
Distributed Frame Buffer for Rapid Dynamic Changes to
3D Scenes

Derek Coppen, Mel Slater, Allan Davison, David Hawes

ABSTRACT
This paper describes a distributed frame buffer architecture, based on the Tiling Al­
gorithm for dynamic modification, and designed to achieve fast display updates in
response to dynamic transformations of graphical objects. We report on the overall
architecture and some detailed design issues.

1.1 Introduction

Hardware for computer graphics usually focusses exclusively on the problem of how to
render as many polygons as possible per second, given the constraints of a particular
rendering model. When dynamic changes are made to a displayed scene, the strategy
usually adopted is to re-render the entire changed scene fast enough to give real-time
frame rates. This paper describes an alternative approach, designing and implementing
a graphics architecture which from the outset is designed to solve the dynamic changes
problem, and attempts to mi,nimise the amount of rendering caused by dynamic changes,
while still maintaining a fast overall polygon rendering rate. Our alternative strategy
employs a distributed frame buffer. This paper reports on work undertaken as a result of
the SERe funded project, Graphics Object Management with a Distributed Frame Buffer
(1989-91), reported in [2].

The distributed frame buffer is based on the tiling strategy, discussed in [3, 5, 4]. In this
method the display space is conceptually divided into a rectangular grid, where each grid
element is called a tile. Each tile references a set of identifiers of primitives (for example,
polygons) that pass through it. Initially each tile references an empty set. When an object
is added to the scene, the identifiers of its corresponding polygons are added to the sets of
the tiles which they cover. The collection of tiles intersected by the object is called its tile
set.

For hidden surface elimination, it is assumed that there is a Z-buffer. When an object.
is added to the scene the Z-buffer is updated in the usual way. When a target object
is to be removed from the display all Z-buffer values in its tile set are overwritten by
the maximum possible Z value. The target's identifiers are removed from its tile set.
The set of all identifiers of polygons stored in its tile set is called the Active Primitive (or Polygon) Set (APS). The primitives in the APS belong to those objects that are likely

to share display space with the target. Therefore all primitives in the APS are re-rendered,
but with 2D clipping to the tile set of the target. This clipping ensures that there is no
knock-on effect outside the range of the damaged area, and also, of course, minimises the
amount of redrawing necessary.

In the next section we discuss the basic ideas of the system. Section 1.3 gives the
hardware system overview. Section 1.4 discusses rendering, and Section 1.5 the current
status.

135

http://www.eg.org
http://diglib.eg.org

Derek Coppen, Mel Slater, Allan Davison, David Hawes

Vertex data
x,y,r,g,b,z

1 2

3 4

1 2

3 4

1 2

3 4

Screen tiled into 8x6

FIGURE 1.1. Tiled Polygons

1.2 Basic Ideas

The new work makes use of a distributed frame buffer, that is, where there are a number
of processors, each a,'>signed a number of tiles. The tiling algorithm used in this parallel
system differs somewhat from that outlined in the previous section, in order to make
effective use of the processors in the distributed frame buffer and to eliminate the need for
extensive communication between them. Previously damage repair was achieved by taking
all the tiles in the damaged area of the screen, combining all the lists of polygons in the
corresponding tiles to produce the APS of polygons which are then rendered after clipping
to the tile set. If this method were used on the parallel system the processors would need to
communicate with each other to access the tile and object lists. An alternative method was
therefore developed which does not require this coordination between processors during
rendering.

Each polygon which covers more than one tile is clipped to the boundaries of those tiles
to produce a set of fragments which are the parts of the polygon covering each individual
tile. These fragments are produced by a host interface processor and then distributed to
the processors controlling the tiles to which they correspond where they are stored for later
use. When damage repair is required, as a result of deleting an object from the display,
the processors controlling the tiles which the object covers are instructed to remove the
fragments representing that object and redraw all the other fragments in those tiles. In
this way the processors in the distributed frame buffer array can each render the scene
into their own sections of the frame buffer independently of one another. Figure 1.1 shows
an arbitrarily tiled screen with the number of renderers set at 4. The numbers indicate
the tile to renderer assignment.

136

1. Distributed Frame Buffer for Rapid Dynamic Changes to 3D Scenes

Perfonnance

1.0

0.15

0.5

0.25

\
~ ".R~d __

Damage Repair Performance

/

Load Balancing Perfonnance

2 4 8 16 32 64 128 256 512

Tile Size (Side of square)

FIGURE 1.2. Tile Factors

Great importance was placed on overall rendering efficiency and final rendered imag:
quality. These requirements were satisfied by the following:

It Tile size

• Shading

• Tile rendering

.. Anti-aliasing

., Screen double bu.ffering

1.2.1 Tile Size

Rendering simu.lations were undertaken on various animated scenes with different tile
sizes in an attempt to determine an optimal choice for tile size. Of course, any optimal
tile size is only actually valid for one particular scene! Figure 1.2 illustrates the three
major contributors to tile size determination.

