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A diffetence engine is described that is designed to be used as low level component of a raster graphics 
architecture. The speed of the system (11 ns per operation) is achieved by the use of custom VLSI components 
for the most primitive operations. This permits the video rate reconstruction of images and other signals 
compressed by encoding them on various polynomial bases. The paper describes a feasibility study for its use 
for image reconstruction. The study shows that the system can be applied to the decompression of spline 
wavelet encoded images. 

1. Introduction 

A reappraisal of the three-dimensional (3-D) interactive raster graphics pipeline has resulted in an 
experimental architecture for a graphics workstation which has been presented in previous 
workshops on graphics hardware [19-21,24]. Some of the novel uses of parts of the hardware 
were not foreseen when the research project was initiated. In this paper we shall explore one of 
the unanticipated spin-offs from the project. 

The principal features of the design for the raster graphics architecture were: 
• Emphasis on real-time interactive shaded 3-D graphics . 
• Object space methods rather than image space methods are used where possible. 
• The use of a frame buffer is avoided. 
• Custom VLSI is used only at the lowest, most primitive, levels where commercial products 

are unlikely to suffice in the near term. 
It were these design decisions that lead to a number of interesting consequences that have made 
parts of the architecture eminently suited to a far wider range of problems in computer graphics 
and image processing. One of the design phases concentrated on extracting the lowest common 
denominator of primitive operations for synthesizing pixels -a language for manipulating 
related pixels . This vocabulary is sufficiently general to be used for expressing other facts about 
Images . 

The custom VLSI development that was a major part of the project produced what is 
essent ially a very fast Difference Engine (to borrow a term from the 19th century history of 
computation) . This Difference Engine is the element of the graphics architecture that actually 
executes the primitive operations for synthesizing the pixel s. It can compute forward differences 
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in parallel over the whole width of a typical image, taking about 11 ns per operation (90 Mhz 
clock) independently of the length of the forward difference spans . 

In the next section we present a very brief overview of the architecture in terms of its original 
design for producing real-time interactive raster graphics. In Section 3 we show how the same 
low-level architecture has applications in the reconstruction of compressed signals, and we 
present the results of an initial feasibility study. In Section 4 we introduce wavelets as a new 
generalized and promising approach to studying compression and decompression schemes for 
sounds and images. Section 5 is on ongoing development. In conclusion (Section 6) we 
summarize our results and point to some very promising areas for further research into 
applications of the hardware under discussion . 

2. The Difference Engine 

In the past four years the design of the raster graphics architecture has been completed [21], the 
critical components have been made [22] and functions simulated in detail [19] . The functional 
elements of the raster graphics architecture are shown in Figure 1. The array of X processors and 
the Y processors together form the display controller. 
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Figure 1: Functional Elements of the Display Architecture. The Y- and X-processors together form the 
display controller of the graphics architecture. The arrolVs show how 3-D data are converted to a stream of 
pixels. Data structures are indicated by arrows and of these only the 3-D Models alld the 2-D Structured 
Object Lisc are stored. All ocher daca are generated on the fly. The Structured Object List is updated at the 
animation or interaction rate, 12-24 times per second, and it is read at the video frame rate, 50-60 cycles. 
The Scanline Instructions are produced at the video line rate and clocked into the X processors at the video 
pixel generation rate. 

The X processor array (which deals with the scanlines of an image) is actually a Difference 
Engine. That is, it can do forward difference calculations at high speed. Any order of forward 
difference can be done, the limiting factor is the accumulation of errors during addition and (in 
real-time applications) the extra cycle time taken by each higher order. The architecture is 
tailored to second order forward differences. 

The Difference Engine is a systolic array with a dedicated processor for each pixel in a 
scan line 2) . Additions (and input) are done to a precision of 36 bits and the top 12 bits are output. 
So we basically have data values of 12 bits - say 10 bits magnitude, I sign bit and I bit to detect 
common overflow situations - and 24 precision bits. For quadratic interpolation (second order 
forward differences) spans of 212 bits or 4096 pixels wide can be interpolated before the error 
becomes noticeable. This is also the maximum addressable pixel and span width allowed for 
input. If we use just 9 data bits of the output (i.e., 8 bit values + sign bit) then cubic interpolation 
for spans of 512 pixels can be done accurately . Naturally longer spans can always be done by 
splitting them into shorter ones which can be done correctly . 

