
A 33MHz 16 ..Bit Gradient Calculator for Real-Time

Volume Imaging

Martin Margala, Nelson G. Durdle. Scott Juskiw, 1

V. James Raso, and Doug L. Hill 2

L Electrical Engineering Department, The University of Alberta

Edmonton, Alberta, Canada T6G 2G7

2. Rehabilitaion Engineering Department, Glenrose Rehabilitation Hospital

Edmonton, Alberta, Canada T5G OB7

Abstract 	 second image update rate. Jackel and Strasser [5) described the
P ARCUM n system. which is used for handling solids

This paper describes a gradient calculator which forms an reconstructed from CT scans. An emulation of this system
important part of a shading processor being developed for a generated medical images in 38-110 seconds from data sets
high resolution high performance real-time general purpose with 2563 elements. Two projects have been proposed from
volume imaging system. The proposed architecture overcomes Keio University in Japan. One is a prototype system SCOPE
cunent image resolution and frame-rate limitations through the (solid and colored object projection environment) [6] and the
use of custom high-speed processors. The gradient calculator other system-which is very similar to GODPA-is the 3Dp4
evaluates three arithmetic operations: a square and add architecture [7}. 3Dp4 bas been simulated in software, and a
operation, square-root, and three division operations. Input­ 2563 hardware implementation is estimated to have aoutput delay time is 30 os with an accuracy of ±O.78%. The throughput of up to 10 frames per second. A commercial image algorithms and implementation in silicon are described in system, the Insight system of Phoenix Data Systems [8],detail. combines hardware and software. It can display complex

objects at a "near real-time" rate of about one frame per second.
1. Introduction Kaufman and Bakalash [9] developed the CUBE architecture and

constructed a prototype 163 system. All of these systems
A Volume Imaging System (VIS) is a powerful tool in real­ exhibit either low frame rates or low resolution. time manipulation of complex 3D data sets. Applications that Our objective is to design a system which overcomes these require such service are increasing. The data can be of medical. limitations with a high performance architecture which will geophysical, aerospace or other origins. Medical treatment

render and display high resolution volume images from 2563
planning sytems using high speed graphics workstations can

and 5123 data sets in real-time, that is at least 30 frames perprovide powerful clinical tools for diagnostic evaluation of
second.radiation therapy, for control in computer assisted surgery, for

The objective of this paper is to present algorithms that laser surgery simulations, dental diagnostics or for facial
yield an efficient, fast architecture for computing thereconstructions [l,2J. Geophysical imaging systems use
normalized gradient magnitude and the normalized gradient rendering and displaying capabilities to visualize oil and gas
direction.deposits. Imaging systems are used in the airline industry to

localize possible leaks and defects in metal structures. Such
2. Gradient Calculationfacilities would achieve maximum information extraction

through high resolution reconstructions of examined
This paper describes a gradient calculator which forms astructures. An interactive user interface requires real-time image

subunit of the imaging system. The volume data received from update and continuous feedback to operator actions. This
computed tomographs or magnetic resonance scans must be necessitates updates at the rate of 30 frames per second. The
shaded and composited to produce a 3D image of the observed majority of existing 3D imaging systems employ general
structure. The shading processor performs several arithmetic purpose workstations to manipulate complex data sets
and logic operations. The flISt and most complex operation is compiled from computed tomography, magnetic resonance
the calculation of a normalized gradient direction andimages, or other scanned images. The processed data are three­
normalized gradient magnitude. The gradient parameters defme dimensional density volumes of 2563 or 5123 generated as a
the surface information of a single 3D volumetric element stack of slices. This amount of data creates major problems for
called a voxeLsoftware-oriented 3D reconstruction techniques. Software based

In a volumetric data set, each voxel has 6 face-connected systems are too slow to provide real-time user feedback.

