
A Parallel Accelerator for Generating Virtual Studio Sets 

A . V. Sahiner, P. Lefloch, A. D. Nimmo, Y. Paker 

ABSTRACT 
Recent developments in digital video techniques and the use of computers in video and 
television production provide new opportunities for programmes. Key technologies 
which embrace these developments are advanced computer graphics techniques for 
photorealistic rendering, image analysis and animation. Parallel processing provides 
the potential for practical utilization of these techniques. We describe current research 
in Electronic Set Design using high performance graphics workstations and a new 
parallel processing platform, for generating virtual studio sets. 

1.1 Introduction 

With the recent developments in digital video media there are many opportunities to use 
computers in video and television production. Computer generated logos and animated 
objects are now common in programmes we see every day. Advanced illumination models 
and rendering techniques, like ray tracing [5] and radiosity [2] permit the economic use of 
high-quality computer-generated images in the production process. However, the practi­
cal utilization of such techniques require high performance computation engines. Parallel 
processing has made the development of such engines possible. Multiple processor hard­
ware platforms built using high-performance processors such as lntel i860, transputers, 
and the Motorola MC96002 digital signal processor are already being used for this pur­
pose [3]. The European Community MONALlSA project, funded under the RACE II 
program is developing and integrating software and hardware technologies to enable the 
use of computer generated sets in telvision studio production and post-production. The use 
of virtual sets has the potential to dramatically reduce the costs of production and post­
production, whilst maintaining and increasing image quality. Current practice requires 
physical construction and dismantling of sets before and after each programme, which is 
an expensive operation. A demonstrator for the MONALISA project, called the ELSET 
(ELectronic SET) system, is currently under development. 

The ELSET system, in addition to the generation of high quality graphics and real­
time mixing facilities, will aim to provide image analysis based tools for foreground and 
background seperation, camera tracking and 3D model building. 

The ELSET hardware platform comprises a multiprocessor accelerator hosted by a 
high-performance Unix-based graphics workstation. An X Window System user interface 
based on the OSF /Motif toolkit provides access to the ELSET system; some of the ELSET 
tools run on the graphics workstation, while the accelerator is used for real-time camera 
tracking, real-time mixing, and high performance image processing and image synthesis. 
Unix provides a convenient front end to the ELSET system bringing in the benefits of open 
systems. As a result, the ELSET hardware can be readily networked with other systems, 
and commercially available software can easily be integrated with ELSET functionality. 

62 

http://www.eg.org
http://diglib.eg.org


A. V. Sahiner, P. Lefloch, A. D. Nimmo, Y. Paker 

1.2 The Hardware Accelerator 

The hardware accelerator comprises a pool of Motorola MC96002 digital signal processor 
boards closely coupled with an intelligent frame buffer system, shown in Figure 1.1. Each 
processor board has a MC96002 processor, 2 extension ports, and 2 banks of static RAM 
on it. The frame buffer consists of memory boards with a capacity of 128 Mbytes each. 
The processor pool is organized as a number of VSB Bus based clusters. Each cluster 
has a gateway processor with high speed access t o the frame buffer. FIFa buffered I/O 
processors are used to connect gateway processors to the frame buffer. There is also a 
purpose-built mixing device for use in the accelerator. 

Frame Buffer Video I/O 

; ; 

Mixing Device Processor Pool 

ELSET Accelerator 

I High-speed link 

FIGURE 1.1. Hardware accelerator for ELSET system 

A VME-based subsystem running on a Motorola MC68040-based processor board con­
trols the frame buffer and the related I/O activities. This subsystem is supported by the 
real-time OS9 operating system. Control of the peripherals for recording and displaying in 
real time, data transfer to and from the storage, and interfacing to other computer systems 
constitute some of the functionality provided by this subsystem. The frame buffer sub­
system can manage several independent data streams, input, output and input/output, 
in real-time, up to a data rate of 400 Mbytes/second. 

1.3 The Processor Pool and Compute Server 

The utilization of the processor pool as a high-level accelerator is based on the Self Adapt­
ing Parallel Servers (SAPS) model for parallelism [4]. In this model , the parallelism is 
encapsulated within compute-server objects. A server, when requested, executes multiple 
copies of an associated sequential procedure in parallel in Single Program Multiple Data 
(SPMD) mode. The data is provided by the client within the service request. The inter-



A Parallel Accelerator for Generating Virtual Studio Sets 

face between the application programs, as clients, and the parallel servers is conveniently 
hidden in the procedure call mechanism which is a well-understood facility to develop 
modular programs. 

