
The Multimedia Video Processor (MVP)

Graham Short, Texas Instruments

1. 	 History

In 1987 engineers from Texas Instruments started work on the
specification of a device which would become the next generation
in its 1MS320 Digital Signal Processor and 1MS340 Graphics
System Processor families, building on the successes and lessons
learnt from each. It was to be targeted at a nf!tIlber of graphics
applications, an example of which are:

• 	 X-terminals and PC/workstations where the TMS340 had
made considerable inroads, but now 3D graphics put
increased demand on the hardware.

• 	 Vtdeo Conferencing where real-time video and audio
compression and decompression for the then draft standard
ofH.320.

• 	 Document Image Processing for digital copiers which scan,
enhance, compress and transmit over modem or network.

• 	 Multimedia applications, such as JPEG and MPEG
compression and decompression where some of the TMS320
DSP family had been used.

The analysis of the processing requirements for these
applications can be daunting. Table 1 details one such
application, that of the Px64 standard, which is the video portion
of the H.320 Video Conferencing standard. This is the
requirement to compress and decompress an image at 30 frames­
per-second.

The table shows that roughly 1.2 billion operations per second
are required to perform this application. The total does not
include pte- or post-processing. audio compression and
decompression, any formatting required for data transmission or
other system functions. Note that several of the functions in the
table require 100 million operations per second which is
comparable to the speed of today's RISC microprocessors. It
became clear that, in order to develop a single device which
would provide this order ofprocessing capability, multiple

processors would be needed on the chip. Clock speed alone
could not provide this level of processing.
Function MOPS (% of total)
Motion estimation 608 (51.0%)
Code mode decisions 40(3.4%)
Loop filtering (encode and decode) 110 (9.2%)
Pixel difference 18 (1.5%)
DCT (encode) 74(6.2%)
Inverse DCT (encode and decode) 192(16.1%)
Threshold/quantization/zig-zag scan 50(4.2%)

Bit stream encode 17 (1.4%)
Reconstruction (encode and decode) 62(16.1%)
Bit stream decode and inverse quantization 22(1.8%)

Total 1.193MOPS

Table 1 Typical processing requirements for
CCITT H.320 (Px64) video compression and

decompression

In our experience in developing the TMS340 GSP family we
knew that graphics processors require special hardware, such as
barrel shifters, colour expanders and splittable arithmetic logic
units. In the TMS340 however, instructions to draw lines and
perform BitBlts were executed in microcode. This meant that the
software programmers could only interface to the hardware in the
manner allowed by the microcode. Generally this meant that
graphics algorithms took more cycles in their inner loop than they
might otherwise have had, if the programmer could access the
hardware directly. Opening up the hardware, making it accessible
to the programmer, was seen as a key requirement for the new
design.

One aspect of the TMS340 that continued into the new design
was that of programmability. Many fixed function ICs were being
designed which contained for example, dedicated Discrete Cosine
Transformation (DCT) hardware, geared towards the JPEG and
MPEG standards. This approach was rejected in favour of
providing hardware which could perfonn DCT and then be
reused for a variety of other algorithms. Table 1 shows that a
DCT is only 20% of the task of Px64 standard. Silicon area is too

1

http://www.eg.org
http://diglib.eg.org

precious to switch off part of it when you are in the other 80% of
the algorithm, particularly when you have the sort of processing
requirements placed upon you as shown in the table.

2. Architecture

Figure 1 shows a block diagram of the TMS320C80 or MVP
which began sampling at the end of 1993. It integrates five
powerful fully-programmable processors, a sophisticated DMA
controller.50K bytes of SRAM and a video timing controller.
Four of the five processors are identical advanced digital signal
processors (ADSPs) that have special-purpose hardware for
graphics processing algorithms. Each ADSP is capable of
performing many RISC-equivalent operations in a cycle, as we
shall see. The fifth processor is a 32-bit RISC CPU called the
Master Processor (MP).lt includes an IEEE 754-compatible
floating point unit (FPU). All five processors can be programmed
in C or assembly language.

