
A Real Time Rendering System with

Normal Vector Shading

D. Jackel

University ofRostock, 18051 Rostock

H. Riisseler

GMD-FIRST*) at the Technical University of Berlin

Rudower Chaussee 5, 12489 Berlin

Abstract 	 graphics workstations have rendering performances of
more than one million polygons per second in

This paper presents a graphics workstation for real­ conjunction with hardware supported transparency,
time display of Phong shaded polygons. The applied anti-aliasing, perspective texture mapping, image
shading method is based on normal vector compositing, etc. In spite of the fact that great strides
interpolation using a precalculated reflectance map. have been made to improve the realistic display ofvery
Nearly 40 million pixels and more than 2 million 3­ complex objects and scenes, the shading process of all
sided polygons per second can be displayed. After commercial real-time graphics workstations is based
giving an overview of the system, we describe the on the Gouraud-interpolation which is only suitable to
implementation details of the architecture. The normal render dull surfaces. The reason for this can be found
vector-based shader unit is the focus of this in the fact that a rendering process which uses more
description. In addition, we present a new method for efficient shading methods, for example Phong:.shading,
the reduction of Z-buffer initialization time by means needs approximately 10 times more computation time
of an additional frame counter. Finally, we summarize per pixel than for simple Goraud-shading.
the performance data of the rendering system and give

In order to render objects with shiny surfaces by means an outlook of our future activities in this field.
of a Gouraud-interpolation hardware, so-called dirty
Phong shading is often used. For this shading method

Keywords: real-time image display, parallel a closed-mesh polygon net is needed to achieve
processors, rendering processor, reflectance map, sufficient visualization results and to avoid "highlight
normal vector interpolation, visual realism, Phong­ jumps". A considerable disadvantage of dirty Phong
shading hardware. shading is the extreme increase of the number of

polygons that are necessary to define the surface of an
1 Introduction object.

In the past decade, many attempts have been made to
The main objectives in the development of real-time make Phong shading applicable for hardware
graphics workstations are, firstly, to increase the implementations.
rendering performance and, secondly, to improve the
visualization quality. Contemporary "high-end"

*) GMD: Gesellschaft ftlr Mathematik undDatenverarbeitung mbH (German NationalResearch Center for
Computer Science)

FIRST: Forschungsinstitutfor Rechnerarchitektur und Softwaretechnik (Research Institute for Computer
Architecture and Software Technology) .

48

http://www.eg.org
http://diglib.eg.org

M. Deering et al. presented a simulated VLSI-approach
of a normal vector shader (NVS) chip suitable for
Phong shading [DEE88]. The estimated perfonnance
of a rendering system based on 16 NVS-chips is given
by 220,000 triangle shaped polygons and 25 million
pixels per second.

The objective of other approaches is to make the
implementation of Phong more efficient by a
combination of the interpolation and the light
reflection equations, which are evaluated by forward
differences [DUF79], or the application of an
appropriate approximation technique.

Bishop and Weimar [BIS86] suggested a method
which approximates Phong's nonnal interpolation and
light reflection equation by a Taylor series expansion.
Bishop Weimar's fast Phong shading reduces the
amount of computation steps per pixel to only 5
additions and one memory access. Unfortunately, the
additional computation of the Taylor series that
requires about 500 floating point operations per
polygon vertex diminishes its efficiency [APG88].

An alternative, suggested by U. Clausen [CLA89],
interpolates polar angles instead of nonnal vectors,
which has the advantage that the nonnal vector unit
length remains unchanged during the interpolation.
The disadvantage of the polar angle method is the
occurrence of interpolation errors in the case of large
polygons and the need of additional computation steps
for changing the coordinate systems. Our approach is
based on the approximation of the illumination model
geometry by using the reflection map method that was
originally suggested by B. Hom for shading analysis
[HOR77]. The rendering processor architecture of the
VISA system (VISA = VISualization Accelerator),
which was developed in close collaboration between

the GMD-FIRST and the Technical University of
Berlin, was based on this method.

