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ABSTRACT

Polygon clipping is a central part of image generation and image visualization sys-
tems. In spite of its algorithmic simplicity it consumes a considerable amount of
hardware or software resources. Polygon clipping performance is dominated by two
processes: intersection calculations and data transfers.

The paper analyzes the prevalent Sutherland-Hodgman algorithm for polygon clip-
ping and identifies cases for which this algorithm performs inefficiently. Such cases
are characterized by subsequent vertices in the input polygon that share a common
region, e. g. a common halfspace. A
The paper will present new techniques that detect such constellations and simplify
the input polygon such that the Sutherland-Hodgman algorithm runs more efficiently.
Blcck diagrams and pseudo-code demonstrate that the new techniques are well suited
for both hardware and software implementations.

Finally, the paper discusses the results of a prototype implementation of the pre-
sented techniques. The analysis compares the performance of the new techniques
to the traditional Sutherland-Hodgman algorithm for different test scenes. The new
techniques reduce the number data transfers by up to 90 % and the number of inter-
section calculations by up to 60 %.
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1.1 Introduction

Clipping i1s an important step in the process of displaying a computer-generated scene.
It removes portions of objects lying outside a viewing area (window) or a viewing vol-
ume (frustum). In this paper we will restrict ourselves to polygonal objects and to con-
vex, polyhedral clipping volumes which are typical for today’s high-performance graphics
workstations.

Several algorithms for line and polygon clipping have been published in the past [2, 3].
However, most of these algorithms suffer from serious drawbacks. Some of them do not
handle all cases correctly, others are specifically tailored to two-dimensional clipping areas
(windows) and do not easily scale to three (or more) dimensions. The Sutherland-Hodgman
algorithm [4] is the only simple and general clipping algorithm, making it the prevalent
clipping algorithm in graphics workstations.

Polygon clipping is a central step in the graphics pipeline and despite the simplicity
of the algorithm a considerable amount of hardware (or CPU cycles) is dedicated to this
step. Therefore, any improvement in the efficiency of the algorithm has a direct impact
on the performance of the graphics system. This paper will present several techniques to
improve the performance of the clipping process.

The outline of the paper is as follows. In section 1.2 we will analyze the Sutherland-Hodgman
algorithm for polygon clipping and identify cases that it handles inefliciently. Section 1.3
presents several ways to overcome these inefficiencies. In section 1.4 we will show that
the new method can be easily implemented in hardware. Finally, in section 1.5 we will
compare the new algorithms to existing methods.
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FIGURE 1.1. Pipeline of Sutherland-Hodgman clipping stages. The big circles show how each
clipping applies its clipping plane to the respective mput polygon.

1.2 The Sutherland-Hodgman Algorithm

In this section we will first give a short description of the Sutherland-Hodgman algorithm
and highlight certain characteristics of this algorithm. It should be noted that all remarks
and observations apply to both 2D and 3D cases and an arbitrary number of clipping
planes.
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1.2.1 Basic Algorithm

The input to the Sutherland-Hodgman algorithm is a set of clipping planes ¢;...¢, and
an input polygon P described by its vertices po...pm. The algorithm produces an output
polygon Q = ¢q; . .. ¢, in the same format. Ideally, the output polygon is the intersection of
the input polygon with the viewing volume. In practice however, the Sutherland-Hodgman
algorithm can produce degeneracies which we will discuss later.

The algorithm can be best understood when described as a pipeline of clipping stages,
each of which clips its input polygon against one of the clipping planes (fig. 1.1). However,
the algorithm may also be implemented in software using only one routine that is called
recursively, as it was originally described in [4].

S lag. P,
®P,  Clipping S
Plane

visible
clipped

FIGURE 1.2. Edge processing by the Sutherland-Hodgman algorithm. The input vertex is shown
as a solid disk. Qutput vertices are enclosed in a diamond marker.

Fig. 1.2 explains how the vertices of the output polygon are generated {rom the input
vertices. The algorithm stores the last vertex as the vertex s (saved), the current vertex
1s called p. If the edge s — p intersects the clipping plane the algerithm computes and
outputs the intersection point i. The vertex p is output if it is on the visible side of the
clipping plane.

The first vertex of the input polygon is output if it is inside the clipping window and
then stored both in s and the variable start. After the last vertex of the input polygon
has been processed a special step is executed to close the output polygon by connecting
the saved vertex s with the first input vertex start.

