
ASICs for a High Performance IVIulti Processor System 
for Photo-realistic Image Synthesis 

Peter De Vijt, Luc Claesen, Hugo De Man 

ABSTRACT 
A number of ASIC architectures are presented to build a system for fast photo­
realistic rendering of complex images. Both ray tracing and radiosity algorithms can 
be used. The system consists of a number of custom and general purpose processors 
that communicate through a serial interface. The scene database is split into three 
disjoint data sets. Rays are passed between processors. The load is dynamically bal­
anced by means of a load balancing processor. Fine grain and coarse grain parallelism 
are exploited. 

1.1 Introduction 

Although computer systems become more powerful, realistic image synthesis still takes 
a large time to compute. A number of techniques can be used to speed up the image 
synthesis. (classical techniques). If all these techniques still don't result in the requested 
performance, some parts of the algorithm can be executed on special purpose hardware 
accelerators. 

In multiprocessor systems, the communication between the different processors and the 
partitioning of the data are critical issues. Performance degrades as the system is scaled 
upwards. A number of algorithms have been proposed to alleviate the communication and 
load balancing problem [2, 3, 4, 5, 8, 10]. These solutions however restrict the speed up 
techniques that can be used. 

In this paper a number of solutions are presented for building a system containing 
hardware accelerators. First the System design criteria are set up. Secondly the difference 
between hardware and software parallelism is investigated. Some solutions to the main 
performance bottlenecks are presented. Next a number of Application Specific Integrated 
Circuit (ASIC) architectures are presented that fulfill the design criteria and some system 
implementations are given. A number of system architectures ranging from small size to 
large size are discussed. Finally some conclusions are drawn. 

1.2 Systeln Design Criteria 

To be able to derive the specifications for the ASICs that will be used in a number of 
system configurations, a number of design criteria for a general system were set up: 

• The system should be flexible, modular and expandable. Reuse of the different ASICs 
should be possible. It should be possible to replace some of the ASICs by off the 
shelf components. The interface of the ASICs should therefore be plug in compatible 
with commercia'! systems. 

* The shading model and primitives should not be fixed or limited. It should be pos­
sible to use a number of different algorithms (ray tracing and radiosity) to generate 
the images. 

44 

http://www.eg.org
http://diglib.eg.org


Peter De Vijt, Lue Claesen, Hugo De l\Ian 

'" The total amount of data should be as low as possible. Replication of data in the 
local memory of all the processors should therefore be avoided. 

e The distribution of the data should not pose too many restrictions on the distJ.·i­
bution of the workload over the different processors. The load balancing should 
be determined by the load of the processors and should not be restricted by the 
availability of the data. 

• The system should be scalable. Communication between the different processors 
should be kept to a minimum. Congestion of networks is to be avoided. 

• The overhead for multiprocessing should be minimal. 

• The use of conventional techniques for reducing intersection calculations should not 
be restricted. ego the choice of the hierarchical data structure of the scene should be 
open and not fixed by a some load balancing method, data availability or system 
structure. 

1.3 Software vs Hardware parallelislll 

Although a number of good solutions exist for image generation on general purpose mul­
tiprocessor systems, none of these can be used for a system that consists of ASICs due 
to the different nature of the parallelism that can be exploited. The algorithms involved 
need to be changed for a successful implementation in silicon. 

The reason ASICs can outperform general purpose processors for a given application 
is that they can take into account the details of the algorithm. The hardware can be fine 
tuned for the algorithm. This is only possible when the algorithm is not too complex 
and consists of rather small functions which are repeatedly executed. In this case the 
hardware can be optimally used. If the algorithm is too complex, the specific aspects of 
this algorithm can not be taken into account due to spa.ce limita.tions. The functionality 
of the ASIC must then be general enough to be able to deal with the global algorithm. If 
an a.lgorithm consists of two functions AO and BO, the hardware should be able to deal 
with the smallest common multiple CO of the algorithm. Such an general implementation 
can take less specific information into account than an implementation that has separate 
hardware for functions AO and BO. If an algorithm is very complex the implementation in 
hardware will be so general tha.t it resembles a genera.! purpose processor and no speedup 
can be obtained. Since general purpose microprocessors benefit from a larger design effort 
(more manpower), technological advantages (smalJer transistor size) and larger flexibility 
(programmable), the algorithm should have enough specific aspects that can be exploited 
in silicon, to make an ASIC implementation a good solution. 