2 Architectural overview

The aim of the VISA project was to design a real-time
graphics engine for the MANNA Supercomputer,
which was constructed during the last four years at
GMO-FIRST. Furthennore VISA was also designed to
operate in connection with commercial platfonns, e.g.
SUNs SparcStation or Motorola Series 900.

The task of the VISA platfonn is the execution of the
geometry process, which is divided into geometry
transfonnations, clipping process, perspective and
viewing transfonnations. Further-more, a parameter set
needed to initialize the rendering processor must also
be computed by this platfonn. To achieve VISA's
maximum rendering perfonnance of up to 2.4 million
polygons per second (15 pixels per polygon) a
specialized geometry processor is under development.
Currently, in combination with the MANNA
computer, we obtain an overall rendering perfonnance
of 520K polygons per second, which is limited by
MANNANISA communication bandwidth of 50
Mbytes per second.

The MANNA system. MANNA is a scaleable parallel
architecture. The computation units of this system are
called MANNA nodes. Each node is based on a dual­
i860XP processor shared memory architecture.

Both processors are operating totally symmetrical on a
four-fold interleaved 32 Mbytes DRAM with an access
bandwidth of 400 Mbytes per second. To connect the
MANNA node with an interconnection network, each
node has a bi-directional communication link. The

right channel

MANNA­ VISA­
System System

Figure 1. MANNA! VISA systemfor stereoscopic display

49

communication bandwidth per node amounts to 2 x 50
Mbytes per second. The basic building block of the
MANNA interconnection network is a byte-wide
16x16 crossbar switch. Any larger configuration can
be composed by a hierarchy of crossbar switches. For
example, a MANNA configuration with 160 nodes is
divided into 10 clusters. Each of these clusters is
formed by a 16x16 crossbar switch which
interconnects 10 computation units. Its remaining six
free links are needed for the cluster-interconnection by
using six additional crossbar switch units. Detailed
information of the MANNA system can be found in
[GIL94].

For graphics applications one crossbar link is
connected with the VISA real-time rendering system
(rendering node). For stereoscopic or multi-channel
(look around) displays it is easy to attach up to four
VISA systems by means of free crossbar links to
MANNA (figure I).

VISA system. The main tasks of the VISA system,
shown in figure 2, are scan converting, normal vector
based shading and z-buJfering. This process includes
the interpolation of the coordinates and the normal
vectors ofall pixels of the polygon surfaces. Moreover,
this unit uses the two polar-coordinates of the normals
to determine the pixel-lightness by a simple memory
access to a precalculated reflectance-map. The pixel:"
lightness will be combined with the hue- and
saturation-values of the polygon and converted from
HLS to RGB values by means of a lookup table. After
z-filtering, the RGB values of the visible pixels are

VME-Bus (Version D64)

written into the image buffer.

3 	 Architecture and Function of the
Rendering-Processor

The rendering processor is divided into parallel
pipeline units, which are designated as XYZ and RGB
pipeline. The task of these units is the execution of the
scan-converting process including the determination of
the pixel-colours for triangle-shaped polygons. The
function of the XYZ pipeline is similar to many other
well known real time systems [JAC92]. Therefore, we
will put the function of the RGB pipeline and
especially the normal vector shader operation into the
focus of this section.

In order to render a polygon the initialising register of
the XYZ and RGB rendering pipelines are loaded
with the parameter set mentioned above.

3.1 Initialising

The parameter set is a hardware-adjusted geometry
description of the projected polygon (figure 3). It
comprises the number ofpolygon scanlines (nb n2), the
start co-ordinate Pstan> the edge slope increments (Aro,
~lu, ~d, ~ld) the surface slopes for incremental steps
in X- and V-direction (~,~) as well as start vector
and incremental vectors, needed for normal vector
shading. Moreover, the parameter set embodies the
shading mode, the hue and saturation value of the

MANNA-System

RGB-Pipeline

rgbNorm. Veet. i Shader
Initializer : I hnage

II(20 stages ..
Scanline : PCC ~ Z-
Initializer: Buffer

I

XYZ-Pipeline

Bus

xy

Rendering Processor Frame Buffer System

Figure 2. Block diagram ofthe VISA system

50

PSTART

y

x

Z surface slope
in y-direction

b)

Figure 3. Parameter set ofthe projected polygon: a) Start coordinate and edge slope increments b)

surface slope increment in x- andy-direction. The normal vector and the incremental vectors are not

shown

polygon's colour, the transparency values, and the paramer values mentioned above.
frame buffer control bits.