1.2.2  Characteristics of the Sutherland-Hodgman Algorithm

The Sutherland-Hodgman algorithm requires for each stage, i.e. {or each clipping plane,
local storage for two vertices: the start vertex start and the previous (saved) vertex s.
Furthermore, each clipping stage maintains a flag first indicating whether the next vertex
begins a new polygon.

For later use we will note the following properties of the Sutherland-Hodgman algo-
rithm:

P1 Each clipping stage ¢; initializes its local variable start; to the first vertex it receives.
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Since each clipping stage forwards only visible vertices to the next stage all start,
...start; are initialized to po, where ¢; is the first clipping plane that clips po.

P2 Similarly to property P1 we observe that the saved vertex s; initially assumes the

same value as start;. Later, it always contains the last vertex received by clipping
stage 7. Assuming that a vertex py is visible for the first j clipping planes, s; = p;
fort=1...7.

P3 It is known that the Sutherland-Hodgman algorithm can produce degenerate polyons

[2], i. e. polygons with collinear edges, if the input polygon is concave. These degen-
eracies occur when the clipping plane splits the input polygon into several disjoint
pieces and two or more of these pieces are on the visible side of the plane. Then, the
algorithm connects these pieces with collinear edges. For some polygons it depends
on the order in which the clipping planes are applied whether such degeneracies
occur.

Degenerate output polygons are of no concern if they are processed further by
a scan-conversion algorithm. Usually, these algorithm do not produce pixels for
these zero-area portions of the polygon, thus preventing them from being displayed.
However, if the output polygon is displayed as a wireframe by drawing its edges,
these degeneracies have to be removed explicitly in a postprocessing step.

For a given number of input vertices, the execution time of the Sutherland-Hodgman

algorithm is determined by several factors:

2)

1. Calculations to determine the intersection of an edge with a clipping plane. These

calculations are usually performed as floating point calculations and are therefore
expensive.

. Transferring vertices from one clipping stage to the next. These costs occur either in

the form of physical data transfers between hardware components or as (recursive)
procedure calls for software implementations.

. Tests to determine on which side of the clipping plane a vertex lies. Although these

tests can be reduced to simple bit tests by properly preprocessing the input vertices,
these tests can amount to a considerable number of CPU cycles if the algorithm is
implemented using software.
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FIGURE 1.3. Polygons that could be treated trivially. The Sutherland-Hodgman algorithm pro-
cesses for these cases inefficiently. In ¢) the numbers indicate the sequences in which the clipping planes

are applied.
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The Sutherland-Hodgman algorithm is not optimized for trivial cases, i.e. polygons
that can be accepted or rejected, entirely or in part, without performing any expen-
sive computations, tests, or communication. Fig. 1.3 shows some examples that the
Sutherland-Hodgman algorithm handles in a suboptimal way. For example, the polygon
in fig. 1.3c would be rejected only after up to four intersection calculations although it
could be rejected immediately by checking against clipping plane 4.

1.3 Polygon Simplification

In this section we will briefly discuss a previously published technique for improving the
efficiency of the Sutherland-Hodgman algorithm. We will then present two new techniques
that offer significant performance advantages over this technique.

Simplification Clipping

Input Polygon Output Polygon

FIGURE 1.4. Principle of polygon preprocessing for optimizing clipping performance. The
preprocessor simplifies the input polygon by removing all vertices/edges that can be handled trivially.

All techniques split the clipping process into a preprocessing step and the actual clip-
ping step. During preprocessing the input polygon P is inspected for edge (vertex pair)
sequences that can be accepted or rejected trivially. Such vertices are taken care of im-
mediately and removed from the input polygon, thus producing a simplified polygon R
that only contains non-trivial edges. The simplified polygon is then handed over to the
standard Sutherland-Hodgman algorithm (fig. 1.4).

The following techniques differ in how many trivial cases are detected and processed
during the preprocessing step. The first two methods only find trivial edge sequences at
the beginning of the vertex list describing the input polygon. The third method is able to
detect trivial case also in the middle and at the end of the input polygon.