In addition to the processors, the MVP has a Transfer Controller
(l'C) which is an intelligent DMA controller. One of the first

concerns in defining the architecture was how to keep the
processors from having to wait for data. The solution was to have
some on-chip memory dedicated to instruction and data, serviced
for the processors by the TC. It receives requests from the
processors to obtain packets ofdata from external memory for
processing. Many imaging and graphics algorithms such as
convolution, OCT, and FFr require multiple accesses within a
group of pixels. Pulling these pixels on chip once and keeping
any intermediate results on-chip, greatly reduces the number of
accesses to extemal memory. which would easily become a botti,
neck. After processing, data is moved by the TC back off-chip
under the direction of the processors.

Rather than dedicate specific memory to specific processors, the
MVP contains a sophisticated and, in silicon area terms, large

crossbar switching network. This allows access by every
processor to every data RAM (the processors do not normally
read and write to the RAMs used as caches). This unlimited
access to on-chip data greatly improves efficiency as there is no
need for the processors to send large quantities of data to one­
another. IT its on-chip. its available to all processors.

ADSP3 ADSP2 ADSP1

L G I L G I L G I

-."'. ~M •
•M

...
• • •• • M

::E OIl ::E G' l! oj
s::; ::E

~! ~! .-0il ~C\I oil

~~s ~ ~ s ~ ~ ::E::Eo

I~ s~ ~~6

i~ JIIJII"" ~I ~~~ I~ JIIJII=
gg~ ",0 gg~

~ ~ 0.. ~0.. 0..

ADSPO MP VC

L G I D I f-­

•• E}I,.
'M M ..

(~
M

TC M

::E .!
~

OIl
s::;

~! ... 0 a .! a::E::Eo 0 ... < ~~!5 ~ a 6Sa:
! 0

~~ JIIJII"" I ~g g ~ I!! 0...
~ '" !0.. 0..

I T

Figure 1. Block Diagram of the TMS320C80 Multimedia Video Processor (MVP)

2

DATA UNIT

•
-

I I
+•

1

DataUni Integer & Pixel--.
Regiotara

Multiplier
ALU Data Path

-
~_ t • I I J-

- ADDRESS UNIT-
Local Giebel

Add... Add....
Unit Un.

PROGRAM FLOW CONTROL UNIT

Thrae Instruction
z.e-erheacI and cacha . Loop control

ControIIara

1

Giebel

Two 32-biI Data Porta

Figure 2. Block Diagram of the ADSP

3. Advanced Digital Signal Processor

The Advanced Digital Signal Processor (ADSP) is the key
component to the MVP architecture's ability to provide the
necessary processing power of its target applications. The
justification for the advanced in its name is that whereas
traditional DSPs petfonned well at the multiply-intensive signal
processing, they did not do well at the bit-field intensive
Iequirements necessary in pixel manipulations and entropy
encoding and decoding. A high level block diagram of the ADSP
is shown in Figure 2.

The ADSPs can each petfonn in excess of 10 RISC-like
operations in each cycle. In order to specify the multiple parallel
operations, a wide instruction word of 64-bits is used. The
instruction has fields that independently control the multiplier,
ALU, and the two Address Units. All instructions nominally
execute in a single cycle. The instructions are pipelined in a 3
cycle pipe. A new instruction can be started every cycle unless
there is pipe stall condition caused by either a cache miss or
contention in accessing the on-<:hip RAM. As can be seen in the
figure, the ADSP consists of three main operating units: the Data
Unit, the Address Unit and the Program Flow Control Unit,
which will be explained in turn.

3

Each ADSP has 44 user registers which can be the source or
destination of ALU or memory opc:rati.ons. Although most
registers can be used for general purpose manipulations, some
also have specific roles. The Address Units have address and
index registers used to access on-chip RAM. The Program Flow
Control Units have loop control registers used for zero-overhead
branches.

The Data Unit shown in Figure 2 is the main processing engine
for the ADSP. It contains a multiplier and a 32-bit ALU, both of
which are apliltable. In graphics operations it is common to want
to manipulate pixels rather than words. Thus to be able to split
the 32-bit ALU so that it can perform 4 8-bit operations in
parallel, can provide an immediate 4x performance improvement

Likewise the multiplier, which can perform one 16 x 16 multiply
in its standard configuration. can be split to perform two 8 x 8 bit
multiplies in parallel (both multiplies occur in a single cycle).
The multiplier has a rounding option which was incmporated to
maintain the specified accuracy for the video compression
standards.