The task of the pixel coordinate calculator is the linear
interpolation of all pixel coordinates of a scanline. The
pee has only to interpolate the z-coordinates of the

3.2 XYZ pipeline scanline through the surface slope increment for the X­
direction because the y-coordinates of each scanline As figure 2 shows, the pipeline unit is divided into a
are constant and the x-coordinates are incremented by scanline initializer (SI) and a pixel coordinate
'1' .calculator (peC). The task of the initalizer unit is the

computation of the pixel coordinates at the start and z :== Zj; for x := round(xJ to round(x.) do z := z +Azy;
stop points of each new scanline. Four computation

To achieve a sufficient load balance between the SI­steps, illustrated by algorithm 1, are required to
and the pee -units a FIFO-buffer is used.determine the initialising coordinates by linear

interpolation of the precalculated edge and slope

initialization of
scanline 'n' step 4:

step 1:

step 2:

step 3:

round(x,)

initialization of
scanline 'n+ 1 '

step 4:

round(Xl)

Algorithm 1. Determination ofthr start- and stop-coordinates

51

• • •

3.3 RGB pipeline 0. 1 = arctan(xn/ zn) and a. 2 = arctan(y11 / zn) .

Function of the normal vector initializer. The
computation of the pixel vector components at the
starting point of a scanline is the task of the normal
vector. This computation process is similar to the
determination of zrcoordinates. For each new scanline
bJVy=[axny Ll.Y1ly Llzny] (bJVy= change of the normal
vector if x=const; y:=y+ 1) is added to the intermediate
vector Nm = [xnmynm znm). We get

:= Nm + LlNNm r
In the next steps we get the normal vector at the
starting point of the scanline by:

NZ = N m + round(xr Xi) LlNx­

(LlNx: change ofthe normal vector ify=const; x:=x+l).
Algorithm 2 clarifies the computation steps of the
normal vector initializer.

Principle of the normal vector shader. In order to
understand the function of the normal vector shader,
the following basic considerations are necessary.

If the light source and the viewer are far from the
rendered object, we obtain a good approximation of
the specular light reflectance values only as a function
of the surface normal direction (figure 4).

The direction of the normal N = [x" y" z,,] is given by
the angles al and a2:

Considering the simplified geometry of the lighting
model (figure 4), we are able to determine the amount
of light reflected by an object's surface 'y' as a
function of the angles al and a2:

r = /(0.1'0. 2)

The light reflectance values are precalculated for all
o.l,o.2-combinations and then stored into a so-called
reflectance map (RM). The reflectance map that can
be considered as a matrix being addressed by the a1

and a2-values. For a given normal vector N only the
computation of its direction angles and an additional
memory access to the precalculated reflectance map
are necessary in order to obtain the corresponding
ligbt reflectance value (figure 5a,b).

IiparallelligJrt ,
x-~N; vectors "L" /

I L ' I \
:/

a
E._------...L----.- ~
: L parallel view _._____----._-----i..---'

"" ..-"""'-­
veda'S "E'

Figure 4. Simplification ofthe light model geometry by
USing parallel view (E) and light vectors (L). (S: rej1ectic
vector)

initialization of
step 4: normal vector of~=~+~ll~=~+~i~=~+~

scanline 'n'

step 1: X71m <= X71m+Axny Ii ynm <= ynm +llyny II znm <= znm +Amy

+ + +
step 2: NOOP NOOP NOOP

+ . + J .
II xnl =nx ~x Illl ynr = nx llynxl A. znl = nx Aznxstep 3: initialization of

normal vector of
scanline 'n+1 '~~.~

step 4: ~=~+~!~=~+~lj~=~+~

+ f f

Algorithm 2. Initializing ofthe normal vector

52

I---b

Function of the normal vector shader. Analogously
to the detennination of the z-coordinates, the shader
unit, shown in figure 6, computes the pixel normal
vectors N=[xn Yn znJ of a scanline. The normal vector
that corresponds to the first scanline pixel is initialized
byNI•

Z-Divider determination
ofreflectance

values r

exponent

16

0
.....­
c:.>

~ 16

cG~Yn en
0 en
Z ~E 16

e ~ e

Add!.