1.3.1  Common Subspace Technique (CS)

This techmque was first reparted i {{] and is probably used in a number of Silicon Graph-
ics waorkstations. The method operates in two modes: simplification mode and clipping
mode. For each polygon the technique starts in simplification mode and checks {for a se-
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quence of vertices po . .. px that are all in the same subspace.? Depending on the subspace,
vertices are immediately rejected or accepted.

Once the technique encounters a vertex ppyp in a different subspace, it switches to
clipping mode and initializes the state variables of the Sutherland-Hodgman algorithm (s
and start) according to properties P1 and P2:

starty = pg

S = P

fors = 1...g

where clipping plane ¢; is the first clipping plane that rejects the vertices po...px. This
initializes the clipping stages to the same state as if the vertices pg ... px had been actually
processed by the Sutherland-Hodgman clipping algorithm instead of being handled by the
preprocessing stage.

Then, starting with the vertex pr; all incoming vertices pry1 ... p, are processed using
the standard Sutherland-Hodgman clipping algorithm. Fig. 1.5a) shows an example of the
simplification performed by the CS method.

The preprocessor for the CS method must maintain a certain amount of state information:®
It stores the first input vertex pg in the variable START and the last processed vertex
in the variable S. Furthermore, it maintains three flags, indicating whether the method
operates in simplification mode or in clipping mode (MODE), whether a vertex is the first
vertex of a new polygon (FIRST), and whether vertices are trivially rejected or accepted
(REJECT). The state variable EDGE is initially reset and is set as soon as at least two
vertices were found in the common subspace. Then the Sutherland-Hodgman stages must
be initialized to the last vertex in this subspace in order to process correctly the edge
leaving the subspace. Finally, the algorithm uses the variable REGION to remember the
common subspace.

We can make the following observations:

o A very small set of state information must be kept for preprocessing the input
polygon.

e The efficiency of the method depends on the polygon’s starting point. In the worst
case the algorithm performs no simplification at all, although the polygon contains
a series of vertices in a common subspace.

e The CS method can reduce the number of tests and data transfers (procedure calls),
provided it simplifies the input polygon.

e It does not reduce the number of intersection calculations, because the standard
Sutherland-Hodgman algorithm is started as soon as the common subspace is left,
1.e. the polygon intersects a clipping plane.

e Even with an optimal choice for the starting vertex pg this method will only remove
one sequence of vertices, although the input polygon might contain several sequences
of vertices in common subspaces.

2 A subspace is defined as the set of points in space that share the same in/out classification with respect to all
clipping planes. In the 2D examples in this paper there are 9 subspaces: the clipping region and 8 regions around
the clipping region. For the standard 3D viewing frustum there are 27 subspaces.

In this paper we will use capitalized names for variables used by the preprocessor, and lower case names for
variables used in the Sutherland-Hodgman clipping stages.
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FIGURE 1.5. Comparison of the different simplification techniques. The polygons on the bottom
show the results of the simplification step. These polygons are sent to the Sutherland-Hodgman algorithm.

1.3.2 Common Halfspace Technique (CH)

The following technique is similar to the CS technique. However, it has the potential for
reducing the number of intersection calculations. It achieves this by checking for a sequence
of wvertices po...pr that are either in the viewing volume or in a common halfspace.*
We will refer to the common region when we mean “the viewing volume or a common
halfspace”. The sequence of vertices pg...pr sharing a common region is simplified to
the edge po — pr and then processed further by the Sutherland-Hodgman algorithm.
Fig. 1.5b) shows an example.

Special care must be taken when switching from simplification mode to clipping mode. If
po and py are in different subspaces we must compute the point(s) of intersection between
the edge po — pir and the clipping plane(s) separating those subspaces. Therefore, we
initialize as follows: '

start; = pg
po if pg and py are in
s = different subspaces
v pi il po and pp are

the same subspace
fore = 1...J

where c; is the first clipping plane that rejects po. In the first case (different subspaces) the
Sutherland-Hodgman clipping stages are initialized as if they had only processed vertex
po of the simplified polygon R : po, pi, pit1 - - - pm- Consequently, the vertices pyi ... p,, are
sent to the Sutherland-Hodgman clipping stages. On the other hand, if pg and pj lie in the
same subspace, the Sutherland-Hodgman clipping stage are set up as if they had already
processed the vertices py and p;. Therefore, only the remaining vertices piyq ... pm need
to be processed by the Sutherland-Hodgman algorithin.

