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Abstract 	 second image update rate. Jackel and Strasser [5) described the 
P ARCUM n system. which is used for handling solids 

This paper describes a gradient calculator which forms an reconstructed from CT scans. An emulation of this system 
important part of a shading processor being developed for a generated medical images in 38-110 seconds from data sets 
high resolution high performance real-time general purpose with 2563 elements. Two projects have been proposed from 
volume imaging system. The proposed architecture overcomes Keio University in Japan. One is a prototype system SCOPE 
cunent image resolution and frame-rate limitations through the (solid and colored object projection environment) [6] and the 
use of custom high-speed processors. The gradient calculator other system-which is very similar to GODPA-is the 3Dp4 
evaluates three arithmetic operations: a square and add architecture [7}. 3Dp4 bas been simulated in software, and a 
operation, square-root, and three division operations. Input­ 2563 hardware implementation is estimated to have aoutput delay time is 30 os with an accuracy of ±O.78%. The throughput of up to 10 frames per second. A commercial image algorithms and implementation in silicon are described in system, the Insight system of Phoenix Data Systems [8],detail. combines hardware and software. It can display complex 

objects at a "near real-time" rate of about one frame per second. 
1. Introduction Kaufman and Bakalash [9] developed the CUBE architecture and 

constructed a prototype 163 system. All of these systems 
A Volume Imaging System (VIS) is a powerful tool in real­ exhibit either low frame rates or low resolution. time manipulation of complex 3D data sets. Applications that Our objective is to design a system which overcomes these require such service are increasing. The data can be of medical. limitations with a high performance architecture which will geophysical, aerospace or other origins. Medical treatment 

render and display high resolution volume images from 2563 
planning sytems using high speed graphics workstations can 

and 5123 data sets in real-time, that is at least 30 frames perprovide powerful clinical tools for diagnostic evaluation of 
second.radiation therapy, for control in computer assisted surgery, for 

The objective of this paper is to present algorithms that laser surgery simulations, dental diagnostics or for facial 
yield an efficient, fast architecture for computing thereconstructions [l,2J. Geophysical imaging systems use 
normalized gradient magnitude and the normalized gradient rendering and displaying capabilities to visualize oil and gas 
direction.deposits. Imaging systems are used in the airline industry to 

localize possible leaks and defects in metal structures. Such 
2. Gradient Calculationfacilities would achieve maximum information extraction 

through high resolution reconstructions of examined 
This paper describes a gradient calculator which forms astructures. An interactive user interface requires real-time image 

subunit of the imaging system. The volume data received from update and continuous feedback to operator actions. This 
computed tomographs or magnetic resonance scans must be necessitates updates at the rate of 30 frames per second. The 
shaded and composited to produce a 3D image of the observed majority of existing 3D imaging systems employ general 
structure. The shading processor performs several arithmetic purpose workstations to manipulate complex data sets 
and logic operations. The flISt and most complex operation is compiled from computed tomography, magnetic resonance 
the calculation of a normalized gradient direction andimages, or other scanned images. The processed data are three­
normalized gradient magnitude. The gradient parameters defme dimensional density volumes of 2563 or 5123 generated as a 
the surface information of a single 3D volumetric element stack of slices. This amount of data creates major problems for 
called a voxeLsoftware-oriented 3D reconstruction techniques. Software based 

In a volumetric data set, each voxel has 6 face-connected systems are too slow to provide real-time user feedback. 

Development of reconstruction methods using high speed neighbours. 12 edge-connected neighbours, and 8 corner­

hardware has been actively pursued [3-9]. Traditional computer 
 connected neighbours. Gradients can be calculated using any 
graphics software approaches, even those using hardware subset of these neighbours. The simplest case uses the face­
assist. cannot convey the detailed information contained in connected neighbours. For example. the gradient of point (i, j. 

k) : 	 .volume data sets in real-time. A voxel-based architecture 
GODPA (generalized object display process architecture), a in the X direction, is given by 
derivative of the Voxel Processor [3.4] has been implemented 
as a prototype system of 643 voxels. with a 16-frames-per­
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(Ia 

in the Y direction. by 

S{i,i+l,k)-S{i,j-l,k) d (1 bIly • an 

in the Z direction. by 

S(i,j,k+l)-S(i,j ,k-1) (Ic
Ilt 

The gradient magnitude is given by : 

(2 

with the direction defined by : 

Gi"k=[ G(;r;)ijk G(y)ijk G(z)ijk 1 
g IGijkl' IGijkl ' IGijk! 