2) Actually one can have fewer processors provided the number of output pixels are a multiple of the number 
of processors . The processors are then reused for the remai ning pans of a scanlinc. but the normal situation 
is to have one processor per pixel in a scan line . 
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Figure2: Interpolation on the Difference Engine. The Difference Engine is implemented as a systoiic 
array of processors: one for each output pixel. For quadratic il1terpoiation the second differences remain 
constant and are propagated to all processors within an active span of pixels (Register C). The first 
differences (Register B) are changed by the second differences at each step and the results added to the 
intensity values (Register A). The results of the interpolation step are added to all accumulator (Register D) so 
that mUltiple interpolation spans may overlap to produce thefil1al pixel value. For higher order differences the 
registers are reused. 

The bias towards quadratic interpolation is also seen in the fact that there are 3 internal 
registers with which the value 1 (' 'intensity' '), first difference 81 and second difference 881 can be 
set at every pixel location. The operation of the Difference Engine is illustrated in Figure 2. The 
interpolated intensities are calculated in register A and the contents of A is added to an output 
accumulator which can contain the results of a number of previous interpolation spans. The 
contents of the accumulator is read out (for display) on receipt of a "refresh" instruction. Other 
instructions are listed in Table I. 

Higher order differences are done by reusing registers. In fact the registers are not needed to 
perform forward differences but only so that differences may be set ahead of time by means of 
the 'set' instructions (see Table I). It is a way of changing just certain (usually the highest) 
differences within an interpolation that is continuous in the lower orders. 

To conclude, this X processor which was developed a a very specialized pixel generator is 
really very general; it is a Difference Engine with: 
• Any order forward differences. 
• 36-bit numerical accuracy and an 11 ns cycle time. 
• Any spline interpolation, with constant cost independent of span length. 

3. Reconstruction of Compressed Signals on a Difference Engine 

Clearly the Difference Engine can interpolate any spline (polynomi'al) curve. Thus any signal 
that is expressed in terms of a spLine basis can be reconstructed. Not only that, the architecture 
with its accumu lator allows one to sum over incrementally generated output so that the splines 
can be summed over different scales to produce the final image to any required accuracy. 

3.1. Simple Compression 

Obviously run length encoding is handled by a single instruction ('evaIO', see Table 1). One 
could also extend the concept to using linearly increasing runs, although the benefit is doubtful. 



operation 

dis(x,dx) 

evaIO(x,dx,i) 

eval1 (x,dx,i) 
evaI2(x,dx,i,di) 

evaI3(x,dx,i,di,ddi) 

evaI4(x,dx,i,di ,ddi,dddi) 
eval n 
nop 
refresh 
setddi(x,dx) 

setdi(x,dx,i) 
seti(x,dx,i) 
setpddi(x,dx) 

setpdi(x,dx,i) 
setpi(x,dx,i) 

description 

Accumulate mode: if enabled negative intensities are not added to 
accumulator. 
Disable accumulation of intensities from pixel 'x' for 'dx' pixels (cleared 
after next 'eval * ' command) . 
Set pixel (i.e., accumulator) from 'x' for span of 'dx' directly, disable 
further additions until next refresh. 
Add i to accumulator for span from 'x' for 'dx' pixels. 
First order forward difference, starting at pixel 'x' with value 'i' and 
increment 'di', for 'dx' pixels . 
Second order forward difference -like 'eval2' except now 'di' is also 
changed by 'ddi' at each step. 
Third order forward difference, like 'eval3' mutatis IIIlItandis . 
Higher, n-1, order forward differences. 
No operation. 
Output accumulator value and clear everything. 
Set (i.e, override) second difference b) at points 'x', for a span of 'dx' 
pixels in the middle of the next 'eval' command. 
Like 'setddi' only it affects the lower forward difference. 
Like 'setdi' except that this creates a span of intensities. 
Set (i .e, override) second difference b) at points 'x', 'x+dx', 'x+2dx', . .. in 
the middle of the next 'eval' command. 
Like 'setddi' only it affects the lower forward difference. 
Like 'setdi' except that this creates a pattern of intensities. 

cycles 

6 a) 

n+2 a) 
1 
2 
2 

2 
2 
2 

2 
2 

Table 1 : X Processor Ins tructions and T heir Costs in Cycles. Note: The costs mentioned above are 
incurred whether a span is 1 pixeL Long or covers the whole width of the scaniine. 

a) The cost of this operation can be reduced by J cycle infuture versions. 
h) If there are higher order differences then this sets the highest order difference. 