To render any object not only do we have to transform it to the screen co-ordinates,
but we also have to clip it to the chosen tile size. Very small tiles are inefficient due to
the high cost of generating, clipping, and rendering many small polygon fragments. With
small tile sizes the effect is perceived as a reduction in raw rendering rate. In this case
large tile sizes are to be preferred.

Where polygon shape can be closely approximated by the tiling operation, the amount
of damage repair is reduced. Large tiles are inefficient as larger screen areas than necessary
have to be redrawn and so in this case, small tiles are indicated.

For a multi-renderer the choice of tile size affects load balancing. The load balance
between processors is lower for large tiles as most polygons will overlap a smaller number
of tiles. As in the previous case, small tiles are desirable.

137

Derek Coppen, Mel Slater, Allan Davison, David Hawes

Efficiency

0.75

0.5

0.25

2 4 8 16 32 64 128 256 512

Tile Size (Side of square)

FIGURE 1.3. Tile Rendering Efficiency

Taken together, the above three lead to the concept of tile efficiency, depicted inFig­
ure 1.3. The effect of different hardware implementations (which could cause a skew in
the graph) is not included in the diagram.

1.2.2 Shading

Gouraud shading was the minimum level of colour approximation acceptable. Phong shad­
ing would have been too difficult to implement within the time and cost constraints of the
project, however some thought was to be given to using a second order colour interpolation
technique.

1.2.3 Tile Rendering

The clipped polygons are rendered as trapezia with top and bottom edges horizontal. Some
scan conversion techniques, as in [6], first iterate along the edges containing the partially
covered pixels of a polygon and then subsequently convert the central, fully covered,
part. This approach was rejected as the edge iteration can be viewed as a large collection
of short lines which can be inefficient with some hardware. The trapezoid rendering in
this project was accomplished with a single pass with scan conversion being done left to
right.To simplify the stepping from line to line, scan conversion always starts with the
leftmost vertex so that some trapezia are scanned top to bottom and others, bottom to
top. No pixel count is kept for the length of each line; line scan conversion terminates
either when the tile boundary is encountered or when the horizontal scanning intersects
with an iteration trajectory of the right hand edge.

1.2.4 Anti-aliasing

An anti-aliased image was required so the opportunity was taken to extend the rendering
hardware to support this. Simulations of the following approach have shown good effect.
This is discussed fully in [1].

138

1. Distributed Frame Buffer for Rapid Dynamic Changes to 3D Scenes

yi-11......_.::...._~
x. 1

! - (a)
Pixel squares

(c)

Yi -
X,

1-

The area is equal
to the width at

Ihe rrid-point.

Assume this pixel
oolour lies below

.... __ II!IiIIII'I/s polygon

- - - (d) - - - - .

FIGURE 104. Anti-aliasing Techniques

Each pixel data, which contains colour and z information, was extended to include
a tag field. Where the pixel is fully covered the tag value is set to zero. For partially
covered pixels, the x and y error terms, which would normally be used to compute the
area coverage, are saved in the tag field along with the edge type, either left, right, top or
bottom. Essentially, the anti-aliasing is being deferred until later; in this case, when the
whole tile has been rendered. Anti-aliasing can then be achieved with a single pass over the
rendered image. Pixels with a zero tag value are left unaltered, whilst the underlying colour
of partially covered pixels is inferred by looking at the colour of one of the orthogonally
adjacent pixels, as directed by the tag edge entry. Colour mixing is then controlled by
the x and y error terms as for the usual pre-filtering, anti-aliasing approach. Figure 1.4
illustrates this.

There are two further extensions to this technique. First, where the pixel is less t.han 50
percent covere,d, only th~ tag data is updated, not the colour information, though this
variation is noted by an extra tag bit. Second, it is possible to flag, say, both left and right
edges passing through a single pixel so that lines of sub-pixel width may be rendered.

1.2.5 Screen Double Buffering

To achieve a flicker free display, screen double buffering is necessary. Given the tiling imple­
mentation it is possible to access the image to be displayed through a pointer indirection.
However, in general, there is a mis-mapping between the tile organisation and VRAM
memory architecture and in practice it is simpler to copy the whole screen using the
memory shift register as an intermediate buffer. This provides a gross copying rate of
more than 3G pixels/sec which allows screen updates to be achieved in frame blanking
time using the video shift registers which would otherwise be idle.