The state information maintained by the preprocessing stage is the same as for the CS
technique. However, instead of storing the common subspace the common region is stored.

The CH technique exhibits the following characteristic behavior:

* A halfspace is formed by all points in space that lie on the rejection side of a clipping plane. Note that points
can lie in more than one halfspace.
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e A very small set of state information must be kept for preprocessing the input

polygon.

e As the CS technique, this technique also depends on the polygons starting point.
However, the CH technique considers more points for trivial rejections than the CS
technique, thus increasing the probability of simplifying the input polygon.

e Because the CH technique is more likely to simplify the input polygon, there is also
an increased chance of reducing the number of clipping steps, and thus the number
of tests and data transfers.

e The CH method can reduce the number of intersection calculations. It can remove
points in different subspaces from the input polygon, thus eliminating edges that
cross clipping planes.

e In some cases the CH method can reduce or eliminate the number of degenerate
edges in the output polygon. This happens when the input polygon was simplified
to a convex polygon or a polygon with less concave points.® -

¢ Even with an optimal choice for the starting vertex pg this method will only remove
one sequence of vertices, although the input polygon might contain several sequences
of vertices in common regions.

1.3.3 Multiple Common H%L]fspaces Technique (MCH)

We will now discuss an extension to the CH technique that can remove several vertex
sequences each of which lies in a common region. The preprocessor toggles between re-
ject mode and accept mode. In each mode the input polygon is checked for consecutive
vertices that lie within the acceptance region (accept mode) or share a common halfspace
(reject mode). Such vertices are accepted or rejected immediately without starting the
Sutherland-Hodgman algorithm. If a vertex is found that cannot be handled trivially,
it is passed to the Sutherland-Hodgman clipping stages and, if necessary, the algorithm
switches modes.

The MCH technique simplifies each of the vertex sequences p;...p;1r in a common
region to the edge p; — p;4«. This edge is processed by the Sutherland-Hodgman clipping
algorithm before the vertex piyi41 lying in the next halfspace {(or in the viewing volume)
1s sent to the clipping stages.

The flag EDGFE is set whenever the input polygon contains at least two vertices, i.e. an
edge, in a common region. The value of EDGFE controls whether the last vertex in the
common region is sent to the Sutherland-Hodgman algorithm (EDGE set) or not (EDGE
reset).

The variable CLIPPED is set if any input vertex was sent to the clipping stages,
1.e. whether the common region was left. The final step in processing the input poly-
gon is connecting the last vertex p,, with the first vertex pg. If both vertices lie in a
common region, we have to distinguish two cases: If all other vertices p;...pn_; were
also contained in this region, the last vertex can be trivially accepted or rejected. On the
other hand, if the input polygon is contained in more than one region (CLIPPED set), the
edge pm — po must be clipped explicitly, because, based on the available information, we
cannot distinguish between polygons enclosing the clipping area and polygons wrapping

At a concave point the adjacent edges enclose an angle greater than 180°.
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around the clipping area. Fig. 1.5c) gives an example of a polygon clipped using the MCH
technique.

The fact that the MCH technique is not restricted to simplifying only the first vertex
sequence in a common region makes it the most powerful of the three techniques discussed

in this paper:
e A small set of state information is kept for preprocessing the input polygon.

e The algoritiun depends less on the choice of the starting vertex py than the CS
and CH techniques. There is still the chance that a bad choice of py will prevent
simplification. This happens when p is the middle vertex of three vertices in a
common region.

e The MCH technique has the potential for significant savings in clipping steps,
i.e. tests and data transfers. '

e The MCH technique has the largest potential for reducing the amount of intersection
calculations.

e This technique inherits from the CH technique that it can reduce the number of
degenerate edges in the output polygon.

1.3.4 Comparison

Table 1.1 summarizes qualitatively the amount of performance improvement achievable
with each of the techniques.

Technique o Reduction of . .
Communication Tests Intersections  Degeneracies

CS + + - -

CH t + ++ +

MCH . T+ iy N

TABLE 1.1. Qualitative comparison of the different preprocessing techniques. The columns show
possible performance improvements for reducing the communication, the number of tests, the number of
intersection calculations, and the number degeneracies in the output polygon. The techniques are ranked
according to whether they provide no (=), some (+), or significant (++) reductions.