The intended benefit of compression is to save both space and time, space is saved since 
images become smaller and the transmission times also decrease. The cost is of course having to 
perform the compression step first and then the decompression. In a number of situations the 
most time critical step is decompression, where images have to be viewed in (near) real-time. 
The Difference Engine can greatly assist with this as it can interpret the actual image coding 
instructions directly 3). 

3.2. Expressing an Image in a Multi-Resolution Polynomial Basis 

A simple experiment has been run to demonstrate how the Difference Engine can be used to 
reconstruct an image expressed in a multi-resolution polynomial basis . The interest of the 
demonstration is to show how reconstruction would work in practice - not (yet) to uncover a 
new compression technique. The image encoding method will be described below. The results 
of the encoding was a stream of X processor instructions that could be truncated at any desired 
resolution and consisted of full size descriptions of the image at each resolution level. A number 
of these are shown in Figure 4 . These instructions were interpreted by a fast systolic array 
simulator to recreate images which were more or less blurred as desired (see Figure4) . 

3) Image compression steps are frequently fo llowed by more traditional and well understood data compres­
sion algorithms. wc do not discuss those herc. 
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A Simple Encoding Algorithm 
To illustrate the usefulness of the architecture introduced in Section 2, a multiresolution encoding 
of the image was needed. A simple algorithm was developed for test purposes which we believe 
illustrate the essential ideas while having a very low computational cost. It works only in J-D 
along scanlines and requires no convolutions 4) . The image can have any size within the address 
range of the X processor. 

Since compression was not the objective a very simple basis function was chosen: a parabola 
of the form 1-x2 defined on the domain -1 :s: x < 1. This length is then scaled to spans of width 
2n, where 2:S:2n <2 x (width of image-I), nEZ, and translated in steps of 2n where necessary to 
tile the whole scanline. Various small optimizations are possible to handle symmetries and very 
short spans. The operation of the algorithm on a single scanline is illustrated in Figure 3, the 
steps are as follows : 

• The " compression" algorithm first finds the linear trend in a scanline and produces the 
instructions which would interpolate that linear term. 

• The linear span is subtracted from the input image. This produces the difference image which 
is illustrated on the top left in Figure 4. 

• Subsequently the first quadratic span whose length is a power of two and whose centre falls 
within the image width is chosen, i.e., span length = 2n where 2n- 1 describes a pixel inside the 
image, see Figure 3. The value of this pixel alone determines the height of the parabola (no 
convolutions or other complications). 

• As with the linear term, the scaled values of the parabola are subtracted to produce a new 
difference image. 

• The next span length is half the previous one and the procedure is repeated recursively . Note 
that the one pixel whose value was chosen is never changed by higher resolution (smaller) 
parabolae. 
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Figure 3: Encoding A Single Scanline. The diagrams illustrate the situation in encoding a single scanline 
that contains the eyes from Figure 4. The diagram 0/1. the left is the situation where the fi rst parabola is 
"fi tted "_ This has a span of width 5 I 2. the parabola of width 1024 would have been needed if the image was 
just one pixel wider. The diagram on the right shows the results, and the basis fun ctions, of "filling " spans 
5 12 and 256 pixels wide. 

-1 ) The aston ishing thing is that thi s algorithm actually produces a useful image deco mposition. 
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Results 
The results of applying the procedure and then reconstructing the images on the X processor 
simulator are illustrated in Figure 4. It can be seen that it is possible to decode a low resolution 
image directly and that the natural way of reconstructing the image is to build up the output 
resolution level by resolution level. In a real-time application one could therefore have graceful 
degradation of performance since the display controller could truncate the image being processed 
after a certain number of instructions and one would still have a useful image. In some pyramid 
systems this is more of a problem since the higher levels of the pyramid (the lower resolutions) 
actually are smaller images and need to be expanded for display purposes. 

The compression procedure outlined above could be turned into a true compression of the 
image by adopting a pyramid compression scheme as outlined in [3] but coding it explicitly in 
terms of the basis functions. 