16
.....,:j
;::J
2:

RM­

5

•
Xn

Figure 6. Architecture ofthe normal vector shader

The normals ofall succeeding pixels are determined by
stepwise incrementation of N:= N + ANx'

In the next processing steps the pixel normal compo­
nents are converted from [xn Yn zn] to [x,lzn y,Izn 1]
and subsequently, by using arctan-tables, from [x,lzn
y,Izn 1] to the angles a] and a2, representing the
normal direction.

As described above, we consider the combination of
both angles as a RM-address. As the RM is realized as
a memory matrix we get the corresponding light
reflectance value r in a very simple way by only one
RM-memory access. In order to render "walking
through" image sequences or objects with different
surface reflection factors, the VISA shader hardware
contains up to eight RM's.

In the last processing steps the r-value is combined
with the hue H and color saturation values S, which is
allocated to each polygon. Assuming identity between
the light reflectance value r and the lightness value L,
we obtain the RGB output by means of a HLS/ RGB
convertion table. In parallel to the HLSIRGB
conversion, the Z-filtering will be executed.

Figure 5a,b. Determination of the r-values by using a
reflectance map: a) determination of the x,Izn- and
y,lzn-quotients; b) Determination of The computation
of the reflectance map based on the Phong
illumination model.

HLSJRGB­
Converter

h,s

53

4 	 Advantages and restrictions of the RM­
method

DBecause of the simplification of the lighting model
the positions of the highlights are incorrect. This leads
to the question whether the rendering result is tolerable
if we use such a simplified geometry. In Figure 7 a
Phong shaded object is considered, which is rendered

Figures 711-f. Comparison between a traditional and
RM-based Phong-shading: a-c) traditional Phong­
shading (visual angles from left to right: J J °,30°,
50°); e-f) RM-based Phong-shading (visual angles:
1]0,30°,50°)

by means of.a correct lighting model geometry Figures
7a,b,c and a simplified geometry Figures 7d,e,f, that is
used in VISA. As this example shows, only if the
distance of the projection center is very close to an
object any differences of the highlighfs positions are
noticeable. Nevertheless, even in the case of an
extremely perspective view, shown in figures 6c and
6f, the wrongly placed highlight leads neither to any
visual misinterpretations of the objecfs geometry nor
to an incorrect appearance of the rendered object.

The precalculated RM-entries are only valid for fixed
directions of viewing and light vectors. The entries of
the reflectance map must be updated from frame to
frame if the position of the light source is changed
dynamically or if we have to render ''walking through"

sequences. In these special cases we also achieve a
considerable speed-up S of our RM-method compared
to commonly used vector normal based shading
techniques.

Np
S is given by: S = N .

E

Np: number of shaded pixels per frame.
NE: number ofRM-entries per frame.

To update the VISA reflectance map the computation
of 180 by 180 = 32400 RM-entries (ClI,Cl2­
combinations) is necessary. If VISA is used in a
MANNA environment, a MANNA node is responsible
for the real-time RM-update. Np depends on the
object's complexity. Provided the number of the Phong
shaded pixels differs from 0.3 to 40 million pixels per
frame we get a speed-up from 10 to 120.

It is obvious that the RM method is not restricted by
the number of light sources. In case of multiple light
sources only the time to update the reflectance map
will be increased. It is also possible to apply multiple
colored light sources. In this case three separate
reflectance maps for the primary colors red, green and
blue are needed.

Another advantage of our normal vector shader
approach is its low-cost hardware realization.
According to our estimations the over-all cost of the
VISA system is less than one percent higher than a
possible VISA realization with a Gouraud shader
hardware of similar performance.