As expected both the CH and the MCH techniques are superior to the CS technique
because they have the potential to reduce the number of intersection calculations and the
number of degeneracies in the output polygon. Section 1.5 will confirm these assertions
with experimental results.

1.4 Hardware Implementation

Thiz section presents the overall architecture for implementing the three techniques pre-
sented in the previous section.

Fig 1.6 shows the block diagram of a circuit that implements the techniques CS and CH.
The main components are registers for storing vertices and the common region. For the CS
technique common regions are formed by subspaces, while for the CH technique common
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FIGURE 1.6. Block diagram of a preprocessor the CS/CH technique.
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FIGURE 1.7. Details of the block proc_region. (a) for CS technique. (b) for CH/MCH technique. The
AND-Gate provides a bit-wise AND function over its inputs.
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regions are halfspaces. The block proc_region compares the subspace of the incoming vertex
with the stored common region and reports this result to the Controller. The details of this
block are different for the techniques CS and CH (see fig. 1.7). Depending on this result
and the current state, the controller updates the vertex registers and propagates vertices
to the output. The Controller PLA has 7 inputs, 13 outputs, and about 13 product terms.

coordinates & subspace
of points in P command

(@) (@]

;1' 2 4}{
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OUTPUT ! I
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y
[ (@)

vertex tags coordinates & subspace command

of points of R

FIGURE 1.8. Block diagram of a preprocessor the MCH techunique.

Fig. 1.8 outlines the architecture implementing the MCH technique. Extra state vari-
ables (CLIPPED and EDGE) and a more complex logic for maintaining the common
region reflect the increased complexity of this technique. Consequently also the control
PLA is larger than for the CH technique.

SH l 1 Ta
Clipping

—— ] MCH Stages ESM i) P
Preprocessor s

FIFO  |— 139

-/

Merging Stage

FIGURE 1.9. Merging stage for combining visible vertices from the preprocessing stage and
the clipping stages.

34



Bengt-Olaf Schneider

The MCH technique is designed to toggle between reject mode and accept mode. Each
time the algorithm switches to accept mode it generates a sequence of trivially accepted
edges. These edges must be merged with the edges entering and leaving the clipping
volume which were generated by the clipping stages. Each of these edges is described by
two vertices, e. g. the entering edge is described by an intersection point with the clipping
region and the first vertex inside the clipping region. Tags are used to distinguish between
different accepted edge sequences. Each time the input polygon enters the clipping region,
a new tag is generated by incrementing the tag counter tag_cnt. The tags are attached
to all vertices inside the clipping region. Vertices being trivially accepted are stored in a
FIFO. Once the entering edge has been processed by the clipping stages a merging stage
first propagates the clipped entering edge and then reads all vertices from the FIFO that
have the same tag as the vertices of the entering edge. Then, the vertices of the clipped
leaving edge are sent (fig. 1.9). The hardware requirements for the merging stage are a
multiplexer, a comparator, and a small control PLA which cycles through five principal ©
states:

1. Receive from the last clipping stage the point where the clipping volume is entered.
2. Receive from the last clipping stage the first vertex inside the clipping volume.

3. Read from the FIFO all vertices having the same tag as the vertices received from
the clipping stage.

4. Receive from the last clipping stage the last vertex inside the clipping volume.
5. Receive from the last clipping stage the point where the clipping volume is left.

The merging stage can be easily integrated into a postprocessor that cleans the clipped
polygon of degenerate edges.

Table 1.2 summarizes the hardware requirements {or each of the preprocessing stages.
For comparison the approximate (!) requirements for each Sutherland-Hodgman clipping
stage are given in the last line of the table.

Technique Vertex  Space . PLA (approx.) Intersection Merging
Registers  Codes (in x products X out) Unit Stage
CS 1 1 4 Tx15 x 12 NO NO
cH 1 1 4 Tx15 %12 NO NO
MCH 1 2 4 9 x 17 x 17 NO YES
SH 2 0 1 6 x10 x 8 YES NO

TABLE 1.2. Hardware requirements for thie various preprocessing techuiques.

Considering that the intersection unit executes several multiplications and division
steps, it is obvious that each of the preprocessing algorithms can be implemented with
less hardware than any of the clipping stages, thus only slightly increasing the hardware
complexity. The small number of registers and the size of the PLAs allows to integrate
each of the preprocessing circuits entirely on commercially available Field Programmable

Gate Arrays (FPGA).