A complex a.lgorithm should therefore be split into smaller pieces if one is to preserve 
the speedup due to the specific aspects of the a.lgorithm. The different parts can then 
be implemented in fine tuned ASICs. Due to cost constraints, the number of ASICs will 
however be limited. There is a trade off between the number of ASICs and the complexity 
of the pa.rtial algorit.hms and thus the speedup. 

While a. general purpose multiprocessor system will genera11y perform the whole algo­
rithm for a given rayon one processor (with almost no communication), in a multipro­
cessor ASIC system the algorithm will be split in pieces which a.re executed on different 
processors. ASICs exploit fine grain parallelism, general purpose processors coarse grain 
parallelism. 

45 



ASICs for a High Performance Multi Processor System for Photo-realistic Image Synthesis 

The system can also be built in a hierarchical way. At a first level fine grain parallelism 
is used. At a second level, coarse grain parallelism as in general purpose systems can be 
used. 

Most parallel architectures for image synthesis can be classified in one of three classes: 
(a) no data flow between processors, (b) ray data flow, (c) object data flow. The first 
alternative is limited to small scenes and can not be used for ASICs due to the spilt of 
the algorithm into smaller entities. Communication is necessary. Which one of (b) and (c) 
is better depends on the overall system design. When passing rays (b), the rays may pass 
through several processors if some form of database partitioning is used. If the partitioning 
is limited, the communication is abo limited. On the other hand, the amount of data that 
needs to be passed is more important for (c). 

The split algorithm should satisfy three constraints: 

• The algorithm should be split in such a way that the different parts of the algorithm 
make the fine tuning of the ASICs possible. 

III The partial algorithms should have a maximum amount of localized data. This way 
these localized data can be kept in local memories. 

• The amount of data exchanged between the different parts should be minimal. This 
keeps the communication overhead minimal. 

A natural division of the algorithm, which satisfies the above constraints, will consist of 
three parts: shading, the candidate set construction and the primitive intersection calcu­
lation. The database for these three tasks is disjoint, only ray and intersection information 
needs to be passed between them. 

1.4 Performance Considerations 

In general the performance of a multiprocessor system is very sensible to scaling. The 
performance of a large system decreases rapidly as the system is scaled. To achieve an 
optimal performance and a scalable system, attention must be paid to a number of issues. 
These constraints are heavily interrelated and often contradict one another. 

1.4.1 Memory Management 

Most multi processor systems fall into three classes: shared memory~ duplicated memory or 
distributed memory. Shared memory is cheap but not well scalable. Duplicated memory 
is expensive and well scalable. Distributed memory is cheap but not well scalable and 
results in high communication. 

In this system a combined approach is chosen . .l\1emory is shared between processors as 
long as this does not prevent further scaling. If additional scaling is needed, the memory 
is distributed and further duplicated when needed. 

The database is divided into disjoint sets corresponding to the different sub tasks. This 
reduces memory contention for processors that execute a different task (eg. construction 
of the candidate sets and the intersection calculation) A number of processors share a 
common memory. Data are loaded into the local caches of each processor under control 
of a MMU. Since image generation represents a great deal of coherence, this approa,ch is 
useful. 

If a large number of processors is used, the cache hit ratio will eventually drop. This 
problem can be solved by dividing the processors into clusters and divide the data into 

46 



Peter De Vijt, Luc Claesen, Hugo De Man 

FIG URE 1.1. The processors share a common memory through caches. 

different sets. This way the coherence in the partial set will rise again. A drawback of this 
approach is that the load balancing has more constraints and becomes thus less effective. 