Development of reconstruction methods using high speed neighbours. 12 edge-connected neighbours, and 8 corner­

hardware has been actively pursued [3-9]. Traditional computer
 connected neighbours. Gradients can be calculated using any
graphics software approaches, even those using hardware subset of these neighbours. The simplest case uses the face­
assist. cannot convey the detailed information contained in connected neighbours. For example. the gradient of point (i, j.

k) : 	 .volume data sets in real-time. A voxel-based architecture
GODPA (generalized object display process architecture), a in the X direction, is given by
derivative of the Voxel Processor [3.4] has been implemented
as a prototype system of 643 voxels. with a 16-frames-per­

80

http://www.eg.org
http://diglib.eg.org

(Ia

in the Y direction. by

S{i,i+l,k)-S{i,j-l,k) d (1 bIly • an

in the Z direction. by

S(i,j,k+l)-S(i,j ,k-1) (Ic
Ilt

The gradient magnitude is given by :

(2

with the direction defined by :

Gi"k=[G(;r;)ijk G(y)ijk G(z)ijk 1
g IGijkl' IGijkl ' IGijk!

=[g(;r;)ijk,g(y)ijk,g(1.)ijk1 (3

. In an isometric volume t.x. lly. l1z are constant and equal.
It IS assumed that the sampling distance is equal to one unit ..
Therefore, the components G(;r;),G(y),G(~) simplify to:

G(:r:)ijk=S(i+l,j,k)-S(i-l,j,k), (4a
G(y)iJl=S(i,j+l.k)-S(i,j-l.k) , (4b
G(1.)ijk=S(i,j ,k+l)-S(i,j,k-l), (4c

where for 8-bit data:

OSG(;r;)ijkS2SS. (4d
OSG(y)ijkS2SS, (4e
OSG(z)ijkS2SS, (4f

It is then obvious that :

OS!Gijkls..Ji9S07S , (Sa
and:

OSg (:r:)ijkS1 , (5b
OSg(y)ijkS1, (5c
OSg(1.)ijkSl, (5d

To maintain real-time performance of the imaging system
the gradient calculator must operate in less than 100 ns with
the result error not exceeding 5%. Errors' above this limit are
detectable by human eye. With these requirements it takes 8
imaging modules including gradient calculators to process
2563 data, 64 to process 5123data and 512 to process 10243

data.
From the equations above, the calculation of the gradient

magnitude and normalized gradient direction involves a square
and add operation, a square-root operation (eq.2), and three
division operations (eq.3). There is no off-the-shelf circuit or
subsystem available to perform these operations in an optimal
way for 8 or 16-bit fixed point numbers.

3. Developed Architecture

The gradient calculator has three inputs (gradient
com~nents, eq. 4a to 4c) and four outputs (3 normalized
gradients, eq. 3 and normalized gradient magnitude eq. 2). The

81

block diagram of the gradient calculator is presented in Figure
1. This architecture performs three operations: square and add
in. parallel, square-root, and division..

3.1. Square and Add

The first term to be calculated in obtaining the gradient
magnitude is the sum of the squares of the inputs. Dadda [10]
showed an implementation of squarers in serial form. His
regular multiplier array consisting of factors XfXj was reduced
because X;Xj =XjXb therefore, the partial products above the anti­
diagonal (in anti-diagonal is xl) are equivalent to partial

LEADING

ZERO

ANTICIPATOR

Figure 1. Block Diagram of the Gradient Calculator.

products below (Figure 2). The regular partial product array can
thu~ ~e replaced by a reduced equivalent array comprising the
antI-dIagonal and one of the parts shifted by one position to
the left (Figure 3). This significantly reduces the number of
partial products generated by the multiplier. If this scheme is
implemented with a high speed enhanced multiplier structure
[11], square and add operations can be performed in parallel..
The multiplier-array consists of 3 parts, each part squares Gp