®Some extra care must be taken to handle polygons carrectly whose first vertex is visible.
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1.5 Experiments

1.5.1 Description of the Experiments

We have implemented the Sutherland-Hodgman algorithm and the three preprocessing
techniques in software. The implementation minimizes the number of Sutherland-Hodgman
clipping steps according to the properties P1 and P2 by initializing the status variables
of the clipping stages before performing the first clipping steps. (The pseudo-code in the
appendix details these initialization steps.)

We have measured the performance of the different methods by counting the number of
(recursive) invocations of the Sutherland-Hodgman clipping procedure and the number of
intersection calculations. All tests involved six clipping planes positioned at zyz = +0.5
forming a unit cube centered at the origin.

We have conducted two series of tests. The first one tested the performance of the
algorithms depending on the area of the input primitives. Where applicable, the number
of vertices per primitive was set to 20. The second series of tests measured the performance
in relation to the number of vertices per input polygon for a fixed size of the polygons.

We ran each series of tests for different sizes of the world volume as compared to the
viewing volume. This gave different ratios of visible vertices to total vertices. For each
scene, the objects’ centers of gravity where randomly distributed in the world volume.

The first set of scenes contained triangles. They are representative for graphics applica-
tions that use triangulated scene descriptions for display. Also, most of today’s graphics
workstations are built on top of triangle rasterizers.

The next set of scenes was composed of ellipsés which belong to the particularly well-
behaved class of convex polygons. For such polygons we can expect a strong coherence
in the in/out classification of adjacent vertices, which allows for drastic simplification by
the discussed techniques. _ :

Finally, we processed scenes of star-shaped polygons (fig. 1.5). We have chosen this
primitive type to test the performance of the algorithms for input polygons with many
concave vertices. For such polygons there is a high probability that only few adjacent
vertices share a common subspace, thus forming a difficult case.

1.5.2 Results

A comparison of the different techniques is shown in fig. 1.10. The plots on the left
compare the number of Sutherland-Hodgman clipping steps as a function of the objects
size for the methods CS; CH, and MCII. The plots on the right compare the number of
intersection calculations as a function of the objects size for the techniques CH and MCH.
(Since the technique CS cannot reduce the number of intersection calculations, it is not
shown in these plots.) .

Fig. 1.11 compares the degree of simplification achieved by the various preprocessing
techniques, 1.e. the ratio of the number vertices in the input polygon to the number of
vertices processed by the Sutherland-Hodgman algorithm.

The results in figs. 1.10 and 1.11 were obtained for a clipping volume that occupied 35 %
of the entire world. Although not shown here, we have conducted the same experiments
for other ratios between world size and clipping volume. Qualitatively, the results were
similar, 1. e. the curves had the same shape. The quantitative differences are characteristic
for the particular algorithm and are discussed in the following subsections.
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FIGURE 1.10. Comparison of the techuniques CS (0), CH (+), MCH (0). The clipping volume
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scaled in percent of steps/calculations performed by the Sutherland-Hodgman algorithm. a-c) Clipping
steps for triangles, ellipses, and stars. d-f) Intersection calculations for triangles, ellipses, and stars.
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Reducing the Number of Clipping Steps

We observed the expected direct relationship between the degree of simplification, i. e. the
ratio between he number of vertices in the simplified polygon and in the input polygon,
and reductions in the number of clipping steps. Comparing the plots on the left side of
fig. 1.10 with the corresponding curves in fig. 1.11 shows that both sets of curves have
exactly the same shape.

In general, all techniques are significantly more efficient for small primitives because the
probability that consecutive vertices lie in the same region (either subspace of halfspace)
increases for small primitives.

All techniques are performing almost identically for triangles because a triangle cannot
be simplified — triangles can only be handled trivially by rejecting or accepting them
completely. Howexzr, the techniques CH and MCH are slightly more efficient because
they detect more :zses for rejecting entire triangles. This effect becomes more significant
as the percentage of primitives outside the clipping volume increases, i.e. for smaller
viewing volumes.

