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Abstract 	 graphics workstations have rendering performances of 
more than one million polygons per second in 

This paper presents a graphics workstation for real­ conjunction with hardware supported transparency,
time display of Phong shaded polygons. The applied anti-aliasing, perspective texture mapping, image
shading method is based on normal vector compositing, etc. In spite of the fact that great strides 
interpolation using a precalculated reflectance map. have been made to improve the realistic display ofvery 
Nearly 40 million pixels and more than 2 million 3­ complex objects and scenes, the shading process of all 
sided polygons per second can be displayed. After commercial real-time graphics workstations is based 
giving an overview of the system, we describe the on the Gouraud-interpolation which is only suitable to 
implementation details of the architecture. The normal render dull surfaces. The reason for this can be found 
vector-based shader unit is the focus of this in the fact that a rendering process which uses more 
description. In addition, we present a new method for efficient shading methods, for example Phong:.shading, 
the reduction of Z-buffer initialization time by means needs approximately 10 times more computation time 
of an additional frame counter. Finally, we summarize per pixel than for simple Goraud-shading. 
the performance data of the rendering system and give 

In order to render objects with shiny surfaces by means an outlook of our future activities in this field. 
of a Gouraud-interpolation hardware, so-called dirty 
Phong shading is often used. For this shading method 

Keywords: real-time image display, parallel a closed-mesh polygon net is needed to achieve 
processors, rendering processor, reflectance map, sufficient visualization results and to avoid "highlight 
normal vector interpolation, visual realism, Phong­ jumps". A considerable disadvantage of dirty Phong 
shading hardware. shading is the extreme increase of the number of 

polygons that are necessary to define the surface of an 
1 Introduction object. 

In the past decade, many attempts have been made to 
The main objectives in the development of real-time make Phong shading applicable for hardware 
graphics workstations are, firstly, to increase the implementations.
rendering performance and, secondly, to improve the 
visualization quality. Contemporary "high-end" 

*) GMD: Gesellschaft ftlr Mathematik undDatenverarbeitung mbH (German NationalResearch Center for 
Computer Science) 

FIRST: Forschungsinstitutfor Rechnerarchitektur und Softwaretechnik (Research Institute for Computer 
Architecture and Software Technology) . 
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M. Deering et al. presented a simulated VLSI-approach 
of a normal vector shader (NVS) chip suitable for 
Phong shading [DEE88]. The estimated perfonnance 
of a rendering system based on 16 NVS-chips is given 
by 220,000 triangle shaped polygons and 25 million 
pixels per second. 

The objective of other approaches is to make the 
implementation of Phong more efficient by a 
combination of the interpolation and the light 
reflection equations, which are evaluated by forward 
differences [DUF79], or the application of an 
appropriate approximation technique. 

Bishop and Weimar [BIS86] suggested a method 
which approximates Phong's nonnal interpolation and 
light reflection equation by a Taylor series expansion. 
Bishop Weimar's fast Phong shading reduces the 
amount of computation steps per pixel to only 5 
additions and one memory access. Unfortunately, the 
additional computation of the Taylor series that 
requires about 500 floating point operations per 
polygon vertex diminishes its efficiency [APG88]. 

An alternative, suggested by U. Clausen [CLA89], 
interpolates polar angles instead of nonnal vectors, 
which has the advantage that the nonnal vector unit 
length remains unchanged during the interpolation. 
The disadvantage of the polar angle method is the 
occurrence of interpolation errors in the case of large 
polygons and the need of additional computation steps 
for changing the coordinate systems. Our approach is 
based on the approximation of the illumination model 
geometry by using the reflection map method that was 
originally suggested by B. Hom for shading analysis 
[HOR77]. The rendering processor architecture of the 
VISA system (VISA = VISualization Accelerator), 
which was developed in close collaboration between 

the GMD-FIRST and the Technical University of 
Berlin, was based on this method. 