G,. and Gz separately. Joining squarers into one array results in
the adding operation being evaluated concurrently with the
squaring (Figure 4). The longest path requires the addition of 15
products (column S9). This array is also known as a partial
product generator (PPG). In the next step a carry-save adder
array (CSA) is used to reduce the number of products (Figure 5).
The final step is a carry-propagate adder (CPA). Carry-save
adders (CSA) are used for fast accumulation of partial product
terms [11.12]. Speed and ease of use have made 4:2
compressors the reduction circuit of choice in a number of
multiplier designs [13.14.15J. A carry-propagate adder adds
carry and sum and produces the result. It consists of an array of
4-bit Manchaster chains (Figure 5). The result is 18 bits long,
but only 17 bits are used for luther calculations.

multiplier

X7X6X5X4X3X2Xl XO

70 60 50 40 30 20 10 00 XO
71 61 51 41 31 21 11 01 X11

73 ~i ~i ~i ~~ ~i r~ M02 i~ i
7464 54 44 34241404 X4:;

75 65 55 45 35 2S 15 05 XS 15
76 66 56 46 36 26 16 06 X6

77 67 57 47 37 27 17 07 X7 2

YIS - - - • YO y=X
result

Figure 2. Regular multiplication array.
multiplier

X7X6XSX4X3X2Xl XO

70 60 50 40 30 20 10 00 XO
71 61 51 41 31 21 11 Xl 1

72 62 52 42 32 22 X2 ...
73 63 53 43 33 X3 ~

746454 44 X4:;
7565 55 XS 15

% 66 D
77 X7 2

YIS
remit

• YO Y=X

Figure 3. Simplified multiplication array for squarers.

70 60 50 40 30 20 10

00

lill~:1
00

71 61 51 41 31 21 11
72 62 52 42 32 22

73 63 53 43 33
746454 44

7S 65 55
76 66
77 70 60 50 40 .30 20 10 00

71 61 51 41 31 21 11
72 62 52 42 32 22

7.3 63 53 43 33
746454 44

7565 55

76 66

77

Sum: 51

G 2+G 2+G 2
" Y z

Figure 4. Multiplier array with square and add operation.

In this application 3:2 counter circuits and 4:2 compressor
circuits were used in three stages to obtain the best
performance. To avoid long interconnects that decrease the
overall delay, a Regularly Structured Tree (RST) approach [16]
for multiplication was used. A recursive algorithm to generates
a sum and carry term for the CPA and provides a regular layout
structure. The advantages are reduced wiring length and
increased density of transistors resulting in a design wbich is
both area and time efficient.

;xs ;Yg fs
" PPG 7

:=fl........::,
I
I 3:2 Counted

I'·..........fl
I 4:2 com,1 CSA Array

I , 1

to Leading

t
17

- "":I.
- -

Carry-Propagate

Adder-I
Manchester Chains ~I

Sum Generator u- I.
~

Sum[O:l6]

Figure 5. Square & Add Circuit.

3.2. Square-root

Square-root has been considered one of the most important
arithmetic functions since the early stages of computer
development [17]. It's wide range of applications bave forced
designers to look for an optimal algorithms and simple
implementations. With image processing applications coming
forward. there has been further development on relatively higb­
speed square-rooting techniques [18]. The most widely used
method for evaluating tbe square-root of a number is the
Newton-Raphson iteration technique. However, this method
requires a division operation, Which makes the implementation
more complex and slows down the overall performance.

The gradient calculator uses a simplified version of
Hashemian's square-root algorithm. Hasbemian's technique
(19) is very fast, because it involves no division operation
except division by 2 (bit-shift operation). The algorithm itself
consists of two parts. In the first part an estimate is obtained
with an average accuracy 1.7% (±O.S5%) and in the worst case
up to 6%. The procedure in the second part modifies the initial
estimate iteratively, until an exact root is evaluated. The
gradient calculator precisely follows part one for obtaining a
fmt estimate. The algorithm considers that every given integer
A has 2m number of effective bits (the MSB is always "1"),
which is an even number of bits. If the number of bits is odd
(i.e. 101 - bas 3 effective bits} tben one left shift is performed.
After this the procedure has two steps:

a) apply m+l right shifts to integer A, and
b) insert a "1" bit to the left of the most significant bit

(MSB) of the result in step a).