Figure 1.2 illustrates a scenario where the processor pool runs three servers each with 
different functionality; since the processor pool is closely coupled with an intelligent frame 
buffer, the servers have high-speed video I/O capabilities. The services provided by the 
servers are shared by two programs running on separate workstations on the network. 
There is also an optional high-speed link provided between a workstation and the hardware 
accelerator. It must be noted that the number of processors used by each server and their 
internal organization is completely transparent to the application programs running on 
the workstations. The system software for ELSET provides the framework to create, run 
and utilize these servers. 

ELSET-A 

Intelligent Frame Buffer Video I/O 

t 
Processor Pool 

I SAPS I 
I I SAPS 2 

I I SAPS 3 
I 

tHigh-speed Unk I 
I I I Network 

" 

Workstation Workstation 

FIGURE 1.2. Compute-server using the SAPS model 

1.4 SPMD Parallelism and the SAPS Model 

SPMD mode parallelism provides a convenient framework for developing parallel applica­
tion software using sequential programming techniques. This allows application software 
already developed for sequential machines to be converted for parallel architectures, with­
out undergoing major changes. Consequently parallel program development is simplified; 
the bulk of a parallel program can be written in a conventional sequential style. 

Under the SAPS Model the creation of server blueprints is template based. A sequential 
procedure, function FO, automatically inherits the properties for SPMD mode parallelism 
when interfaced to a standard template. Note that parallelism is introduced by running 
multiple copies of the function, one copy per available processor, on the target multipro­
cessor, shown in Figure 1.3. Each copy runs with a different fragment of D as its data. 

64 



A. V. Sahiner, P. Lefloch, A. D. Nimmo, Y. Paker 

There are five basic operations which are crucial for SPMD mode parallelism: 

• decomposition of the application data D into data fragments Di 

• modification of the sequential program, for the insertion of communication primi­
tives 

• replication of the function on available processors 

• distribution of the data fragments to the running copies of the function 

• collection of the partial results I4. and recomposition of the final result R 

P coIl F(O.R1 

F 
D 

R 

I I I I I I 
I SAPS Support 

I : I L ; I I ; I 

~ITJ --·~W W iJ D ~ D, 
R R, 

I Workstation I I Processor. I I Processor, I 
Processor Pool 

FIGURE 1.3. SAPS model for SPMD parallelism 

In the SAPS model these operations are encapsulated within servers. The service pro­
vided by each server is supported by a user package to hide the details of service request 
and service provision interaction and data decomposition. The user package is a library of 
procedures which can be linked to client programs. The user package permits the service 
request to look like an ordinary procedure calL 

The communication requirements for data distribution to the task force of a server 
is achieved via the call back mechanism. Call backs are remote operations carried out by 
servers on shared data objects. Data handles, which are passed by the client to the server 
within the service request, are used for this purpose. The shared object layer allows the 
distribution of client data according to a specified decomposition and enables the collection 
and recomposition of results. 

1.4.1 Server Structure 

A server has a multi-process structure, shown in Figure 1.4. A dispatcher process and a 
pool of workers form a process farm where the dispatcher farms out work to workers and 



A Parallel Accelerator for Generating Virtual Studio Sets 

each worker, when it becomes idle, requests more work from the dispatcher process. It is 
the multiplicity of the workers that provide parallelism within the server. 

ITuk 
Monitorirc 

Server 

FIGURE 1.4. SAPS structure 

The structure of a server is completely transparent to its clients. Each server has two 
message communication access points; one manages service requests and is known as 
the service access point, the other monitors the processor resources and coordinates its 
resource usage with other computing agents, and is known as the resource management ac­
cess point. In the ELSET system implementation, all the software components for servers 
run on the control processor under OS9 except the worker processes. A pool manager 
and a name server are also implemented for an effective sharing of the pool by multiple 
servers. 

1.4.2 Shared Data Objects 

Under the SAPS model, shared data objects are introduced as a means of making the de­
composition details transparent to servers. It is one of the important properties of a server, 
that it can be built using a standard software template. Decomposition transparency is 
one of the preconditions for this, otherwise different decomposition strategies would re­
quire different templates. In addition, the shared data objects serve to meet additional 
communication protocol requirements between a server and its clients. The RPC protocol, 
although very flexible, is not powerful enough to serve as a protocol for parallelism by 
itself. 