139

Derek Coppen, Mel Slater, Allan Davison, David Hawes

'.>."~lIjData Communicatiollll I'r~

Pixel

Control

Colour
Loolwp
Table

B
R

G

Pixel Bus B

FIGURE 1.5. System Overview

1.3 System Overview

Figure 1.5 shows the system overview. The communications processor simply broadcasts
the polygon information to all of the n renderers, where, in fact, n is 4. Each renderer
works on a subset of the screen tiles, transforming polygons that cross those tiles and also
performing the anti-aliasing computation on those tiles. The communications processor,
a TSOO, also controls hardware which selects and manages the pixel data streams applied
to the pixel data bus. For a feasibility study a small screen size of 512 x 512 pixels was
deemed sufficient and the correspondingly modest pixel rates allowed the pixel bus to
support just odd and even pixels only. That is, for S-bit red, green and blue colour values,
the pixel bus is 4S-bits wide.

1.4 Renderer Architechture

Each renderer, Figure 1.6, consists of a T800 transputer with 4M bytes of local memory,
an AD2105 16-bit fixed point DSP, triple ported video memory, and rendering hardware
based on the Xilinx 3000 range of logic cell array chips. With a multi-renderer design
the communication link structure of Transputers is particularly attractive as it makes
expansion of the the number of renderers straight forward. The reprogrammable nature
of the Xilinx components is also attractive as it allows incremental changes and improve­
ments without board-level hardware modifications.

The transputer performs the transformations and tile clipping required and it then
passes the polygon data, now with screen co-ordinates, through the FIFO to the DSP.
This directly controls 5 Xilinx chips; three for the colour incrementers, one for the Z depth
calculations, and one for address and tag generation. Starting values and first and second
order increments are computed by the DSP and although divisions are required, the small
tile sizes allow these to be calculated by multiplication by pre-computed inverses. Such
multiplications are single cycle operations.

140

1. Distributed Frame Buffer for Rapid Dynamic Changes to 3D Scenes

FIGURE 1.6. Renderer Block Diagram

The serial ports on the colour VRAM's are connected to the pixel bus, whilst the serial
port on the Z buffer memory feeds comparators used for determining the Z priority and
thus a Z read and write operation can be achieved within a single cycle. For practical
reasons the tag memory uses the same type of VRAM though the serial ports are un­
used. Experiments have shown that 16-bit Z depths produced results which were visually
unsatisfactory and so 24-bit depths are supported here. The tag memory is 16-bits wide.

After a tile has been completely rendered, control of the triple ported colour and tag
memory is passed back to the T800 for anti-aliasing.

1.5 Current Status

The rendering hardware is nearing completion and some estimates of expected perfor­
mance can be given. Low level rendering speeds are determined by the memory access
times and by the Xilinx throughput rates and together these indicate an upper limit
of 15M pixel/sec/renderer. Initial testing will be undertaken at 10M pixels/sec. There is
some scope for optimisation since where the polygon currently being rendered lies behind
an existing object only Z buffer memory reads and Xilinx operations are required. The
pr!~Tle limitation here is the speed of the Xilinx adders, the implementation of which has
been found to be inefficient.

Acknowledgements:

This work was supported by the UK Science and Engineerinlatg Research Council (SERC)
under grant number GR/F01741. Thanks to Andrew D. Nimmo for his help in preparing
the camera ready copy.

141

Derek Coppen, Mel Slater, Allan Davison, David Hawes

1.6 References

[1] D. Coppen, A. Davison, D. Hawes, and M. Slater. Anti-aliasing by postfiltering with
precomputed weights. In preparation, 1992.

[2] D. Hawes, M. Slater, A. Davison, and D. Coppen. Graphics object management with
a distributed frame buffer. Department of Computer Science report, Queen Mary
and Westfield College, Department of Computer Science, Queen Mary and Westfield
College, University of London, Mile End Road, London, E1 4NS, 1992.

[3] M. Slater. Segments on bit-mapped graphics displays. Software-Practice and Expe­
rience, 16(11):965-980, 1986.

[4] M. Slater. An Algorithm to Support 3D Interaction on Relatively Low Performance
Graphics Systems. Computers and Graphics, 16(3), 1992. Forthcoming.

[5] M. Slater, A. Davison, and M. Smith. Liberation from rectangles: a tiling method for
dynamic modification of objects on raster displays. In D. A. Duce and P. Jancene,
editors, Eurographics 88, pages 381-392. Eurographics, North-Holland, 1988. Repub­
lished in Computers and Graphics 13(1) 1989, pp83-89.

[6] R. W. Swanson and L. J. Thayer. A Fast Shaded-Polygon Renderer. Computer
Graphics, 20(4):95-100, 1986. Proceedings of SIGGRAPH '86.

142