2 Architectural overview 

The aim of the VISA project was to design a real-time 
graphics engine for the MANNA Supercomputer, 
which was constructed during the last four years at 
GMO-FIRST. Furthennore VISA was also designed to 
operate in connection with commercial platfonns, e.g. 
SUNs SparcStation or Motorola Series 900. 

The task of the VISA platfonn is the execution of the 
geometry process, which is divided into geometry 
transfonnations, clipping process, perspective and 
viewing transfonnations. Further-more, a parameter set 
needed to initialize the rendering processor must also 
be computed by this platfonn. To achieve VISA's 
maximum rendering perfonnance of up to 2.4 million 
polygons per second (15 pixels per polygon) a 
specialized geometry processor is under development. 
Currently, in combination with the MANNA 
computer, we obtain an overall rendering perfonnance 
of 520K polygons per second, which is limited by 
MANNANISA communication bandwidth of 50 
Mbytes per second. 

The MANNA system. MANNA is a scaleable parallel 
architecture. The computation units of this system are 
called MANNA nodes. Each node is based on a dual­
i860XP processor shared memory architecture. 

Both processors are operating totally symmetrical on a 
four-fold interleaved 32 Mbytes DRAM with an access 
bandwidth of 400 Mbytes per second. To connect the 
MANNA node with an interconnection network, each 
node has a bi-directional communication link. The 

right channel 

MANNA­ VISA­
System System 

Figure 1. MANNA! VISA systemfor stereoscopic display 
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communication bandwidth per node amounts to 2 x 50 
Mbytes per second. The basic building block of the 
MANNA interconnection network is a byte-wide 
16x16 crossbar switch. Any larger configuration can 
be composed by a hierarchy of crossbar switches. For 
example, a MANNA configuration with 160 nodes is 
divided into 10 clusters. Each of these clusters is 
formed by a 16x16 crossbar switch which 
interconnects 10 computation units. Its remaining six 
free links are needed for the cluster-interconnection by 
using six additional crossbar switch units. Detailed 
information of the MANNA system can be found in 
[GIL94]. 

For graphics applications one crossbar link is 
connected with the VISA real-time rendering system 
(rendering node). For stereoscopic or multi-channel 
(look around) displays it is easy to attach up to four 
VISA systems by means of free crossbar links to 
MANNA (figure I). 

VISA system. The main tasks of the VISA system, 
shown in figure 2, are scan converting, normal vector 
based shading and z-buJfering. This process includes 
the interpolation of the coordinates and the normal 
vectors ofall pixels of the polygon surfaces. Moreover, 
this unit uses the two polar-coordinates of the normals 
to determine the pixel-lightness by a simple memory 
access to a precalculated reflectance-map. The pixel:" 
lightness will be combined with the hue- and 
saturation-values of the polygon and converted from 
HLS to RGB values by means of a lookup table. After 
z-filtering, the RGB values of the visible pixels are 

VME-Bus (Version D64) 

written into the image buffer. 

3 	 Architecture and Function of the 
Rendering-Processor 

The rendering processor is divided into parallel 
pipeline units, which are designated as XYZ and RGB 
pipeline. The task of these units is the execution of the 
scan-converting process including the determination of 
the pixel-colours for triangle-shaped polygons. The 
function of the XYZ pipeline is similar to many other 
well known real time systems [JAC92]. Therefore, we 
will put the function of the RGB pipeline and 
especially the normal vector shader operation into the 
focus of this section. 

In order to render a polygon the initialising register of 
the XYZ and RGB rendering pipelines are loaded 
with the parameter set mentioned above. 