Figure 3 shows some more detail of the Data Unit and the special
hardware that was included to provide the bit-field manipulation
that was mentioned earlier. This includes the following:­

• 	 A barrel rotator that is capable of rotating the bits in a 32-bil
number from 0 (no rotation) to 31 bits.

• 	 A mask generator which takes an unsigned 5-bit input (n)
and produces a corresponding 32-bit output (2n • 1).

• 	 An expander that replicates from 1,2 or 4 bits, 32, 16 or 8
times. This is useful amongst other things for monochrome
to colour pixel expansion.

• 	 A bit detector which detennines the bit position of the
leftmost one, rightmost one, leftmost bit cbange or rightmost
bit change within a 32-bit word.

• 	 A 3-input ALU that performs Boolean (bit-wise) and
arithmetic combinati.ons of the three inputs. In addition to
performing strictly Boolean or arithmetic functions, a
combination mode is also available. that enables the third
operand to mask one or both sources of an arithmetic
function in one pass through the ALU (i.e. one cycle).

DeIII2 SR:1~ Sn:111 	 dO rrI D..n

Sn:3 Src4 ~mm

~

(apIitIabIe)

LMO.RMO

tMBC.RMBC

~AI.U (tpIIIabIa)

8wapIMetge

Scala

8amII

~

SignSil

ALU

Ftmdion

Code Logic

NCVZ rrI

Figure 3. Diagram of the ADSP Data Unit

4­

~ single three-input ALU function can perform what could take
nultiple passes through a two-input ALU. which is why it is not
l simple matter to quantify how many RISe-like operations the
IDSP can perform in a single cycle. The instruction format
dlows the programmer direct control on the flow through the
f\LU dalapath and which of the special hardware (if any) is used

!IS source to the ALU.

fhe second important block in the ADSP shown in Figure 2 is
!be Address Unit. There are two (nearly) identical Address Units
in each ADSP. One is called the Global Unit, the other the Local

Unit. The only difference between them is that the Local Unit can
)nly access memory in the RAMs immediately below the ADSP
(called the local RAM) when two parallel memory accesses are
pedormed Together the two units can perform 2 memory
JPCfations in each cycle. Each memory operation is a load or a
store that can be specified totally independent of the Data Unit

operation. Each Address Unit has 6 address registers for
specifying the address for the memory operation. An immediate
value or one of 3 index registers can be added/subtracted to the
address value and the result of the address computation can
optionally modify the original address register value. to facilitate
stepping through amemory array.

The source of a store or the destination of a load can be any of the
44 ADSP registers. Either or both Address Units can perform a
data operation in place of a memory transfer. In these cases the
result of the address calculation is written to the destination
register in place of fetching data from memory. This again is a
powerful aid in speeding up algorithms, since when the Address
Units are not needed to perform memory operations. the
programmer can use these units to perform data operations in
parallel with those going on in the Data Unit.

:liff .set d7 Contains 4 a-bit Pixel Differences
CurrPixel .set d6 Contains 4 8-bit Current Pixels
PrevPixel .set dS Contains 4 8-bit Previous Pixels
SumABS .set d4 4 running byte sums of absolute differences
OnesCountlndex .set xa Contains carries from pixel differences
NumCount .set x9 Number of carries, got from table look-up
CurrentPixels .set aD Pointer to current pixels
Previous pixels .set a1 Pointer to previous pixels
CountTable .set a8 Pointer to 1s count table
CarryCount .set a9 Running sum of 1s count

IsO = start_loop initialize loop start address
leO = end....loop initialize loop end address
IcO = <NUMBER OF PIXELS TO PROCESS> initialize loop count

<OTHER SET-UP CODE>
start_loop:
diff =mzc CurrPixel - PrevPixel split ALU, 4 subtracts

I I OnesCountlndex = mf move from prior calc ...
... in one Address Unit

I I CurrPixel = *CurrentPixels++ load next set of 4 pixels ...
... in other Address Unit

SumABS =mc (SumABS+diff) & mf I (SumABS-diff) & -mf; split ALU, 4 absolute adds
I I a15 = * (CarryCount += NumCount) Modify CarryCount from prev ...

... NumCount in one Unit
I I PrevPixel = *PreviousPixels++ load next set of 4 pixels ...