=[g(;r;)ijk,g(y)ijk,g(1.)ijk1 (3 

. In an isometric volume t.x. lly. l1z are constant and equal. 
It IS assumed that the sampling distance is equal to one unit .. 
Therefore, the components G(;r;),G(y),G(~) simplify to: 

G(:r:)ijk=S(i+l,j,k)-S(i-l,j,k), (4a 
G(y)iJl=S(i,j+l.k)-S(i,j-l.k) , (4b 
G(1.)ijk=S(i,j ,k+l)-S(i,j,k-l), (4c 

where for 8-bit data: 

OSG(;r;)ijkS2SS. (4d 
OSG(y)ijkS2SS, (4e 
OSG(z)ijkS2SS, (4f 

It is then obvious that : 

OS!Gijkls..Ji9S07S , (Sa 
and: 

OSg (:r:)ijkS1 , (5b 
OSg(y)ijkS1, (5c 
OSg(1.)ijkSl, (5d 

To maintain real-time performance of the imaging system 
the gradient calculator must operate in less than 100 ns with 
the result error not exceeding 5%. Errors' above this limit are 
detectable by human eye. With these requirements it takes 8 
imaging modules including gradient calculators to process 
2563 data, 64 to process 5123data and 512 to process 10243 

data. 
From the equations above, the calculation of the gradient 

magnitude and normalized gradient direction involves a square 
and add operation, a square-root operation (eq.2), and three 
division operations (eq.3). There is no off-the-shelf circuit or 
subsystem available to perform these operations in an optimal 
way for 8 or 16-bit fixed point numbers. 

3. Developed Architecture 

The gradient calculator has three inputs (gradient 
com~nents, eq. 4a to 4c) and four outputs (3 normalized 
gradients, eq. 3 and normalized gradient magnitude eq. 2). The 
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block diagram of the gradient calculator is presented in Figure 
1. This architecture performs three operations: square and add 
in. parallel, square-root, and division.. 

3.1. Square and Add 

The first term to be calculated in obtaining the gradient 
magnitude is the sum of the squares of the inputs. Dadda [10] 
showed an implementation of squarers in serial form. His 
regular multiplier array consisting of factors XfXj was reduced 
because X;Xj =XjXb therefore, the partial products above the anti­
diagonal (in anti-diagonal is xl) are equivalent to partial 

LEADING 

ZERO 

ANTICIPATOR 

Figure 1. Block Diagram of the Gradient Calculator. 

products below (Figure 2). The regular partial product array can 
thu~ ~e replaced by a reduced equivalent array comprising the 
antI-dIagonal and one of the parts shifted by one position to 
the left (Figure 3). This significantly reduces the number of 
partial products generated by the multiplier. If this scheme is 
implemented with a high speed enhanced multiplier structure 
[11], square and add operations can be performed in parallel.. 
The multiplier-array consists of 3 parts, each part squares Gp 



G,. and Gz separately. Joining squarers into one array results in 
the adding operation being evaluated concurrently with the 
squaring (Figure 4). The longest path requires the addition of 15 
products (column S9). This array is also known as a partial 
product generator (PPG). In the next step a carry-save adder 
array (CSA) is used to reduce the number of products (Figure 5). 
The final step is a carry-propagate adder (CPA). Carry-save 
adders (CSA) are used for fast accumulation of partial product 
terms [11.12]. Speed and ease of use have made 4:2 
compressors the reduction circuit of choice in a number of 
multiplier designs [13.14.15J. A carry-propagate adder adds 
carry and sum and produces the result. It consists of an array of 
4-bit Manchaster chains (Figure 5). The result is 18 bits long, 
but only 17 bits are used for luther calculations. 

multiplier 

X7X6X5X4X3X2Xl XO 

70 60 50 40 30 20 10 00 XO 
71 61 51 41 31 21 11 01 X11 

73 ~i ~i ~i ~~ ~i r~ M02 i~ i 
7464 54 44 34241404 X4:; 

75 65 55 45 35 2S 15 05 XS 15 
76 66 56 46 36 26 16 06 X6 

77 67 57 47 37 27 17 07 X7 2 

YIS - - - • YO y=X
result 

Figure 2. Regular multiplication array. 
multiplier 

X7X6XSX4X3X2Xl XO 

70 60 50 40 30 20 10 00 XO 
71 61 51 41 31 21 11 Xl 1 

72 62 52 42 32 22 X2 ... 
73 63 53 43 33 X3 ~ 

746454 44 X4:; 
7565 55 XS 15 

% 66 D 
77 X7 2 

YIS 
remit 

• YO Y=X 

Figure 3. Simplified multiplication array for squarers. 