One feature of note in our simple coding scheme is that the actual edge information is retained 
far too long. This visually important information should really be sent early on with the low 
resolution image. Other more sophisticated compression schemes also suffer from this problem. 
Thus an important area of investigation is to find compression algorithms that send "important" 
information first, not merely low resolution information. One could also conjecture that such 
algorithms will be more efficient as lossy encoders of images destined for viewing by people (see 
also Sections 4.3, 5 and 6). 

4. Wavelets 

Wavelets are a " new" decomposition tool for analysing signals at multiple scales. Multi­
resolution analysis has been around for a long time but recently there has been significant 
advances both in unifying old ideas in a single theory and in deriving new results . Indeed a 
recent introduction to the topic has referred to it as : 

, ' ... this comparative frenzy of research activity ... which has provided not only a wealth of new 
mathematical results. but also a common language and rallying call for researchers in a 
remarkably wide variety of fields: mathematicians working in harmonic analysis ... ; mathematical 
physicists ... ; digital signal processors because of connections with multirate filtering, quadrature 
mirror filters, and subband coding; image processors because of applications in pyramidal image 
representation and compression; researchers in computer vision who have used "scale-space" 
methods for some time; researchers in stochastic processes interested in self-similar processes, l/f 
noise, and fractals; speech processors interested ill efficient representation, event extraction, and 
mimicking the human auditory system. And the list goes on [ 13]. " 

Wavelets or "the principles of multiresolution analysis" are still the subject of intense research. 
It is however clear that it shows great promise for image compression (see Section 4.3). Indeed 
this kind of analysis -as can be seen in the above quote- has quite a long pedigree in image 
processing dating back to the early eighties [3,4,35] . What we have demonstrated in the 
previous section is that if an image can be expressed in terms of a spline basis then it can be 
reconstructed on our image synthesis hardware. In the remainder of this section we would like to 
show by referring to the literature on multiresolution analysis, some of which is very recent, that 
this can be a very powerful technique. 
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Figure 4: Image on Parabola Basis, Steps 0-8. The images on the leftside of each block are the remaillders after the encodings all the right have 
been slIblr([cted. The leftside images have beell scaled so that normalized pixels with the value of·] are black alld + I are white . Oil the right 0 is shown as 
black alld I as white, while negative values, which call exist in illtermediate images, are suppressed. The right hand images were execllled Oil Cl simulation 
of the difference ellgine. 



4.1. Wavelets and Spectral Analysis 

This is not a tutorial on wavelets: we simply wish to show the applicability of the field to our area 
of application . If we incidentally motivate readers unfamiliar with wavelets to study the subject 
then one of the numerous introductions that now exist can be consulted (even in the popular 
literature, see [9]). Particularly appropriate for our area of interest are [5,25], general 
introductions can be found in [10, 11,30] while useful collections of recent papers can be found 
in [6,12,29] ([6] contains a extensive bibliography). 

When the spectrum of a signal is to be obtained by Fourier analysis then all information about 
the signal, past and future, -00 to +00 in all dimensions, must be available. If the signal is altered 
in some small neighbourhood of a point then the whole Fourier spectrum is affected. Considered 
another way, if we know that a signal is exactly located as an impulse 8(t-to) at to then its 
spectrum is spread out over the whole frequency domain as e- ltoCJl

• Alternatively if we have an 
exact frequency then the location of the pure sinusoid is indeterminate. Wavelets offer a general 
compromise in this uncertainty relation, instead of basis functions with infinite support like sines 
and cosines they use bases with compact support, hence the terms "wavelets" or "ondelettes". 
An analogy are the notes used to score music : they specify a particular tone at a specified time 
with various scales of duration. 

An early example was the Gabor transform that offered the theoretically optimal combination 
of location in frequency and space for a fixed size window of uncertainty . Wavelets have a lower 
simultaneous accuracy in the two domains but have other advantages over early approaches. 
They automatically zoom in to a high frequency and locate it more accurately and they zoom out 
to a wide window to analyse low frequencies more accurately. Another characteristic of wavelets 
is that there is not a unique set, in fact there are infinitely many . We shall consider spline 
wavelets si nce they are useful for image compression and are suited to our decompression 
system. 