FIGURE 1.2. A cluster wit.h partit.ioned dat.a sets. 

If still more processors are llsed, super clusters can be formed with duplicated memory. 

I 
I 

-, i 
:j 
I 
I 

~----------------------------------------------------------------, , I I , 
. I I . , 1 I , 
i ' ~ , I I , 
, I 
!----------------------------------------------------------------~ 

FIGURE 1.:). A super clu~ter consisting of two clusters. 

1.4.2 The Communication Network 

In a multi processor en"ironment there is need for communication. A good communication 
network should be provided 10 manage the communication prohlems that usually arise in 
such an environment.. 

As a consequence of the split of the algorithm int.o different parts, communication 
bet.ween t.he ASrCs is necessary and can not be avoided. Therefore the algorithm should 

47 



ASICs for a High Performance Multi Processor System for Photo-realistic Image Synthesis 

be split in such a way that this communication overhead is minimal. This communication 
can only be further reduced by use of higher level calls (eg. intersect an object once with 
a beam of rays instead of multiple single ray calls) or by keeping static data local to each 
processor. 

Since ASICs exploit fine grain parallelism, there will be more communication than 
in a general purpose system exploiting coarse grain parallelism. The need for a good 
communication network is therefore very high. 

Communication is kept local. No "hopping stones" are allowed and a point to point 
network is provided. In view of the system design criteria asynchronous bidirectional full 
duplex transputer links are used. 

1.4.3 Load Balancing 

Load balancing in a multiprocessors system is very critical. If the load is not spread 
evenly over the different processors, the slowest processor will determine the speed and 
the speedup will be less than linear. The system will only be moderately scalable. 

In an ASIC environment. the load balancing becomes even more string~nt since the 
execution time / communication time will be smaller than in a gener~1 purpose 

multiprocessor system. If the scheduling of tIle operation on one of the available resources 
is not done with minimal delay, the communication time will determine the total execution 
time. Even if these operations can be pipelined, the time spent waiting for new data will 
determine the overall execution time. 

In an ASIC environment also fine grain parallelism is used. This means that the speed 
of the different processors must be matched to obtain optimal performance. Since the 
speed of some processors is unknown (future processors) or not fixed (eg. the number 
of iterations in the intersection ca.!culation depends on the data) some actions have to 
be taken. The mean processing power can be matched by using the right number of 
processors. Variations around this mean va.lue can be absorbed by buffering. This will 
however introduce some latency. 

Notice that at this level the load balancing and speed up techniques are not interrelated. 
In a. larger system, the load balancing of the higher level can influenced by the choice of 
the speed up technique. 

105 The ASIC architectures 

1.5.1 The Intersection Processor 

In the past there have been a number of attempts to build a intersection processor for 
bicubic patches [6, 7, 1, 9J. To be able to ta.ke the specific aspects of the intersection 
algorithm into account, different primitives need to be intersected on different intersection 
processors (IP). Since the interface to the custom processors is a general T800 link, less 
used primitives can be intersected on a general purpose transputer. 

Currently an implementation for an intersection processor for Bernstein patches is be­
ing investigated into. The ASIC accepts a. ray and a pointer to a patch through a serial 
interface. The ray is then transformed from floating point into an internal data format. 
The patch data (which have already been transformed during a preprocessing step) are 
read in through a 24 bit data bus. The transformation guarantees in most cases an equiv­
alent accuracy of a 32 bit floating point implementation (IEEE 754). The intersection is 
calculated with an iterative algorithm. The number of iterations can be defined by the 
user and is also derived from the incoming data. The chip is able to elea] with three inter-

48 



Peter De Vijt, Luc Claesen, Hugo De 1\lan 

section calculations at the same time. The internal data stack is managed with an internal 
memory management unit. Data are stored in an internal cache according to a scheme 
that optimizes a cache hit for this particular algorithm. Overwritten data are recalculated 
when needed. The closest intersection is reported in different formats (real world space, 
parameter space) and the normal is calculated when needed. 