... in one Address Unit
diff =mzc CurrPixel - PrevPixel software pipeline

II NumCount =b *(CountTable + OnesCountlndex) Determine NumCount using ..•
... LUT in one Address Unit

I I CurrPixel = *CurrentPixels++ software pipeline
end_lOOp:

sumABS =mc (SumABS+diff) & mf I (SumABS-diff) & -mf; software pipeline
I I PrevPixel = *PreviousPixels++ software pipeline

Figure 4. Example ADSP inner loop assembly code

5

Memory operations in the Address Unit, and ALU and multiplier
operations in the Data Unit can all be specified as conditional, so
that the write to the destination register is not performed unless
the condition (which can be anyone of 16 combinations of the 4
condition codes NCZV) is true. A mode is also available which
allows the specification of a conditional source where the N
condition code can select between two registers for a read
operation.

The third main unit in the ADSP is the Program Flow Control
(PFC) Unit. It controls the fetching. decoding of instructions and
the instruction pipeline. Because each ADSP instruction can do
many operations in parallel. key inner loops often require very
few instructions. Thns the PFC contains three zero-overhead loop
controllers. Each controller has a set of registers that specifies the
starting and ending addresses and the current and initial loop
counts. Once these registers have been initi.alized. branches
controlled by them have zero overhead.

An example of ADSP code is shown in Figure 4. This code forms
the inner loop for motion estimation algorithms in standards such
as Px64. Part of the code looks as though it is duplicated, but it is
in fact software pipelining. where one part of the algorithm is
occmring at the same time as the previous iteration for another
part of the algorithm. The four instructions in this inner loop
produce a running count and absolute sum of differences from 8
8-bit pixels. Although there isn't space here to go into the details,
hopefully the comments in the code should give a feel for what is
going on. The intent is to show that in one instruction. a
complicated 3-input ALU operation can occur on 4 independent
pixels in the Data Unit, while another two memory or data
operations are occmring in the Address Unit and loop and
instruction control is occmring in the PFC Unit.

4. Master Processor

The RISC Master Processor (MP) is shown in Figure 5. The MP
is aimed at general purpose high-level language programming.
Additionally due to its integrated floating point unit. the MP will
perform operations requiring higher precision and floating point
values.

The MP Integer Unit has a 32-bit instruction word that performs
integer register to register or load/store instructions. nominally in
one cycle. Like the ADSP. it has a 3 cycle pipeline. allowing a
new instruction to be loaded every cycle. providing a stall
condition has not occurred The 32-bit integCl' ALU operates on
two sources and one destination. One somce operand may be an
immediate value. The MP ALU• like the ADSP. has a barrel
shifter. mask generator and left/right-most one detects to improve
its bit-field manipulation capabilities.

The MP Floating Point Unit is IEEE-754 compatible. Hardware
support for the floating point unit consists of a full double­
precision floating point ALU and a 32-bit single precision
floating point multiply unit. The floating point hardware is
pipelined and the floating point multiply unit is supported with
microcode to provide single and double-precision operations.

Either a double-precision floating point ALU or a single­
precision floating point multiply can be started in each cycle. A
special set of vector instructions are also available, aimed at
matrix style operations. These instructions initiate a multiply,
add/subtract and a 32- or 64-bit load or store with auto-increment
addressing every cycle.

The MP has 31 32-bit registers that are common to both the
integer and floating point units. The registers are scoreboarded
for floating point results and memmy load operations. The
scoreboard allows the MP to continue execution and only stall its
pipe if an instruction tries to use a register prior to being
available. Common with other RISC architectures, there is an
additional 32-bit RO dummy register that always reads as 0 and
discards writes.

6

FP Multiplier FPALU

+
•

Control Register

Registers Rle

I
I

Instruction Data

Unit Unit

+ ~

FPU

Control

s
c
0

r
8

b
0

a
r
d

f4­ ALU --.

s. Transfer Controller

The Transfer Controller (TC) is the data provider for the ADSPs
and the MP. The processors supply cache miss and data
movement requests to the TC. These are queued, prioritized and
then serviced. It interfaces through the external pins to the
external memory, transferring data directly to the on-chip RAMs.