4.2. Multiresolution Analysis 

Wavelet bases are often defined from the data produced by a multiresolution analysis . 
A signal f(x) which is "well behaved" in a precise sense (E L 2) can be approximated at 

various resolutions 2j, j E Z. The approximation is achieved by a projection operator Pj which 
projects the function to a projection space Vj which has a Riesz basis 2 j/2 <P (2 j x-k) where k E Z 
and <p (x) E L 2. In this way we obtain a nested sequence of subs paces Vj such that . . . c Vo cV 1 C 

. . . c Vj C Vj+1 C ... cL 2 (Rd ) . The function <p is known as a scaling function or father wavelet. 
The difference information between two approximations of f(x) , Pj f E Vj and Pj+1 f E Vj+1 is 

given by the orthogonal projection Q/ onto the complement Wj of Vj in Vj+1. The spaces Wj 

contain the difference between the information at one resolution and the extra information at a 
higher resolution in a multiresolution analysis of the function . So we have: 

Vj G;l Wj = Vj+1 

Wjl Vj 

Qjt = Pj+1 f - p jt 

These spaces Wj are spanned by the wavelets '1', also known as the mother wavelet or analysing 
waveler. The <p and 'I' are related . It can be shown that {Pn} and {qn} exist such that: 

<1> (x) = L kPk <P (2x-k) 

'I' (x) = L k qk<P (2x-k) 

The <P are used for approximations and the 'I' for analysing the errors. 
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Multiresolution analysis can be done in terms of orthogonal or non-orthogonal basis functions. 
The former are fairly well understood [25] . The most common operations in image analysis 
however cannot be cast into the orthogonal wavelet framework . Orthogonal wavelets are complex 
non-symmetric functions whereas "nice" functions generate non-orthogonal wavelets. For this 
reason we will propose an investigation into non-orthogonal wavelets and multiresolution 
analysis [16, 17]. 

SpJine Wavelets 
A non-orthogonal class of wavelets can be obtained from the cardinal spline functions . In fact 
typical examples of the scaling functions <I> introduced above are the cardinal splines illustrated in 
Figure 3. A cardinal spline is a polynomial spline with equally spaced simple knots [5, 31 , 32] . 
The advantages of splines are: 

• The standard basis functions are B-splines that are all convolutions of the unit pulse (the zero 
order spline in Figure 5). 

• Smooth functions with compact support. 
• Simple analytic forms that are easy to compute and manipulate. 

-- ........ - _ _ 1""w-

"" . ... I . ... : :.\ \ .U 

Figure 5: Examples of Cardinal 8-Splines. 

4.3. Wavelet Compression of Images 

Many applications of wavelets to image compression have appeared [2, 14-16,34]. Some of the 
most interesting developments have been the papers by Mallat and colleagues who have 
investigated the "adaptive" compression of images where the compression depends on the 
detection of important features (edges) and building the compression around these [18,26,27]. 
That this accords with human perceptual predilections can be seen from the ease with which 
people recognize line drawings of objects which only show the edge features. These methods 
were able to compress the same image as we used in our example (Figure4) by factors of 
between 40 and 100 (::: 0.081 bits per pixel) .. 

There is a conjecture by David Marr [28] that if one detects all edg,es at all the scales then one 
can reconstruct the image with this information. Wavelets finally allow one to perform this kind 
of analysis. In [18] on second generation image coding the point is made that the same features 
are called "edges" at one resolution and " textures" at another. Thus if we stop at a particular 
resolution level the rest of the information that remains (the error term) can be called textures and 
one can use special encoding methods for those, since the human visual system is not so 
concerned about the locality of texture elements. 



5. Further Development 

Utilising the semi-orthogonal spline wavelets of Chui [5], we are implementing a wavelet 
decomposition. The scaling function is the quadratic B-spline; the corresponding spline wavelet 
is also expressed as a combination of B-splines [5] . Since we have quadratic patches spanning 
our lattice of data-points (due to the nature of the spline basis) we may take intensity-profile 
slices parallel to the x-axis and compose a suitable sequence of X processor instructions to 
interpolate these spans . As the resolution gets coarser, our quadratic spans encompass 
progressively more pixels and we can interpolate scan-lines with comparatively few instructions . 
Furthermore, due to the perceptual characteristics of the human visual system, we can quantize 
the detail signal coarsely and even set many of these wavelet coefficients to zero, thus making 
substantial compression gains. The lowest resolution signal can be downsampled (since it is 
effectively band-limited, having had most of its high-frequency content removed). By the 
sampling theorem, we can reconstruct the coarse signal and then, utilising our quantized 
coefficients, synthesize a good approximation to the original. 