3.1 Initialising 

The parameter set is a hardware-adjusted geometry 
description of the projected polygon (figure 3). It 
comprises the number ofpolygon scanlines (nb n2), the 
start co-ordinate Pstan> the edge slope increments (Aro, 
~lu, ~d, ~ld) the surface slopes for incremental steps 
in X- and V-direction (~,~) as well as start vector 
and incremental vectors, needed for normal vector 
shading. Moreover, the parameter set embodies the 
shading mode, the hue and saturation value of the 

MANNA-System 

RGB-Pipeline 

rgbNorm. Veet. i Shader 
Initializer : I hnage 

II( 20 stages .. 
Scanline : PCC ~ Z-
Initializer: Buffer 

I 

XYZ-Pipeline 

Bus 

xy 

Rendering Processor Frame Buffer System 

Figure 2. Block diagram ofthe VISA system 
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Figure 3. Parameter set ofthe projected polygon: a) Start coordinate and edge slope increments b) 

surface slope increment in x- andy-direction. The normal vector and the incremental vectors are not 

shown 


polygon's colour, the transparency values, and the paramer values mentioned above. 
frame buffer control bits. 

The task of the pixel coordinate calculator is the linear 
interpolation of all pixel coordinates of a scanline. The 
pee has only to interpolate the z-coordinates of the

3.2 XYZ pipeline scanline through the surface slope increment for the X­
direction because the y-coordinates of each scanline As figure 2 shows, the pipeline unit is divided into a 
are constant and the x-coordinates are incremented by scanline initializer (SI) and a pixel coordinate 
'1' .calculator (peC). The task of the initalizer unit is the 

computation of the pixel coordinates at the start and z :== Zj; for x := round(xJ to round(x.) do z := z +Azy;
stop points of each new scanline. Four computation 

To achieve a sufficient load balance between the SI­steps, illustrated by algorithm 1, are required to 
and the pee -units a FIFO-buffer is used.determine the initialising coordinates by linear 

interpolation of the precalculated edge and slope 

initialization of 
scanline 'n' step 4: 

step 1: 

step 2: 

step 3: 

round(x,) 

initialization of 
scanline 'n+ 1 ' 

step 4: 

round(Xl) 

Algorithm 1. Determination ofthr start- and stop-coordinates 
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3.3 RGB pipeline 0. 1 = arctan(xn/ zn) and a. 2 = arctan(y11 / zn) . 

Function of the normal vector initializer. The 
computation of the pixel vector components at the 
starting point of a scanline is the task of the normal 
vector. This computation process is similar to the 
determination of zrcoordinates. For each new scanline 
bJVy=[axny Ll.Y1ly Llzny] (bJVy= change of the normal 
vector if x=const; y:=y+ 1) is added to the intermediate 
vector Nm = [xnmynm znm). We get 

:= Nm + LlNNm r 
In the next steps we get the normal vector at the 
starting point of the scanline by: 

NZ = N m + round(xr Xi) LlNx­

(LlNx: change ofthe normal vector ify=const; x:=x+l). 
Algorithm 2 clarifies the computation steps of the 
normal vector initializer. 

Principle of the normal vector shader. In order to 
understand the function of the normal vector shader, 
the following basic considerations are necessary. 

If the light source and the viewer are far from the 
rendered object, we obtain a good approximation of 
the specular light reflectance values only as a function 
of the surface normal direction (figure 4). 

The direction of the normal N = [x" y" z,,] is given by 
the angles al and a2: 

Considering the simplified geometry of the lighting 
model (figure 4), we are able to determine the amount 
of light reflected by an object's surface 'y' as a 
function of the angles al and a2: 

r = /(0.1'0. 2 ) 

The light reflectance values are precalculated for all 
o.l,o.2-combinations and then stored into a so-called 
reflectance map (RM). The reflectance map that can 
be considered as a matrix being addressed by the a1 

and a2-values. For a given normal vector N only the 
computation of its direction angles and an additional 
memory access to the precalculated reflectance map 
are necessary in order to obtain the corresponding 
ligbt reflectance value (figure 5a,b). 