5 	Architecture and function of the Z-filter

The origin of the term Z-filter can be found in the
function of this unit, which "strains" only the xy­
coordinates and the RGB values of the visible pixel.
For comparison with a conventional Z-buffer, which
operates in parallel to the image buffer, this unit is
integrated into the pipeline of the rendering processor.
The special feature of the Z-filter is a 8-bit frame
counter memory (FCM) and an additional frame
counter (FC) which are used to reduce the initializing
time to 0.1 ms.

54

In the following section the interaction between FC
and FCM will be explained by a simple example
(Figures 8a-h). Figures 8a-h shows eight snap shots of
a 2-bit FCM state when a ball is moved across the
frame buffer. Before the fITSt image is generated, all
FCM entries are initialized by 0 and the FC-state by I.
It is important that the FC-state is different from all
FCM-entries at any start of a frame generation cycle.
With each write access to the z-memory, in the course
of the image generation, the FC-state is written into the
FCM. As result we obtain a "foot print" of the
generated ball (Figure 8a). At the end of this process
the ftrst of three FCM-segments will be initialized by
the FC-state (Figure 8b) followed by the
incrementation of the frame counter. The next and all
further image generation cycles function in the same
way (Figures 8a-h).

can be considerably reduced. The other advantage, the
reduction of the initializing time, has already been
mentioned above. By using the conventional Z-buffer
technique, the entire 24-bit z-memory must be
pre loaded by the maximum z-value (224_1). Contrary
to this, by using this method only a relatively small
FCM-segment must be initialized before starting a new
image generation cycle. As shown in Figures 8a-h, the
initializing time of the Z-ftlter is in inverse proportion
to the number of FCM-segments. A more detailed
description ofthe Z-ftlter can be found in [COB92].

6 Frame buffer system

Figure 9 shows the block diagram of the frame buffer
system. It consists of a TMS 34020 graphics processor,

o• o
a) b)

I
o

d)c)
~?"N"'?: N~ "'~

-~~ ,
~ 3'~~ 3

•
e) , ~~ ~ ~ init f)~ ~ ~ ~ -"

~_A~"""J

, " o
init_ .. .,"%C~ b)g)

Figure 8a-h. States ofa 4-bitframe counter memory (a) after 1st cycle; (b) after initializing, before 2nd cycle; (c)
after 2nd cycle; (d) after initializing, before 3rd cycle; (e) after 3rd cycle; (j) after initializing, before 4th cycle; (g)
after 4th cycle; (h) after initializing, before 5th cycle.

In case the FC-state and the FCM-entries are of
unequal values, the z-value comparison can be
substituted by a much faster comparison of the FC­
state with the FCM-entries. The update of the z­
memory is carried out directly. In this way the number
of z-comparisons needed for the hidden pixel removal

up to 32 Mbytes working storage, 16 Mbytes image
storage and the video logic.

The communication with the rendering system is
carried out by an image bus or via an VME-bus
interface. The following passage will discuss the main
units of the frame buffer system in more detail.

55

Image Bus
(160 MB/sec)

(from Rendering
Processor)

Dual Image Buffer
(8x interleaved)

Figure 9. Block diagram 0/theframe buffer system

Graphics processor. The main task of the TMS34020 Image buffer. The image buffer is designed as a
graphics processor is the generation of 2d-primitives multiport-RAM and permits the direct data access from
such as vectors, circles, 2d-polygons as well as text the graphics processor and the access via the image bus
and symbols. Special mail box registers which are and via VME-bus. Figure lOa shows the image buffer
mapped into the address space of the graphics arrangement in eight identical memory banks (A­
processor are used for communication with the host Bank, ... , H-Bank) which are regulated by individual
system. The working storage consists of two inter­ bank controllers. For operating in double buffering
leaved operating memory banks, with a size of up to mode each memory bank is divided into an upper and a
16 Mbytes each. lower partition.

from Image Bus
---,

32
~

I

AH:AL BH:BL
I

32

v

32 32 32 32 32 32J32)')' 70 0- ~

I I Ic;:I CL DH:DL EH:EL HHlHLI
I I I I

I I ..
x323232 ...

I I

FH: FL GH:GL
I I

~ v v IE! FIGDildAl alcll5l EI FIGIAI odd I e
even lin

to Video Logic Y~
a) b) Image Buffer Matrix

Figures lOa,b. Image buffer: (a) logical organization o/the memory banks; (b) logical ass'ignment a/pixel
addresses to memory banks.