82

The advantage of this implementation is in its
concurrency (Figure 6). The leading-zera-anticipator (LZA)
locates the position of the MSB in the summand
(Gi+G/+G/), calculates the number of effective bits and
generates a pair of control signals (EVEN/SHIFT or
ODD/SHIFT). These signals are activated in the same time as
the summand from the Square & Add circuit is finalized. The
result is then shifted by an appropriate number of bits.

The simplification is in the implementation of the second
part of the algorithm. The gradient calculator evaluates only
the first step of the iteration. It doesn't follow the Hashemian's
algorithm rather it uses look-up-tables to compute the next
operation. There are two look-up-tables used for the first
iteration step, one for even and another for odd numbers with
values that compensate for an error of the initial estimate. The
initial estimate is used as an index to these look-up-tables. The
index then retrieves a value lI(IGI+gerr). The value gem a
compensating divisor, brings the overall accuracy for the
normalized gradient direction to ±O.78%. The MAGNITUDE
circuit is an enhanced multiplier similar to that constructed for
the Square and Add circuit. It modifies the error for gradient
magnitude and normalizes the result in the same time. The
accuracy of the /WrmlGJ is ±O.85%.

- - _ .. ,from
17 SP ~quare & Add

Leading 17 CPCircuit

Zero ¥ ..-r---:-::""
17

L.,..:.:An=tiC:i~pa:to:::.:r~~=---_-T-__ Carry Sum1

Sl~ft Even f17Odd

161

1IGI ~/ 1'---­.....
IJ .itsmtio.!l...

LUT
ODD

LUT
EVEN

7

Dout Dom

to Division Circuit

Figure 6. Square-Root Circuitry.

3.3. Division

The iteration block illustrated in Figure 6 is
multifunctional with iteration, division, and normalization
operations overlaping. Division is the most complex
arithmetic function to implement. Several methods deal with
the division of integer and real numbers. One approach
introduced by Alverson [20] uses reciprocals. It was designed
for 64-bit integer numbers. With reciprocal approximations,
integer division can be synthesized from a multiply followed
by a shift. However, if reCiprocal values are not carefully
selected, the quotient obtained often incurs "off-by-one errors",
requiring a correction step. The reciprocal computation is

sufficiently fast with one look-up-table and five multiplies.
Wong and Flynn presented two methods for division of integer
binary numbers, a basic and an advanced method [21]. Both of
them are based on a look-up-table and Taylor series of
approximations of the reciprocal. The basic method considers
3 binary representations X as a dividend, Y as a divisor, and Q
as a seeking quotient. Binary numbers X and Y are fust left­
shifted, normalized, X by j-bits, and Y by k-bits. Several stages
of the algorithm follow including an iteration. The gradient
calculator uses the simplified basic method. It calculates only

one equation Q=Xh *(lfYh)*(t!2(i-k»). where and arexh Yh
normalized binary representations of X and Y. In the look-up­
tables (Figure 4) the values of IfYh are stored. These values are

selected by the fust estimate of the square-root (index to LUT)
as described in the previous section. The gradient inputs
G .Gy.G~ represent the binary number. The reciprocal x xh

values were examined for all possible values of gradient
magnitude 101 which range from 1 to "'195075 and could be
matched to 64 reciprocal values. Therefore, the size of the
look-up-tables is 64x6bits. The DIVISION cicuit takes 1fth

from a selected LUT, multiplies it by a gradient and shifts the
product in the multiplier array concurrently. The final result is a
16 bit long normalized gradient direction. The DIVISION
circuit is constructed as a high speed multiplier, similar to the
one used to square and add. The multiplier differs in that it is
implemented with 4:2 compressor circuits in all stages of the
CSA.