70 60 50 40 30 20 10 

00 

lill~:1 
00 

71 61 51 41 31 21 11 
72 62 52 42 32 22 

73 63 53 43 33 
746454 44 

7S 65 55 
76 66 
77 70 60 50 40 .30 20 10 00 

71 61 51 41 31 21 11 
72 62 52 42 32 22 

7.3 63 53 43 33 
746454 44 

7565 55 

76 66 

77 


Sum: 51 

G 2+G 2+G 2 
" Y z 

Figure 4. Multiplier array with square and add operation. 

In this application 3:2 counter circuits and 4:2 compressor 
circuits were used in three stages to obtain the best 
performance. To avoid long interconnects that decrease the 
overall delay, a Regularly Structured Tree (RST) approach [16] 
for multiplication was used. A recursive algorithm to generates 
a sum and carry term for the CPA and provides a regular layout 
structure. The advantages are reduced wiring length and 
increased density of transistors resulting in a design wbich is 
both area and time efficient. 

;xs ;Yg fs 
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Figure 5. Square & Add Circuit. 

3.2. Square-root 

Square-root has been considered one of the most important 
arithmetic functions since the early stages of computer 
development [17]. It's wide range of applications bave forced 
designers to look for an optimal algorithms and simple 
implementations. With image processing applications coming 
forward. there has been further development on relatively higb­
speed square-rooting techniques [18]. The most widely used 
method for evaluating tbe square-root of a number is the 
Newton-Raphson iteration technique. However, this method 
requires a division operation, Which makes the implementation 
more complex and slows down the overall performance. 

The gradient calculator uses a simplified version of 
Hashemian's square-root algorithm. Hasbemian's technique 
(19) is very fast, because it involves no division operation 
except division by 2 (bit-shift operation). The algorithm itself 
consists of two parts. In the first part an estimate is obtained 
with an average accuracy 1.7% (±O.S5%) and in the worst case 
up to 6%. The procedure in the second part modifies the initial 
estimate iteratively, until an exact root is evaluated. The 
gradient calculator precisely follows part one for obtaining a 
fmt estimate. The algorithm considers that every given integer 
A has 2m number of effective bits (the MSB is always "1"), 
which is an even number of bits. If the number of bits is odd 
(i.e. 101 - bas 3 effective bits} tben one left shift is performed. 
After this the procedure has two steps: 

a) apply m+l right shifts to integer A, and 
b) insert a "1" bit to the left of the most significant bit 

(MSB) of the result in step a). 
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The advantage of this implementation is in its 
concurrency (Figure 6). The leading-zera-anticipator (LZA) 
locates the position of the MSB in the summand 
(Gi+G/+G/), calculates the number of effective bits and 
generates a pair of control signals (EVEN/SHIFT or 
ODD/SHIFT). These signals are activated in the same time as 
the summand from the Square & Add circuit is finalized. The 
result is then shifted by an appropriate number of bits. 

The simplification is in the implementation of the second 
part of the algorithm. The gradient calculator evaluates only 
the first step of the iteration. It doesn't follow the Hashemian's 
algorithm rather it uses look-up-tables to compute the next 
operation. There are two look-up-tables used for the first 
iteration step, one for even and another for odd numbers with 
values that compensate for an error of the initial estimate. The 
initial estimate is used as an index to these look-up-tables. The 
index then retrieves a value lI(IGI+gerr). The value gem a 
compensating divisor, brings the overall accuracy for the 
normalized gradient direction to ±O.78%. The MAGNITUDE 
circuit is an enhanced multiplier similar to that constructed for 
the Square and Add circuit. It modifies the error for gradient 
magnitude and normalizes the result in the same time. The 
accuracy of the /WrmlGJ is ±O.85%. 

- - _ .. ,from 
17 SP ~quare & Add 

Leading 17 CP .......Circuit 

Zero ¥ ..-r---:-::"" .......
17

L.,..:.:An=tiC:i~pa:to:::.:r~~=---_-T-__ Carry Sum .......1 


Sl~ft Even f17Odd 

161 

1IGI ~/ 1'---­..... 
IJ .itsmtio.!l... 

LUT 
ODD 

LUT 
EVEN 

7 

Dout Dom 

to Division Circuit 

Figure 6. Square-Root Circuitry. 