Data transfers are specifically requested by the processors in the
form of Packet Transfers (PTs). A PT is a transfer of blocks of
data from a source to a destination. The source and destination
can be either on-chip or off-chip. The source and destination
transfers are completely independent, they can have different

Figure 5. Block diagram of the Master Processor (MP)

dimensions or use different transfer modes. There are two basic
types of packet transfers: Dimensioned Transfers and Guided
Transfers.

An example of a Dimensioned Transfer is shown in Figure 6. It
shows a packet consisting of two patches of three lines each
consisting of 512 adjacent 8-bit pixels. This might be needed for
example if two ADSPs were going to perform a 3 x 3 convolution
with each ADSP working on one of the patches of lines.

The first patch PQR might represent data to be transferred into
ADSPOs data RAM and the second patch STU represents data to
be transferred into ADSPl's data RAM. A dimensioned packet
request is defined by a series of parameters placed in a fixed
format

7

The parameters for the example in Figure 6 would be:­
1. 	 A count, the number *of contiguous bytes in a line

=512
2. 	 B count, the number of steps to form a pat.cb =2

(number of lines - 1)
3. 	 C count, the number of patch steps in a packet = 1

(number ofpatches - 1)
4. 	 Start Address, linear address of start of line P
5. 	 B pitch, the linear pitch of 2nd dimension (difference

ofPandQ)
6. 	 C pitch, the linear pitch of 3rd dimension (difference

ofP and S)

Even though a transfer may be to the RAM associated with a
particular processor. it is not necessary for that processor to make
the request. These parameters are placed in a fixed format,
normally in the parameter RAM of the processor requesting the
Pr. The start address of the parameters is loaded into a special
location in the processors parameter RAM and a special register
bit is set to inform the TC that there is a new packet transfer to
perform.

As well as the parameters mentioned above, the Prparameter
structure contains a next entry address. Once a TC completes a
packet it (optionally) informs the invoking processor, then
providing the special end-of-list flag is not set, moves to the next
entry address and starts processing the next Pr. In this way a
linked list of Prs can be set up ahead of time and performed
sequentially.

The second type of Prs is the Guided Transfer Prs. In these the
start address and optionally size of the patches in a Pr come from
a guide table in on-cbip memory, rather than being calculated
solely from the initial parameters of the PT. Figure 7 illustrates
one type of Guided Transfer. There are several variations, for
instance the start address of the next patch can be calculated,
either with respect to the start of the last patch, or from a fIXed
base address.

The TC can transfer data between source and destination using
different types of PT; e.g. the source could be a complicated
variable guided patch, and the destination could be dimensioned.
This is very useful for packing off-cbip frame buffer memory
regions into the on-chip RAM, and greatly improves the
efficiency of the work of the other processors.

Start Address

- 1st Dimension (A) ---JIIooI
I2nd -t __

Dimension

(8) f -­ P

Q

R

3rd

Dimension

(C)

- - -,- .
s

T

u

;.... 512 bytes ..,.:

Figure 6. Dimensioned Packet Transfer.

8

Start Address

Patch P

Patch Q

Patch R

MEMORY CONTENTS

Figure 7. Variable-Patch Delta Guided Transfer

6. On-chip RAM and Crossbar

The 50K bytes of on-chip memory is physically separated into 25
2K byte RAMs. Each RAM can be accessed 8, 16,32 or 64 bits
at a time. Having a large number of individual RAMs enables
many memory accesses to be performed in parallel by the
processors. Each ADSP has one RAM (2K bytes) for an
instruction cache, whereas the MP has two (4K bytes). These are
loaded by the TC on recognition of a cache miss from the
instruction control hardware in the processors. In addition, the
MP has two RAMs (4K bytes) for a data cache which is also

serviced by the TC. Each processor has one parameter RAM (2K
bytes), which is primarily for general use, except that part of it is
reserved for specific purposes, such as interrupt vectors and

Packet Transfer data. The remaining 12 Data RAMs are
completely free for general use.

Nominally the Data RAMs are split into four, three for each
ADSP. This is only with respect to operations when both Local
and Global Address Units are in use, since these share the Global
Port for access to all the remaining Data RAMs. When both units
are being used, the Local Address Unit can only access the Data
and Parameter RAMs that are associated with its ADSP or its
access will be stalled until the Global Unit is free.