The shared data object layer provides a flexible and uniform framework for the man­
agement of data within the ELSET system. A shared data object encapsulates client data 
which is accessible by server processes through a set of operations. These operations are 
invoked only by those processes which have data handles on the respective objects. Data 
handles are created when a rule, or a set of rules , is registered with an object. The client 

66 



A. V. Sahiner, P. Lefloch, A. D. Nimmo, Y. Paker 

then passes these handles to the server in the service request. Server processes can propa­
gate data handles among themselves by message passing. Figure 1.5 illustrates how input 
and output data handles are used by a server, to access data in the frame buffer, for data 
distribution and recomposition of results. 

Frame Buffer 

Processor, Processor, Processor Pool Processor. 

FIGURE 1.5. Data distribution using invocations on data handles 

1.5 ELSET System Software 

The system software modules for the ELSET system are being developed to run under 
three separate operating environments. The user interface runs on the Unix-based graphics 
workstation; processor pool management and server management run under OS9, which 
acts as the front-end to the intelligent frame buffer system; the parallel server execution 
environment runs under W-Kernel on the processor pool. W-Kernel is an operating system 
kernel built specifically for the MONALISA project to execute on the MC96002-based 
processor pool. Figure 1.6 shows the main system software modules and their relation­
ships. Interfaces between various software modules are implemented either as Unix/OS9 
communications or as OS9/W-Kernel communications. Unix/OS9 communications are 
programmed using TCP /IP sockets. For OS9/W-Kernel communications, a remote pro­
cedure call mechanism is used. 

1.5.1 The Graphics Host 

The software running on the graphics host consists of three OSF /Motif toolkit-based 
tools; the Object Browser, the System Adminstration Tool and the Command Tool. The 
object browser is used to create and register data objects with the ELSET system. This 
tool will later be extended for data decomposition purposes for parallelism. The System 



A Parallel Accelerator for Generating Virtual Studio Sets 

Graphics Workstation 
(UNIX) 

MC68040 
(OS9) 

MC96002 
(W-Kemel) 

FIGURE 1.6. Accelerator system software 

Adminstration Tool will be used for: 

• EL8ET system initialization 

• starting system management servers 

• switching between operational modes (real-time and non-real-time) 

• starting parallel servers and browsing the server library for this purpose 

• monitoring the processor pool 

• monitoring 089 activities 

The Command Tool will be used for: 

• utilising intelligent frame buffer functionality for video I/O 

• assigning application tasks to parallel servers running on the processor pool 

• managing real-time usage of the EL8ET system for camera tracking and mixing 

1.5.2 The 089-based Host 

089 [1] provides the host environment for utilization of the intelligent frame buffer, the 
processor pool, and the mixing subsystem. The system management processes for the 
EL8ET system therefore run in this environment. 

The object manager keeps track of all the data objects registered with the EL8ET 
system. The information kept within each object description. includes data type and ca­
harcteristics as well as the location of the object, and its decomposition properties. The 

68 



A. V. Sahiner, P. Lefloch, A. D. Nimmo, Y. Paker 

data required by the parallel servers during execution are fetched with the aid of the ob­
ject manager. Object manager has an interface with the Browser running on the graphics 
host. 

The ISP server is the system process that provides the services related to the usage of 
the ISP system (the intelligent frame buffer system). These services include operations 
such as reading a video sequence from a video input device, writing a video sequence to a 
video output device, and accessing the frame buffer in a random frame by frame manner. 
The command tool running on the graphics host is the front end to the ISP server. 

The pool manager is responsible for the initialising the processor pool and includes 
operations for resetting and booting W-Kernel. It also keeps track of processor loads, 
processor states and slot states. The resource management of parallel servers is done by 
the scheduler. It creates the workers for a particular server on a number of processors, 
and when required it terminates them. The administration tool, running on the graphics 
host, provides the user interface to the pool manager and the scheduler. 

The SAPS dispatcher is the process which carries out the distribution of the task load 
among the workers of a parallel server. It receives service requests from the applications 
running on the graphics host and dispatches the tasks accordingly to the workers running 
on the processor pool. The name server process is used for communication purposes; 
processes running on the graphics host fetch the por addresses for the OS9 system servers 
using the name server. It is also used for creating the ELSET system servers running under 
OS9. 