3.3. Division 

The iteration block illustrated in Figure 6 is 
multifunctional with iteration, division, and normalization 
operations overlaping. Division is the most complex 
arithmetic function to implement. Several methods deal with 
the division of integer and real numbers. One approach 
introduced by Alverson [20] uses reciprocals. It was designed 
for 64-bit integer numbers. With reciprocal approximations, 
integer division can be synthesized from a multiply followed 
by a shift. However, if reCiprocal values are not carefully 
selected, the quotient obtained often incurs "off-by-one errors", 
requiring a correction step. The reciprocal computation is 

sufficiently fast with one look-up-table and five multiplies. 
Wong and Flynn presented two methods for division of integer 
binary numbers, a basic and an advanced method [21]. Both of 
them are based on a look-up-table and Taylor series of 
approximations of the reciprocal. The basic method considers 
3 binary representations X as a dividend, Y as a divisor, and Q 
as a seeking quotient. Binary numbers X and Y are fust left­
shifted, normalized, X by j-bits, and Y by k-bits. Several stages 
of the algorithm follow including an iteration. The gradient 
calculator uses the simplified basic method. It calculates only 

one equation Q=Xh *(lfYh)*(t!2(i-k»). where and arexh Yh 
normalized binary representations of X and Y. In the look-up­
tables (Figure 4) the values of IfYh are stored. These values are 

selected by the fust estimate of the square-root (index to LUT) 
as described in the previous section. The gradient inputs 
G .Gy.G~ represent the binary number. The reciprocal x xh 

values were examined for all possible values of gradient 
magnitude 101 which range from 1 to "'195075 and could be 
matched to 64 reciprocal values. Therefore, the size of the 
look-up-tables is 64x6bits. The DIVISION cicuit takes 1fth 

from a selected LUT, multiplies it by a gradient and shifts the 
product in the multiplier array concurrently. The final result is a 
16 bit long normalized gradient direction. The DIVISION 
circuit is constructed as a high speed multiplier, similar to the 
one used to square and add. The multiplier differs in that it is 
implemented with 4:2 compressor circuits in all stages of the 
CSA. 

4. Simulations and Results 

In the gradient calculator, the dominant architecture is a 
custom high speed multiplier. There are three in the design: 
S&A circuit, DIVISION circuit and MAGNITUDE circuit. The 
performance of these three structures directly affects the 
performance and reliability of the entire architecture. The 
gradient calculator was simulated hierarchically for speed and 
logic correctness; starting from the basic cells up to the major 
circuits. The processing time of each part of the gradient 
calculator was determined using HSPICE simulation tools in the 
Cadence environment. Cadence CAD package was used 
throughout tbe entire design process. Logic evaluation was 
done with Cadence Verilog-XL tools. Emphasis is on the 
results obtained from the simulation of the dynamic 1.2f.1. 
CMOS 4:2 compressor circuit. The compression time was 
comparable to the design of Moti, et.al. (13) , using 0.5f.1. 
CMOS technology, (Table 1). The dynamic 4:2 compressor is 
shown in Figure 7 and the static 4:2 compressor is presented in 
Figure 8. 

The total number of transistors used in the gradient 
calculator is 17716 therefore it is considered LSI type circuit .. 
Table 2 shows the number of transistors used in each circuit and 
their delays in nanoseconds. 

The gradient calculator was originally designed using 1.2u 
static CMOS technology. It requires 30ns processing time. 
Many essential parts of the multiplier structures were 
redesigned using dynamic logic. These improvements are being 
simulated to guarantee desired functionality. New layout 
schemes are being considered to further increase compactibility 
and speed. Our main objective is to construct the entire 
imaging system using 0.8u BiCMOS technology which will be 
available to us in the second half of 1994. This technology 
will increase speed by up to an additional 33%. This will give 
more fiexibility in other parts of the imaging system where 
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changes in the design bring no further improvement and 
become a bottleneck for the system and it will bring a 
significant reduction in necessary hardware and thereby overall 
reduction. in costs. 

5. Conc:lusion 

Using the algorithms described in this paper, a gradient 
calculator was constructed that requires 30 ns processing time 
and produces results with an accuracy of ±O.78% (for the 
normalized gradient directions) and ±O.85% (for the normalized 
gradient magnitude). With currently available fabrication 
technology. the gradient calculator exceeds the speed 
requirements to achieve real-time volume imaging. 

Acknowledgments 

This research was partially supported by Alberta 
Microelectronic Centre. We also acknowledge technical 
support from Canadian Microelectronic Corporation. 

;~ 

N:lldI 	 ! U 

Figure 7. Dynamic 4:2 compressor circuit. 

Design CMOS Technology Oelay(ns)
loaic 

Design in (13) pseudo O.5u 1.2 

Current design static 1.2u 3.0 

New design domino 1.2u 1.3 
I..-. -~ 

Table 1. Comparison of the 4;2 compressor circuits. 

Circuits Numberof 
transistors 

Delay(ns) 

Square & Add 

LZA 

Shifter 

LUT EVEN 

LUTODD 

OR 

Division 

Magnitude 

5566 

1216 

111 

1589 

1477 

42 

3653 

4062 

11.54 

8.5 

0.5 

0.840 

0.927 

0.8 

11.25 

11.37 

- - - ~--

Table 2. Number of transistors and processing time of each 
circuit. 
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