synchronization with object space processing. each assembler 
consists of an array of dedicated compositing cells with on­
chip storage. This results in large bandwidth requirements for 
the image assembler but is not uncommon for image 
composition systems [19J. The on-chip compositor storage 
functions as the slab image accumulator. Upon completion of 
each slab, the contents are available for readout on a separate 
"pixel addressable" port by the hierarchical composition tree. 

D. HIERARCHICAL COMPOSmON TREE 

The fmal stage in the bela architecture is a hierarchical 
composition tree to combine the slab images generated by the 
image assemblers into the final image. Both parallel plane and 
tree configurations of compositors require N·! compositors to 
accumulate N image planes. Tree structures are preferred over 
parallel planes as each image plane encounters log2N 
compositions to reach the final image which can lead to fewer 
round-off errors in narrow fixed-point implementations. The 
slab image accumulator and composition tree support image 
space partitioning similar to that used in the image assembler. 
In most cases, such partitioning is not required since 
composition of full frame images (10242 pixels) at 30 Hz is 
readily attainable with custom hardware (see section V). 

The tree depth is determined by the total number of sub-cube 
image planes supported. RGBA pixels are read from the slice 
buffers-in scan-line order-into the pipelined composition 
tree to yield one RGBA output pixel per cycle. The final image 
is then passed through two additional compositors to provide 
an overlay and underlay. The overlay is typically a transparent 
surface while the underlay is usually an opaque black 
background. The most significant eight bits of each RGB 
channel are stored in a conventional frame buffer for 
manipulation and display by the host. 

IV. PERFORMANCE & REsouRCE ESTIMATES 

The separation of object image and image space in the bela 
architecture enable processors at each level to function at 
optimum speed. In most circumstances, the maximum rate is 
determined by memory access times and the available system 
bandwidth. Once the critical timing constraint is identified in 
each stage, the various processors are then synchronized to 
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maintain a constant frame rate. Throughout this discussion, 
parallel data transfer is assumed unless otherwise noted. While 
this assumption often requires excessive data lines between 
processors, it nevertheless serves to indicate an absolute upper 
performance limit. 

The maximum time intervals to shade a voxel (Ts), project a 
pixel (Ip), assemble a projection element (TA), and composite a 
pixel (Te) are given by: 

3 3n n pv; 
Ts = N 3f Tp =N3fw2 

j2pvin m2 

TA = N 3fw2 Te = M2f 

where 

w =extent width =z[ 2:J+ 1 

P=sub cube image planes 

vp = voxel projection parallelism, M =image size 

vA =voxel assembler parallelism, N =volume size 

n =object space partition, z =magnification 

j =image assembler partition, f = frame rate 

m = image space partition, k:: distribution width 

For simplicity, the voxel volume is assumed to be cubic, 
although not a requirement. In the ideal case, the voxel 
projection parallelism is equal to the extent width, i.e .. the 
entire projection is processed in parallel. Similarly, if the 
voxel assembler parallelism is equal to the extent width, the 
entire voxel image is compo sited in parallel. A magnification 
level of 1.0 sets the inter-voxel to pixel size ratio such that the 
rendered volume completely fills the image plane. Simulations 
indicate that distribution widths of 1.0 to 1.4 are suitable for 
most convolution kernels. 

Equally important to frame rate is system latency; the time 
interval between when the operator first makes a change to the 
viewing parameters and when the image is finally updated to 
reflect that change. Assuming a system designed such that all 
processes are synchronized without stalling the rendering 
pipeline, minimum latency (LMlN) in bela is dependent on: the 
reaction time of the host to inform the system of an update 
(Tv), the time to shade a sub-cube, the time to project a voxel, 
the time to assemble a slice image, and the time to composite 
the slab buffers. 

N 3 N 2 2w M2 
LMIN =Tv +TS - 3 +Tp +TA --;rr+Td-+log2pn]2 n I Vc m 

The dominant terms are volume shading and slab buffer 
composition. At best, minimum latency is slightly more than 
one frame if fast compositors with large m are used, and two 
frames at worst. 