1.5.2 The Candidate Set Processor 

Some preliminary studies have been done for this candidate set processor (CSP). The 
algorithm used will be a combination of different algorithms (space partitioning and hi­
erarchical data structure). The influence of multi processing on this algorithm has to be 
further studied in depth before an implementation can be made. Especially the access of 
the data seems to restrict the speed, more than the work involved to calculate the next 
set of candidates. 

The different intersections reported by the intersection processors have to be compared. 
If there is no intersection a new set of candidates has to be calculated. The closest inter­
section is then reported back to the rendering processor. 

1.5.3 The Load Balancing Processor 

The Load Balancing Processor (LBP) has 16 bidirectional full duplex links. With each 
link is a link type associated depending on the processor type that is attached to this 
link. There can be multiple instances of a certain type of link. There are also 4 links to 
Memory Management Units (ivIMU). The LBP has a private data space to temporarily 
store messages before routing. 

Incoming messages contain a link type to which the message can be send. The LBP 
puts this message in the queue for that type of link if there is still room available. When 
a slave processor requests data, the queue associated with tha.t link type is checked. If 
the queue is non empty, a new message is fetched from memory. A message is sent to 
the MMU to make sure that the appropriate data are availahle to the slave processor. 
The new address is put into the message, and the message is transmitted. Since multiple 
slave processors can share the same queue, the load is automatically balanced over these 
processors. 

A first version without interface to a IvlMU has been designed in 2.4 J-1 standard cell 
technology. There still needs to be further investigation on how a MMU interface can be 
implemented as a general purpose interface (incorporating a sort of data flow mechanism) 
so that there are no restrictions 011 the number of ivlMUs. 

1.5.4 The Memory l\'ia.nagement Unit 

The memory management unit can be straightforward. A LRU scheme will be used to fill 
up the pages. Page size and number of different memories can be set up. Since the MMU 
is to work in a multi processor system not only requests for data need to be sent but also 
release of data needs to be reported. 

It will be possible to control different memories from one l\fMU. Different processors 
can share a common MMU (four links are provided). 

L6 System Configurations 

The ASICs are designed in such a way that a number of system architectures are possible 
(ranging from basic configuration to a large size configuration). At each level a number 

49 



ASICs for a High Performance l\1ulti Processor System for Photo-realistic Image Synthesis 

of memory configurations are possible. 

1.6.1 Memory Configurations 

The memory of the system can be set up in many different ways: 

4} memory duplication: this provides good load balancing and scaling problems are 
low but the cost of the system becomes very high for large scale implementations 

• memory distribution: this puts constraints on load balancing since not all data are 
available to each processor. This approach is acceptable for small size systems but 
the load balancing becomes poorer with scaling 

• cached memory: the data are loaded from a number of global memories into local 
caches under control of a MMU. The load balancing is good, but the hit ratio will 
determine the scaling. A number of configurations exist: multiple MMUs can be 
attached to each LBP, multiple LBPs can share a MMU, each MMU can control 
multiple memories 

1.6.2 Basic Configuration 

The basic configuration consists of a transputer a CSP and an IP. The data are split 
into three disjoint sets according to the operations involved. Each ASIC has a full set of 
memory. 

1.6.3 Medium Size Configuration 

This system consists of a set of clusters of processors interconnected by LBPs. At a first 
level general purpose processors generate rays and calculate the rendering equations. Pixel 
colors are reported over a common bus. Spawned rays are collected and redistributed to a 
second level in a LBP. This second level the candidate sets are ca.lculated. The requests for 
intersection calculation are collected in a second LBP and distributed over the different 
IPs. The interface between each level can consist of one or more LBPs that can have 
common MMUs. 