The accesses into a RAM can switch between reads and writes on
a cycle-by-cycle basis. Access to a RAM can also switch between
processors on a cycle-by-cyc1e basis. Switching between
processors is facilitated by a connection network called a
crossbar. The crossbar allows multiple processors to access many
RAMs in the same cycle, though only one processor can access an
individual RAM in a single cycle. Each ADSP has two 32-bit

9

access ports to the crossbar via its Address Units. Both the MP instruction is fetched which requires access to a register which is
and TC have one 64-bit access port. the destination of the uncompleted load.

The crossbar operation is pipelined. An access can start on every
cycle, but each access OCCUIS over two cycles. In the first stage of
the pipe, the MSBs of the address that detennine which RAM to
access are sent out on the crossbar by the requesting processor (or
TC). Several processors may request access to the same RAM
during a single cycle, but the crossbar logic associated with each
RAM detennines which processor is granted access to the RAM
for that cycle. In the second pipeline stage the processor that was
granted access to a RAM sends the LSBs of the address over the
crossbar to the RAM to select which bytes are to be read/written,
and the data is transferred.

If two processors attempt to access the same memory in the same
cycle, the crossbar arbitrates between them. When an ADSP is
denied access, its instruction pipe is stalled until access is
granted. The MP is slightly different since its registers are
scoreboarded. The MP's instruction pipe will not be affected by
having to wait for a load operation to complete, until an

The crossbar uses a combination of priority and round robin
mechanisms to perform this arbitration as shown in Figure 8. The
most urgent requests are the instruction cache servicing and some
timing critical memory operations such as those scheduled by the
Video Controller.

When a Packet Transfer is initiated, it is given either urgent,
high or low priority. This controls whether the TC's access to the
on-chip's RAM to service the transfer should override the MP and
ADSPs data accesses.

Crossbar-shared memory is a very flexible multiprocessor
memory architecture, since it puts the fewest restrictions on
where data needs to be loaded. Since the crossbar involves nearly
1000 address and data lines to be connected between the
processors and the memory it is clear that this type of network
only becomes practicable when the processors are integrated onto
the one device.

HIGHEST PRIORITY TO Cache and Urgent Requests

TC High-priority PTs

ADSP Round Robin

[]
ADSPx ADSPO ADSP1 ADSP2 ADSP3
- - - -~ ---.. ---.. ---..

Local Global Global Global Global

LOWEST PRIORITY TC Low-priority PTs

Figure 8. Crossbar Prioritization Scheme

10

7. Video Controller 8. Summary

The Video Controller (VC) is the interface between the MVP and
the image capture and display systems. The VC, shown in Figure
9, has two independent Frame Tuners. Each Frame Tuner has its
own input clock (FCLK) which operates asynchronously with

respect to the rest of the MVP logic. Each timer can generate
timing pulses to control a display or capture device.

In addition the VC contains a Serial Register Transfer
Controller* which generates SRT requests to the TC to transfer
data into and out of VRAM shift registers. The Frame Tuners
indicate to the SRT controller when an SRT needs to be
perfonned and it generates the required addresses for the TC.

Through the use of parallel processing, the MVP puts a new level
of programmability and perfonnance on a single integrated
circuit. Not only does the MVP integrate 5 processors onto a
single device, each processor can execute many operations in
parallel Running at SOMHz clock speed, it is capable ofover 2
billion operations per second. It can move 2.4 Gigabytes of data
and 1.8 Gigabytes of instructions within the chip, plus 400
Megabytes ofdata to off-chip memory, each second. This
dramatic improvement of single chip performance will make a
whole new range of applications possible.

Qn.chip register bus (UP)

t
VC Register Interface

..
HSYNCO

..
VSYNCO

Frame
FTOEwnIa TmerO CSYNCOIHBLNKO

SAT CBLNKOIVBLNKO

CAREAO
Controller

SRT

request ~ HSYNC1
(TC) M

U r---­ Frame
---Il1o

VSYNC1

X Timer 1'-­ CSYNC1IHBLNK1

CBLNK1NBLNK1
FT1E_

t SCLK1 FCLK1

CAREA1

SCLKO FCLKO

Figure 9. Video Controller Block Diagram

11