Volumetric rendering via image composition demands 
extensive memory resources for storage of the voxel volume 
and the subsequent voxel images. Ignoring shader and 
projector look-up-tables (considered diminutive by 
comparison), memory requirements, in bits, for the volume 
storage (Ms), voxel images (Mp), slab buffers (MA ), and frame 
buffer (Me) are estimated by: 

Ms =N3bvr Mp =dpnN2w2bRGBA 

MA =dpnM2bRGBA Me =dM2bFB 

where 

bvr =bits per voxel and tag 

bRGBA = bits per RGBA component 

= bits per frame buffer pixel 

d =2 if double buffered, otherwise 1 

bPB 

Single buffering voxel images and slab buffers almost halves 
the storage requirements but significantly reduces the frame rate 
while processors idle. 

From the above discussion and formulae, the performance of 
bela systems can be estimated. Given a voxel data set with 
N=256, a desired image size of M=512, and using 40 ns RAM. 
a frame rate of 12 Hz is achieved with eight shading processors, 
eight projection processors, eight image assemblers, and one 
hierarchical compositor. System latency is estimated at 95 ms, 
or 1.13 frames. In terms of storage, with double buffered 16 bit 
precision, 24 MBytes are needed for the voxel volume (four bit 
tags), 50 MBytes for the voxel images (w::5), 8 MBytes for the 
slab buffers, and 1.5 MBytes for the frame buffer. A data set 
with N=1024 and a desired image size of M=1024 rendered at 
the same frame rate with 40 ns RAM requires considerably 
more resources. Since object space has increased sixty four 
times, the number of shading and projection processors 
increases accordingly to 512. Similarly, the number of image 
assemblers increases to 512 despite image space only 
quadrupling in size. Seven compositors are required in the 
hierarchical composition tree to accumulate eight slab buffers; 
no image space partitioning is required. System latency is 
estimated at 126 ms or 15 frames. Storage increases to 1536 
MBytes for the voxel volume, 1152 MBytes for the voxel 
images (w=3), 128 MBytes for slab buffers, and 6 MBytes for 
the frame buffer. The assembly of a system with these 
processing and storage requirements represents the limit of 
what can reasonably be achieved with the bela architecture. 

V. THE FuruRE 

The bela architecture is continually evolving to increase 
functionality and frame rate. Enhancements currently under 
investigation include: object space support for irregular grids, 
sparse grids, perspective projection, and hardware for slice 
image generation of geometric primitives. The 
implementation of a "smarter" scan-line ordered image 
assembler that avoids compositing transparent pixels onto the 
slab buffer and skips over slab buffer pixels that reach an 
opacity threshold [14] is also under consideration. 

A prototype system, bela_l, based on the N=256 example 
presented in section IV is currently under construction. 
Extensive bit level software simulations have been completed 
to verify the correct operation of the hybrid architecture and to 
determine processor bit precision to eliminate visible artifacts 
from fixed-point round-off error. A general purpose 16-bit 
compositing cell, Compose16, has been designed in 1.211 
CMOS and is undergoing fabrication. Compose16 achieves a 
non-pipelined composition in 8.5 ns, on-chip, and will be used 
in the hierarchical composition tree. The shading processor, 
Shade16, is being designed in a O.8J.l. BiCMOS technology to 
be fabricated in the fall of 1994. An on-chip execution rate of 
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200 MHz provides 25 million shaded voxels per second, 
according to the algorithm in Figure 5. With simpler 
algorithms, up to 50 million voxels can be shaded per second. 
Design and fabrication of the image assembler and projection 
processor will follow completion of the shading processor. 
Expected completion date of the prototype is spring 1995. 

VI. CONCLUSIONS 

The scalable bela architecture for high-speed volumetric 
rendering of discrete three dimensional data sets was presented. 
bela comprises custom processors for rendering volumetric 
primitives and a high-performance composition network for 
merging volumetric and geometric elements. Data access 
contentions are avoided through an enhanced dual partitioning 
scheme that enables parallel processing in both object space 
and image space without the redistribution or replication of 
primitives. Object space parallelism and versatility is 
achieved via allocation of primitives to programmable shading 
processors. Primitive projections are spatially ordered for 
efficient slice-based accumulation via the image assembler and 
hierarchical composition tree. 

bnage composition networks permit a high degree of parallel 
processing to achieve interactive volume rendering generation 
at the expense of memory resources and system bandwidth. The 
proposed architecture attempts to allay these limiting criteria 
through hierarchical accumulation of rendered primitives. bela 
is suitable for rendering data sets comprising 10' to 109 

elements at interactive rates. 
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Figure 1. Hybrid Partition for Slice-Based Rendering 
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Figure 2a. Simplified 2D Example of the Hybrid Partition in Object Space 
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Figure 2b. Example of the Hybrid Partition in Image Space 
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