IiparallelligJrt , 
x-~N; vectors "L" / 

I L ' I \ 
:/ 


a 
E._------...L----.- ~ 
: L parallel view _._____----._-----i..---' 

"" ..-"""'-­
veda'S "E' 

Figure 4. Simplification ofthe light model geometry by 
USing parallel view (E) and light vectors (L). (S: rej1ectic 
vector) 

initialization of 
step 4: normal vector of~=~+~ll~=~+~i~=~+~ 

scanline 'n' 

step 1: X71m <= X71m+Axny Ii ynm <= ynm +llyny II znm <= znm +Amy 

+ + +
step 2: NOOP NOOP NOOP 

+ . + J . 
II xnl =nx ~x Illl ynr = nx llynxl A. znl = nx Aznxstep 3: initialization of 

normal vector of 
scanline 'n+1 '~~.~ 

step 4: ~=~+~!~=~+~lj~=~+~ 

+ f f 

Algorithm 2. Initializing ofthe normal vector 
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Function of the normal vector shader. Analogously 
to the detennination of the z-coordinates, the shader 
unit, shown in figure 6, computes the pixel normal 
vectors N=[xn Yn znJ of a scanline. The normal vector 
that corresponds to the first scanline pixel is initialized 
byNI• 

Z-Divider determination 
ofreflectance 

values r 

exponent 

16 


0
.....­
c:.> 

~ 16 

cG~Yn en
0 en 
Z ~E 16 

e ~ e 

Add!. 

16 
.....,:j 
;::J 
2: 

RM­

5 

•
Xn 

Figure 6. Architecture ofthe normal vector shader 

The normals ofall succeeding pixels are determined by 
stepwise incrementation of N:= N + ANx' 

In the next processing steps the pixel normal compo­
nents are converted from [xn Yn zn] to [x,lzn y,Izn 1] 
and subsequently, by using arctan-tables, from [x,lzn 
y,Izn 1] to the angles a] and a2, representing the 
normal direction. 

As described above, we consider the combination of 
both angles as a RM-address. As the RM is realized as 
a memory matrix we get the corresponding light 
reflectance value r in a very simple way by only one 
RM-memory access. In order to render "walking 
through" image sequences or objects with different 
surface reflection factors, the VISA shader hardware 
contains up to eight RM's. 

In the last processing steps the r-value is combined 
with the hue H and color saturation values S, which is 
allocated to each polygon. Assuming identity between 
the light reflectance value r and the lightness value L, 
we obtain the RGB output by means of a HLS/ RGB 
convertion table. In parallel to the HLSIRGB 
conversion, the Z-filtering will be executed. 

Figure 5a,b. Determination of the r-values by using a 
reflectance map: a) determination of the x,Izn- and 
y,lzn-quotients; b) Determination of The computation 
of the reflectance map based on the Phong 
illumination model. 

HLSJRGB­
Converter 

h,s 
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4 	 Advantages and restrictions of the RM­
method 

DBecause of the simplification of the lighting model 
the positions of the highlights are incorrect. This leads 
to the question whether the rendering result is tolerable 
if we use such a simplified geometry. In Figure 7 a 
Phong shaded object is considered, which is rendered 

Figures 711-f. Comparison between a traditional and 
RM-based Phong-shading: a-c) traditional Phong­
shading (visual angles from left to right: J J °,30°, 
50°); e-f) RM-based Phong-shading (visual angles: 
1 ]0,30°,50°) 

by means of.a correct lighting model geometry Figures 
7a,b,c and a simplified geometry Figures 7d,e,f, that is 
used in VISA. As this example shows, only if the 
distance of the projection center is very close to an 
object any differences of the highlighfs positions are 
noticeable. Nevertheless, even in the case of an 
extremely perspective view, shown in figures 6c and 
6f, the wrongly placed highlight leads neither to any 
visual misinterpretations of the objecfs geometry nor 
to an incorrect appearance of the rendered object. 