1.5.3 W-Kernel 

W-Kernel is an operating system kernel which provides process creation and process 
management functionality for parallel server execution on the processor pool. It also 
incorporates a communications layer for ISP to OS9 communications. W-Kernel, as an 
operating system kernel, provides the basic facilities to run slot-based processes. Since 
there is no hardware support for memory management, neither board-level nor chip-level, 
each process is run in a statically mapped memory environment called a slot. A program 
that will run in a particular slot has to be compiled and linked to be run explicitly in that 
slot. It is not possible to change dynamically, the target slot for an executable object. 
This is not a significant limitation for our purposes since we will build the parallel servers 
to run in predetermined slots. 

1.6 User Interface 

The user interface for the ELSET accelerator is provided by the X Window System and 
the OSF /Motif toolkit, incorporating a selection of widgets such as buttons, lists and 
drawing areas. The system administrator can boot, reset , and reboot processors in the 
pool by pressing respective buttons and selecting the required command. The status of 
each processor can be viewed in a window. The servers are started simply by selecting 
the required server in a browser and marking the start seTver command in the commands 
list. 

Utilization of the ELSET system is achieved with the Command Tool which incorpo­
rates a work area where various modules with different functionality can be connected to 



A Parallel Accelerator for Generating Virtual Studio Sets 

perform particular tasks. There are three classes of modules: 

• frame buffer modules are used to control video I/O devices and manage frame buffer 
files 

• active SAPS modules are used to utilize parallel servers running on the processor 
pool 

• SGI modules are used to utilize the facilities provided by the graphics workstation 

These modules are copied into the work area by simply selecting them from the module 
browsers. For example, using a combination of different modules, a sequence of images 
can be captured from a camera and stored in a file in the frame buffer; these images 
can then be processed by a SAPS in parallel and results can be displayed on a monitor 
and also recorded on a video recorder. The user of an ELSET system deals with the 
accelerator functionality at a module level and all the mechanisms for parallelism and 
message communication are completely transparent. 

1. 7 Conclusion 

An accelerator has been built to meet the computational requirements of compute in­
tensive graphics and image processing tasks of a computer-based virtual studio set gen­
eration system for television programme production. The accelerator is based on a pool 
of high performance processors, tightly-coupled with an intelligent frame buffer system. 
A client-server based computational model for parallelism, the SAPS model, is used to 
achieve parallelism in a modular fashion using sequential code. The model also supports an 
object-oriented scheme for data distribution which allows parallel servers running on the 
processor pool to use the fast video I/O capabilities of the ELSET hardware. The SAPS 
model provides a framework to transform the ELSET processor pool into a compute-server 
for computation ally intensive graphics and image processing tasks. It enables servers to be 
built in modular fashion using sequential code and it supports an object oriented scheme 
for data distribution. Utilisation of servers is similar to the concept of parallel software 
libraries in the sense that customized software which incorporates parallelism is shared or 
reused by different application programs. However, here the shared software is not linked 
to individual application programs but its functionality is provided as an active service 
by a run-time computing agent. Development work is continuing, for the implementation 
of radiosity, image analysis and image synthesis techniques, ?pecifically to take advantage 
of the ELSET hardware and system software. 

Acknowledgements: 

We wish to acknowledge the contributions of the other full partners in the MONALISA 
consortium; BBC, Daimler-Benz, DVS GmbH, University of the Balearic Islands, Uni­
versity of Hannover, Seimens, Thomson CSF-LER, YAP GmbH. We also wish to thank 
cooperating partners Silicon Graphics and TDI for consortium hardware and software 
provision and support . This work is supported by the European Community RACE II 
programme, project number R2052. 

70 



A. V. Sahiner, P. Lefloch , A. D. Nimmo, Y. Paker 

1.8 References 

[1] P. Dibble. OS9 insi9hts, an advanced programmers guide to OS9/68000. Microware 
Systems Corporation, 1988. 

[2] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. 
Modeling the Interaction of Light Between Diffuse Surfaces. In Proceedings of SIG­
GRAPH '84, pages 213- 222. ACM Press, July 1984. 

[3] P. Pitot. The VOXAR project. IEEE Computer Graphics and Applications, 13(1):27-
33, January 1993. 

[4] A. V. Sahiner. A computational model for parallelism. PhD thesis, The Polytechnic 
of Central London, 1991. 

[5] Turner Whitted. An Improved Illumination Model for Shaded Display. Communica­
tions of the ACM, 23(6):343- 349, June 1980. 