The same effect can be observed for ellipses and stars as well. For clipping volumes
only slightly smaller than the world the difference in performance between the CS and
CH techniques is only marginal, because their criteria for trivial acceptance are the same.
The MCH technique can also accept more edges trivially and is hence more effective
even for a high percentage of primitives in the clipping volume. This ability however gets
important only for polygons with many edges.

We found that the performance improvements were independent of the number of ver-
tices used to describe the ellipses and star-shaped polygons.

Reducing the Number of Intersection Calculations

As mentioned before only the techniques CH and MCH are able to reduce the number of
intersection calculations. We observed a a roughly linear dependency on the primitive size.
The achievable reductions were far smaller than for the number of clipping steps, they
lay in the range of 0 % to 60 %. For small primitives (< 0.001) there was no significant
difference between the two techniques.

With increasing percentage of primitives outside the clipping region, the reductions
were also growing. This effect is due to the effect that for a larger world size the proba-
bility increases that one clipping plane rejects the whole input polygon (or at least large
portions) thus making intersection calculations with other clipping planes obsolete.

We observed slightly better performance for the star-shaped polygons than for the
ellipses because concave polygons are more likely to intersect with the same clipping
several times. If all these intersection calculations can be saved this results in larger
savings.

For both ellipses and stars, the performance improvements were independent of the
number of vertices used to describe these primitives.

1.5.3 Evaluation

Our experiments show that preprocessing polygons before actually clipping them can re-
sult in significant reductions for both the number of clipping steps and the number of
intersection calculations during the chpping steps. Recognizing that the CH technique
always performs better than the CS technique without requiring more complex imple-
mentations, one only has to choose between the CH and the MCH technique.

The choice of any particular technique depends on the implementation and on the work
load. For a software implementation the MCH technique is the first choice because of the
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FIGURE 1.11. Comparison of CS (<), CH (+), MCH (0O). The fraction of vertices remaining after
the simplification. The clipping volume occupies 35 % of the universe. The x-axes show the size of the
primitives in a unit cube and the y-axes the percentage of the input vertices contained in the simplified
polygon. a-c} Number of steps for triangles, ellipses and stars.
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large savings in the number of clipping steps which directly translate into reductions in
procedure calls and data accesses.

For a hardware implementation the differences in implementation cost change the trade-
off between the techniques. The expected work load is the primary selection criterion. If
the data consists mainly of small triangles, both methods are doing equally well. In this
case the CH technique is sufficient. If on the other hand, a significant portion of the input
consists of modestly large polygons with more than 4 vertices the performance improve-
ments achieved by the MCH technique outweigh the additional costs incurred by more
complex hardware.

1.6 Conclusion

We have presented two new techniques for improving the eflficiency of polygon clipping im-
plementations by preprocessing the input polygon. The preprocessor simplifies the polygon
by removing edges from the polygon that can be accepted or rejected trivially. Two edges
are replaced by only one edge if the original edges share a common region. A common
exion is either a halfspace outside of the clipping region or the clipping region itself. The
first technique applies the simplification only to the beginning of the input polygon, while
the second technique tries to simplify as much as possible by toggling between acceptance
and rejection mode.

These techniques constitute notable advances over a previous technique that uses sub-

spaces as the common region for simplifying the input polygon. We have shown that the
first of the new techniques requires the same amount of hardware or software resources
and performs much better than this technique.

We then described hardware and software implementations of the new techniques. The
implementation of these techniques has verified that the efficiency of polygon clippers can
be improved by up to 90 % in terms of number of clipping steps and by up to 60 % in
terms of number of intersection calculations. These techniques provide a means to greatly
improve the efficiency of polygon clipping in graphics workstations.
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Appendix: Pseudo-Code

The following C-like pseudo-code details the implementation of the CH and MCH tech-
niques. As in the rest of the paper variables in capital letters, e.g. FIRST, are state
variables of the preprocessing stages. State variables of the Sutherland-Hodgman algo-
rithm use lower-case letters, e.g. first. The Sutherland-Hodgman clipping algorithm is
invoked by SH_clip(p), which takes as its argument a point p.

For each point the routines expect a code describing its subspace. This code is identical
to the outcodes used in the Cohen-Sutherland line clipping algorithm [2]. One bit is
assigned to each clipping plane. A bit is set if the point is on the rejection side of this
plane. If the bit-wise logical AND of two outcodes contains at least one asserted bit, the
two points belonging to these codes share a common halfspace. The simplification routines
CH_clip and MCH_clip use these codes to describe common regions.