4. Simulations and Results

In the gradient calculator, the dominant architecture is a
custom high speed multiplier. There are three in the design:
S&A circuit, DIVISION circuit and MAGNITUDE circuit. The
performance of these three structures directly affects the
performance and reliability of the entire architecture. The
gradient calculator was simulated hierarchically for speed and
logic correctness; starting from the basic cells up to the major
circuits. The processing time of each part of the gradient
calculator was determined using HSPICE simulation tools in the
Cadence environment. Cadence CAD package was used
throughout tbe entire design process. Logic evaluation was
done with Cadence Verilog-XL tools. Emphasis is on the
results obtained from the simulation of the dynamic 1.2f.1.
CMOS 4:2 compressor circuit. The compression time was
comparable to the design of Moti, et.al. (13) , using 0.5f.1.
CMOS technology, (Table 1). The dynamic 4:2 compressor is
shown in Figure 7 and the static 4:2 compressor is presented in
Figure 8.

The total number of transistors used in the gradient
calculator is 17716 therefore it is considered LSI type circuit ..
Table 2 shows the number of transistors used in each circuit and
their delays in nanoseconds.

The gradient calculator was originally designed using 1.2u
static CMOS technology. It requires 30ns processing time.
Many essential parts of the multiplier structures were
redesigned using dynamic logic. These improvements are being
simulated to guarantee desired functionality. New layout
schemes are being considered to further increase compactibility
and speed. Our main objective is to construct the entire
imaging system using 0.8u BiCMOS technology which will be
available to us in the second half of 1994. This technology
will increase speed by up to an additional 33%. This will give
more fiexibility in other parts of the imaging system where

83

changes in the design bring no further improvement and
become a bottleneck for the system and it will bring a
significant reduction in necessary hardware and thereby overall
reduction. in costs.

5. Conc:lusion

Using the algorithms described in this paper, a gradient
calculator was constructed that requires 30 ns processing time
and produces results with an accuracy of ±O.78% (for the
normalized gradient directions) and ±O.85% (for the normalized
gradient magnitude). With currently available fabrication
technology. the gradient calculator exceeds the speed
requirements to achieve real-time volume imaging.

Acknowledgments

This research was partially supported by Alberta
Microelectronic Centre. We also acknowledge technical
support from Canadian Microelectronic Corporation.

;~

N:lldI 	 ! U

Figure 7. Dynamic 4:2 compressor circuit.

Design CMOS Technology Oelay(ns)
loaic

Design in (13) pseudo O.5u 1.2

Current design static 1.2u 3.0

New design domino 1.2u 1.3
I..-. -~

Table 1. Comparison of the 4;2 compressor circuits.

Circuits Numberof
transistors

Delay(ns)

Square & Add

LZA

Shifter

LUT EVEN

LUTODD

OR

Division

Magnitude

5566

1216

111

1589

1477

42

3653

4062

11.54

8.5

0.5

0.840

0.927

0.8

11.25

11.37

- - - ~--

Table 2. Number of transistors and processing time of each
circuit.

References

[1] 	 Brewster, LJ., Triveldi, S.S., Thy. H.K., and Udupa, J.K.,
Interactive Surgical Plarming, IEEE Compo Graph. and
Appl., vol.4, No.3, March 1984, pp.31-40.

[2] 	 Kall. B.A., Kelly, P.J., and Goerss, SJ., Comprehensive
Data Collection Treatment Planning and Interactive
Surgery, In : Medical Imaging, SPIE, voL767, 1987,
pp.509-514.

[3] 	 Goldwasser. S.M., A Generalized Object Display
Processor Architecture. IEEE Compo Graph. &. Appl..
vol.4. No.IO, Oct 1984. pp.43-55.

[4] 	 Goldwasser, S.M., Reynolds, R.A., Bapty, T .• Baraff. D.,
Summers. J., Talton, D.A., and Walsh, E., Physician's
Workstation with Real-Time Performance, IEEE Compo
Graph. & Appl., Dec. 1985. pp. 44-57.