Initial results, to be reported elsewhere, confirm the robustness of this approach - there is 
little discernible difference between the original and our reconstructed image. The error present, 
while negligible, can be eliminated if we adopt a true interpolation of our original intensity data, 
rather than a more economical (albeit less accurate) quasi-interpolation scheme. Details of such 
interpolation schemes are given in [7,8]. The ramifications of this approach will also be fully 
explored in a forthcoming paper. 

6. Conclusion 

We have shown how image reconstruction on a simple polynomial basis can be performed at very 
high speed using the in-house hardware developed for the raster graphics architecture. This 
should come as no surprise, since also the instructions generated by the area processor (Figure I) 
are expressions that describe various splines that are to be interpolated. In [23] we introduced a 
method for quadratic Phong shading via angular interpolation. The method leads to a 
parameterized piecewise quadratic expression for cosne, the cosine of an angle e (-rc/2 < e < rc/2) 
raised to a power n (1 ~ n ~ 125). The shape of the curve is very similar to a Gaussian (Figure 6) . 
Using this shading method an area primitive is coded in terms of a spline basis which is to be 
interpolated by the Difference Engine. 

The time the image reconstruction will take does not depend on the spacing of the knots in the 
splines (the lengths of the interpolation spans) but only on the number of knots . An image can be 
decompressed even at video rates provided that the number of knots are less than the number of 
pixels to be generated (by some fixed overhead per scanline) . 

This demonstration now opens the way for using this hardware to reconstruct images that have 
been coded with a wavelet transform. The wavelet transform is a multiresolution description of 
the image that can be decoded to yield more and more accurate reconstructions of an image. The 
transform also precisely locates high-frequency features in space and low-frequency signals in the 
frequency domain . In fact it is argued [14] that wavelet transforms perform better than the 
discrete cosine transform advocated by the JPEG standard, it fits in better with human perceptual 
aptitudes and is a more compact coding. 

We conclude from this that the Difference Engine may be used to perform the last steps in the 
process of image synthesis as well as in the process of image reconstruction. This may ultimately 
lead to display systems in which both the graphics pipeline and an image reconstruction engine 
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Figure 6: Quadratic Approximation of a Cosine to a Power Used for Phong Shading. The diagram 
shows the curve of cosn and the quadratic spline approximation of the same function. here n=8 but the 
approximation is valid for a wide range of n. The knot points of the splines are at -Xo. -x,. x, and Xo. A 
Gaussian curve (i.e .• a function of the form e-x" ) is shown which has the same value at the points - x,. 0 and 
+x, as the other curves. 

feed a Difference Engine which performs the necessary spline interpolation (Figure 7). 
It is interesting to observe that when Phong shaded images are synthesized with this 

architecture, that is, when it is used as it was intended, one gets a very efficient encoding of the 
images in terms of the quadratic 5) spline curve of Figure 3. Moreover the splines are exactly 
aligned with the edges of the (polygonized) contours in the image. A very efficient single 
resolution encoding! 

Graphics Engine 
Image 

Synlhesis 

Decoding Engine 
Image 

Reconstruction 

Difference Engine 
Spline 

InterpolaLion 

Figure 7: Multi-stream Spline Interpolation System. The architectllre of a display system ill which image 
synthesis and image reconstruction processes share a Difference Engine which performs spline interpolation 
fo r the final steps of image generatioll. 

It is clear that this use of the architecture for decoding wavelet co'mpressed images will be a 
very useful area for future research. It is apparent that non-orthogonal wavelets seem to be 
particularly promising. One major area will be adaptive or " intelligent" coding of images that 
make use of the techniques developed in low level computer vision. One would detect features 
which are "interesting" for human perception and optimize the coding of these. Only then can 
the very high compression ratios (> 100) looked for be achieved. 

Eventually the system might be used for speech decoding [33,36], finite element analysis and 
not just for image decoding. Finally it may be hoped that the investigation into wavelet image 

5) Anti-alias ing produces some complications, notably small pieces approx imated by cubic polynomials. 



coding techniques may in their turn provide useful spin-offs for image synthesis, one could think 

of new ways to do adaptive anti-aliasing and of representing textures . 
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