At each level the data can be stored in a number of memory configurations. Since 
the optical information is small compared to other information, it can eg be copied into 
different memories. The hierarchical data structure can be shared or split depending on 
the number of CSPs. Clusters of processors can be formed that have common access to 
a part of this hierarchical data structure. Splitting the memory results in less memory 
contention problems, but put extra constraints on the load balancing. The ASICs are 
however flexible enough to implement both systems. 

1.6.4 Large Size Configuration 

vVhen a very large number of processors is needed, super dusters can be formed. Each 
super cluster has a configuration of the medium size configuration and thus a complete 
copy of the entire data set. If needed some LBPs and MlvlUs can be shared bet\veen 
clusters. 

1.7 Conclusions 

In this paper a high performance mulLi processor system architecture for image synthesis 
has been described. The constraints that influence the performance of the system have 

50 



Peter De Vijt, Luc Claesen, Hugo De Man 

host 

FIGURE 1.4_ example of a medium size system 

been investigated and a. number of solutions have been proposed. A set of ASIC archi­
tectures has been presented that can he used as building blocks for a high performance 
system. The system is very flexible and expandable_ Depending on the requested speed 
and available processors a full cust.om syst.em ca.ll be built. 

1.8 Rderf'llCCS 

[1] Kadi I3011at.ollch, Yanni('k Saolltcr, and Jean Charks Candela_ A vlsi chip for ray 
tracing hicubic patches. III \\1. Hansmann, F. H. A. Hopgood, and \V. Strasser, 
edit.ors, Eurogrnphics 89, pages 107 - 124, 1989. 

[2] John C. Cleary, Brian f,,1. \\'yvill, Craham M. Birtwist1c, and Reddy YaHi. Multi­
pro('essor ray tracillg. COlllput(r Graphics Forum, -5(1)::1 - 12, March 1986. 

[:3J Hiroaki Kobayashi. Tadao Nakamura, and Yoshiharu Shigci. Parallel pro('essing of 
an ohject space for i mag(' synt.hesis usi ng ray t.raci ng. The Visual Compu t CT, 3: 1:3 --
22, 1987. 

[4] IIiroaki h:obayai-ihi, SaJoshi Nishimura, lIideyuki Kubota, Tadao Nakamura, and 
Yoshihara Shigci. Load balall('ing st.rategies for a parallel ray-tra('ing systcrn based 
on constant subdi,-isiol1. The j',si/al Computer, 4:197 - 209,1988. 

[.5] Thierry Priol and J\adi Bouatouch. Static load balancing for a parallel ray tracing 
on a mimd hypcrclliw. TIll '-i8//01 COli/pI/hI', .'):109 - 119, 1989. 

[6] R.W. Pullcyblallk a.lld J. l\ap<:'llga. TIl(' fcasabiliLy of a a vlsi chip for ray tracing 
bicubic patches. lEEl:' COllljiuter (,'J"{JfJhics and Applications, 7(:3)::33 - :1:1, 1987. 

51 



ASICs for a High Performance Multi Processor System for Photo-realistic Image Synthesis 

[7] R.W. Pulleyblank and J. Kapenga. A vlsi chip for ray tracing bicubic patches. In 
W. Strasser, editor, Advances in Computer Graphics Hardware I, pages 125 - 140, 
1987. 

[8] Isaac D. Scherson and Elisha Caspary. Multiporcessing for ray tracing: a hierarchical 
self-balancing approach. The Visual Computer, 4:188 - 196, 1988. 

[9] Bengt-Olaf Schneider. Ray tracing rational b-spline patches in vlsi. In A.A.M. Kuijk 
and W. Strasser, editors, Advances in Computer Graphics Hardware II, pages 47 -
62, 1988. 

[10] Li-Sheng Shen and Ed F. Deprettere. A new space partitioning technique t.o support 
a highly pipelined parallel architecture for the radiosity method. In E.F. Deprettere 
and A.-J. van der Veen, editors, Alg01'ithms and Parallel VLSI Architectures, Volume 
B: Proceedings, pages 435- 444, 1991. 

52 