[5] 	 Jackel, D., and Strasser, W., Reconstructing Solids From
Tomographic Scans-The PARCUM II System, In:Advances
in Computer Graphics Hardware n. Kuijk, AA.M., and
Strasser, W., (Eds.). Springer-Verlag, Berlin, 1988,
pp.209-227.

[6] 	 Uchiki. T .• and Tokoro, M .• Solid and Colored Object
Environment, Transactional InStitutiOIl of Electronics and
Commercial Engineers 'of Japan. vo1.68-D, No.4, April
1985.

{7] 	 Ohashi. T., Uchiki, T., and Tokoro, M., A Three­
Dimensional Shaded Display Method for Voxel-Based
Representalion, Eurographics 85, Amsterdam, September
1985. pp.221-232.

Figure 8. Static 4:2 compressor circuit.

84

[8] 	 Meagher, D.I., Interactive Solids Processing for Medical
Analysis and Planning, Proceedings NCGA 84. NCGA,
Fairfax, Va., 1984, pp.96-106.

[9] 	 Kaufman, A., and Bakalash. R., Memory and Processing
Architecturefor 3D Vox.el Based Imagery, IEEE Computer
Graphics &. Applications, November 1988. pp.l0-23.

[10] Dadda, L.. Squares for Binary Numbers in Serial Form,
IEEE 1985 Symposium on Computer Arithmetic. 1985,
pp.173-180.

[11] 	 Iuskiw. S .• Durdle, N.G., Raso. V.I.• Hill. D.L., High
Speed Image Composition with Enhanced Multiplier
Structure, unpublished.

[12] Wallace, C.S.,A Suggestionfor Fast Multiplier, IEEE
Transactions on Electronic Computers, vol. EC-13,
February 1964. pp.I4-17.

[13] Mori, J., Nagamatsu. M., Hirano, K., Tanaka, S., Noda,
M., Toyoshima, Y .. Hashimoto, K., Hayashida. H .• and
Maeguchi, K., A IOns 54x54-b Parallel Structured Full
A"ay Multiplier with O.5-um CMOS Technology, IEEE
Journal of Solid-State Circuits, vol.26, No.4, April 1991,
pp.600-606.

[14] Goto, G., Sato, T., Nakajima, M., and Sukemura, T., A
54x54-b Regularly Structured Tree Multiplier, IEEE
Journal of Solid-State Circuits. vol.27. No.9, September
1992, pp.1229-1236.

[15] Santoro, M.R., and Horowitz, M.A., SPIM: A PipeUned
64x64-bit Iterative Multiplier, IEEE Journal of Solid­
State Circuits. vo1.24, No.2, April 1989. pp.487-493.

[16] Sharma, R .• Area-Tune EfJkient Arithmetic Elements for
VLSI Systems, at 8-th Symposium on Computer
Arithmetic, IEEE. 1987, pp.57-62.

[17) Flores, I., The Logic of Computer Arithmetic, Prentice­
Hall, Inc.• 1963.

[18] Montuschi, P., and Ciminiera, L., Simple Radix 2
Division and Square-Root with Skipping ofSome
Addlion Steps, at to-th Symposium on Computer
Arithmetic, IEEE. 1991, pp.202-209.

[19] 	 Hasbemian, R., Square-Rooting Algorithms for
Integer and Floating-Point Numben, IEEE Transactions
on Computers, vo1.39, No.8, August 1990, pp.l025­
1029.

[20] Alverson, R., integer Division Using Reciprocals,at
10th Symp. on Comp.Arith., IEEE, 1991, pp.186-190.

{21] Wong. D., and Flynn, M., Fast Division Using Accurate
Quotient Approximations to Reduce the Number ofI
terations, IEEE Trans. on Comp.• vol,41, No.8, Aug.
1992, pp.981-995.

85