The precalculated RM-entries are only valid for fixed 
directions of viewing and light vectors. The entries of 
the reflectance map must be updated from frame to 
frame if the position of the light source is changed 
dynamically or if we have to render ''walking through" 

sequences. In these special cases we also achieve a 
considerable speed-up S of our RM-method compared 
to commonly used vector normal based shading 
techniques. 

Np
S is given by: S = N . 

E 

Np: number of shaded pixels per frame. 
NE: number ofRM-entries per frame. 

To update the VISA reflectance map the computation 
of 180 by 180 = 32400 RM-entries (ClI,Cl2­
combinations) is necessary. If VISA is used in a 
MANNA environment, a MANNA node is responsible 
for the real-time RM-update. Np depends on the 
object's complexity. Provided the number of the Phong 
shaded pixels differs from 0.3 to 40 million pixels per 
frame we get a speed-up from 10 to 120. 

It is obvious that the RM method is not restricted by 
the number of light sources. In case of multiple light 
sources only the time to update the reflectance map 
will be increased. It is also possible to apply multiple 
colored light sources. In this case three separate 
reflectance maps for the primary colors red, green and 
blue are needed. 

Another advantage of our normal vector shader 
approach is its low-cost hardware realization. 
According to our estimations the over-all cost of the 
VISA system is less than one percent higher than a 
possible VISA realization with a Gouraud shader 
hardware of similar performance. 

5 	Architecture and function of the Z-filter 

The origin of the term Z-filter can be found in the 
function of this unit, which "strains" only the xy­
coordinates and the RGB values of the visible pixel. 
For comparison with a conventional Z-buffer, which 
operates in parallel to the image buffer, this unit is 
integrated into the pipeline of the rendering processor. 
The special feature of the Z-filter is a 8-bit frame 
counter memory (FCM) and an additional frame 
counter (FC) which are used to reduce the initializing 
time to 0.1 ms. 
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In the following section the interaction between FC 
and FCM will be explained by a simple example 
(Figures 8a-h). Figures 8a-h shows eight snap shots of 
a 2-bit FCM state when a ball is moved across the 
frame buffer. Before the fITSt image is generated, all 
FCM entries are initialized by 0 and the FC-state by I. 
It is important that the FC-state is different from all 
FCM-entries at any start of a frame generation cycle. 
With each write access to the z-memory, in the course 
of the image generation, the FC-state is written into the 
FCM. As result we obtain a "foot print" of the 
generated ball (Figure 8a). At the end of this process 
the ftrst of three FCM-segments will be initialized by 
the FC-state (Figure 8b) followed by the 
incrementation of the frame counter. The next and all 
further image generation cycles function in the same 
way (Figures 8a-h). 

can be considerably reduced. The other advantage, the 
reduction of the initializing time, has already been 
mentioned above. By using the conventional Z-buffer 
technique, the entire 24-bit z-memory must be 
pre loaded by the maximum z-value (224_1). Contrary 
to this, by using this method only a relatively small 
FCM-segment must be initialized before starting a new 
image generation cycle. As shown in Figures 8a-h, the 
initializing time of the Z-ftlter is in inverse proportion 
to the number of FCM-segments. A more detailed 
description ofthe Z-ftlter can be found in [COB92]. 

6 Frame buffer system 

Figure 9 shows the block diagram of the frame buffer 
system. It consists of a TMS 34020 graphics processor, 

o• o 
a) b) 

I 
o 

d)c) 
~?"N"'?: N~ "'~ 

-~~ , 
~ 3'~~ 3 

• 
e) , ~~ ~ ~ init f)~ ~ ~ ~ -" 

~_A~"""J 

, " o 
init_ .. .,"%C~ b)g) 

Figure 8a-h. States ofa 4-bitframe counter memory (a) after 1st cycle; (b) after initializing, before 2nd cycle; (c) 
after 2nd cycle; (d) after initializing, before 3rd cycle; (e) after 3rd cycle; (j) after initializing, before 4th cycle; (g) 
after 4th cycle; (h) after initializing, before 5th cycle. 