56

The write access is carried out by means of the well
known memory interleaving method by using eight
address busses. In order to improve the performance
for the write accesses different addressing schemes for
even and odd lines are applied. For even lines the
memory banks will be addressed by the sequence cycle
of the memory banks: A, B, C, D, E, F, G, H; A, B, C,
... etc. For odd lines the sequence cycle is given by: E,
F, G, H, A, B, C, 0, E, F; E, F, ... etc. (Figure lOb).
With an access time-displacement of 25ns a maximum
write-input bandwidth of 40 Mpixel/sec will be
achieved. The pixel data transfer to the video logic
takes place with eight 32-bit data busses (A-Bus, ... , H­
Bus), which are multiplexed by the following video
logic with a frequency of 135 Mhz.

7 Conclusions and future work

We have described a rendering system for fast image
generation. One highlight of this system is a shading
unit, based on a light reflection map. which allows the
application of the Phong-shading technique in a
relatively simple way. Another important feature is the
improvement of the well known Z-buffer. By using
additional memory planes and a frame counter a
considerable reduction of the initializing time can be
achieved.

The bottleneck of the system is the insufficient
processing power for the computation of the parameter
set for initializing the rendering system. Presently this
task is carried out by the MANNA system, which is
able to transfer about 530,000 parameter sets per
second. In order to achieve the maximum throughput
rate of about 2,4 106 parameter sets per second a
specialized processor is necessary. The development of
such a dedicated processing unit is one of our next
main objectives in the near future.

Another project assignment concerns the generation of
textured objects. For this purpose, a texture and bump
mapping pipeline which operates in parallel to the
existing XYZ and RGB imits is under development.

Acknowledgments

We thank the following people for their suggestions
and contributions to this work: M. Cobernuss (Z-filter
design), S. Budianto. T. Le Vin (simulation and gate
array design), P. Wippich, K. Tehrani, W.-D. Plath
(design of frame buffer and video-multiplexer), I.
Ernst, R. Rasche, T. Stickdorn, M. Frohlich (PEX- and

driver implementation), T. Jung (application software)
and the MANNA and MARCOS teams.

The funding of this research was provided by the
German Federal Ministry of Research and Technology
(BMFT)

References

[APG88] 	 B. Apgar, B. Bersack, A. Mammen: A
Display System for the Stellars Graphics
Super-computer Model GS1000; Computer
Graphics, Vol. 22, No.4; pp. 255-262,
1988.

[COB92] M. Cobernuss, H. RUsseler: Verfahren und
Schaltungsanordnung zur Unterdruckung
verdeckter Bildpunkte, patent specification:
DE 4134576 AI, 1993 (in German).

[BIS86] G. Bishop, D.M. Weimar: Fast Phong
Shading; Computer Graphics, Vol. 20, No.
4;pp. 103-106, 1986.

[CLA89] 	U. Clausen: Reducing the Phong Shading
Method; Proc. Eurographics'89; Eds. W.
Hansmann, F.R.A. Hopgood, W. StraBer;
pp. 333-344, North-Holland, 1989.

[DEE88] 	 M. Deering. S. Winner, B. Schediwy, C.
Duffy, N. Hunt: The Triangle Processor and
Normal Vector Shader: A VLSI System for
High Performance Graphics; Computer
Graphics, Vol. 22, No.4; pp. 21-30, 1988.

[DUF79] 	 T. Duff: Smoothly shaded renderings of
polyhedral objects on raster displays;
Computer Graphics, Vol. 13, No.2; pp.
270-275, 1979.

[GIL94] 	 W.K. Giloi: From Supremum to MANNA
and META-Parallel Computer Development
at GMD-FIRST; Proc. Mannheim Super­
computing Seminar 1994, Sauer-Verlag.

[HOR77] B.K.P. Hom: Understanding Image
Intensities; Artificial Intelligence Vol. 8,
No.2; pp. 201-231,1977.

[JAC92] 	 D. Jackel: Grafik Computer, Springer­
Verlag 1992, (in German).

57