In case the FC-state and the FCM-entries are of 
unequal values, the z-value comparison can be 
substituted by a much faster comparison of the FC­
state with the FCM-entries. The update of the z­
memory is carried out directly. In this way the number 
of z-comparisons needed for the hidden pixel removal 

up to 32 Mbytes working storage, 16 Mbytes image 
storage and the video logic. 

The communication with the rendering system is 
carried out by an image bus or via an VME-bus 
interface. The following passage will discuss the main 
units of the frame buffer system in more detail. 
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Image Bus 
(160 MB/sec) 

(from Rendering 
Processor) 

Dual Image Buffer 
(8x interleaved) 

Figure 9. Block diagram 0/theframe buffer system 

Graphics processor. The main task of the TMS34020 Image buffer. The image buffer is designed as a 
graphics processor is the generation of 2d-primitives multiport-RAM and permits the direct data access from 
such as vectors, circles, 2d-polygons as well as text the graphics processor and the access via the image bus 
and symbols. Special mail box registers which are and via VME-bus. Figure lOa shows the image buffer 
mapped into the address space of the graphics arrangement in eight identical memory banks (A­
processor are used for communication with the host Bank, ... , H-Bank) which are regulated by individual 
system. The working storage consists of two inter­ bank controllers. For operating in double buffering 
leaved operating memory banks, with a size of up to mode each memory bank is divided into an upper and a 
16 Mbytes each. lower partition. 

from Image Bus 
---, 

32 
~ 

I 

AH:AL BH:BL 
I 

32 

v 

32 32 32 32 32 32J32)' )' 70 0- ~ 

I I Ic;:I CL DH:DL EH:EL HHlHLI 
I I I I 

I I .. 
x323232 ... 

I I 

FH: FL GH:GL 
I I 

~ v v IE! FIGDildAl alcll5l EI FIGIAI odd I e 
even lin 

to Video Logic Y~ 
a) b) Image Buffer Matrix 

Figures lOa,b. Image buffer: (a) logical organization o/the memory banks; (b) logical ass'ignment a/pixel 
addresses to memory banks. 
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The write access is carried out by means of the well 
known memory interleaving method by using eight 
address busses. In order to improve the performance 
for the write accesses different addressing schemes for 
even and odd lines are applied. For even lines the 
memory banks will be addressed by the sequence cycle 
of the memory banks: A, B, C, D, E, F, G, H; A, B, C, 
... etc. For odd lines the sequence cycle is given by: E, 
F, G, H, A, B, C, 0, E, F; E, F, ... etc. (Figure lOb). 
With an access time-displacement of 25ns a maximum 
write-input bandwidth of 40 Mpixel/sec will be 
achieved. The pixel data transfer to the video logic 
takes place with eight 32-bit data busses (A-Bus, ... , H­
Bus), which are multiplexed by the following video 
logic with a frequency of 135 Mhz. 

7 Conclusions and future work 

We have described a rendering system for fast image 
generation. One highlight of this system is a shading 
unit, based on a light reflection map. which allows the 
application of the Phong-shading technique in a 
relatively simple way. Another important feature is the 
improvement of the well known Z-buffer. By using 
additional memory planes and a frame counter a 
considerable reduction of the initializing time can be 
achieved. 

The bottleneck of the system is the insufficient 
processing power for the computation of the parameter 
set for initializing the rendering system. Presently this 
task is carried out by the MANNA system, which is 
able to transfer about 530,000 parameter sets per 
second. In order to achieve the maximum throughput 
rate of about 2,4 106 parameter sets per second a 
specialized processor is necessary. The development of 
such a dedicated processing unit is one of our next 
main objectives in the near future. 

Another project assignment concerns the generation of 
textured objects. For this purpose, a texture and bump 
mapping pipeline which operates in parallel to the 
existing XYZ and RGB imits is under development. 
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