For clarity, the CH pseudo-code does not initialize the Sutherland-Hodgman stages
directly as it was described in section 1.3.2. Instead, the Sutherland-Hodgman stages are
simply initialized by sending the appropriate vertices. It should be apparent from the
description of the algorithm where these initializations should happen; these places have
been marked with the comment Init SII in the pscudo-code. Actually, this initialization
may be preferrable for a hardware implementation because it does not require extra
datapaths to access the internal registers of the Sutherland-Hodgman clipping stages.
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A.1 CH Technique SH.dlip (p) ;
typedef struct } }
A } /% not FIRST */
} Point ;
/¥ State variables used by the CH algorithm */ id CH.d id
static int FIRST ; /* First vertez flag */ ?(;;-(;;Ogg)se (void)
static int REJECT ;/* Reject/Accept flag ¥/ SH.close 0;
static int EDGE ; /* Skipped a vertez */ else !
static int MODE ; /* Simplify/Clip flag */ output(*close”) ;

static int REGION ;/* Common halfspace */

static Point S ; /* Saved point ¥/

/¥ Initialization routine for the CH algorithm */
void CH.nit (void)
{ FIRST = TRUE;
MODE = FALSE ;
SH.init() ;
k)

j

/¥ Simplification and invocation of SH algorithm */
void CH.clip (Point p)
{ int subspace ;

subspace = p.subspace ;

if (FIRST)

{ FIRST = FALSE ;
EDGE = FALSE ;
S=rp;
if (subspace == 0)

/¥ trivial accept */
REJECT = FALSE ;
else
{ /* trivial reject */
REJECT = TRUE ;
REGION = subspace ;

}
SH.clip (p) ;
else /* not FIRST */

{if (MODE)
SH_clip(p) ;

else
if (REJECT)
{ if (subspace & REGION)
{S=p;
REGION &= subspace ;
EDGE = TRUE ;
}
else

{ MODE = TRUE ;
if (EDGE) SH.clip (S) ; /* Init SI */
SHclip (p) ;

}
else /* not REJECT */

{ if (subspace == 0)
{ output{p) ;
S=p;
EDGE = TRUE :
}
else

{ MODE = TRUE :
if (EDGE) SH_clip (S) ; /* Init SH */
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A.2 MCH Technique

typedef struct
{float x, ¥, 2 ;
int subspace ;
} Point ;

/* State variables used by the MCH algorithm */

static int FIRST ; /¥ First vertez flag */

static int REIJECT ; /* Reject/Accept flag */

static int EDGE ; /¥ Skipped a vertez */

static int CLIPPED ; /* "Real” SH clipping was done */

static int REGION ; /* Common halfspace */
static int START.SPACE ;

static Point S ; /¥ Saved point */

/¥ Initialization routine for the MCH algorithm */
void MCH.init (void)
{ FIRST = TRUE ;

SHnit() ;

{ /* accept trivially */

/* When inside the visible window,

* we simplify the polygon sent to the

* SH algorithm to a line connecting the

¥ first and the last visible verter.

¥ Only these two vertices are

* processed by the SH algorithm,

* the rest is handled trivially.

¥ Hence, these two vertices are included
* in the output poly by the SH algorithm
* and must not be output by "us”.

* We achieve this as follows:

* 1. We output an vertex only iff

its successor is also visible

That is accomplished by sending the saved
vertez 'S’ to the oulput, if 'p’ is visible.
. We do not output ’S’ if it is the

first vertex inside the window

t.e. if it is equal to 'ENTERED’.
However, to avoid the comparison,
the variable 'TEDGE’ controls whether

'S’ is output.lt is reset for the

first visible verter and set afterwards.

This has the effect of skipping 'ENTERED".

o

/¥ Polygon simplification and invocation of SH algorithm

void MCH_clip (Point p)
{

int subspace ;
subspace = p.subspace ;

if (FIRST)

{ FIRST = FALSE;
EDGE = FALSE ;
CLIPPED = FALSE ;
START_SPACE = subspace ;
S=p;

if (subspace == 0)
/¥ start in trivial accept mode */
REJECT = FALSE ;

else

{ /* start in trivial reject mode */
REJECT = TRUE ;
REGION = subspace ;

}
SH clip {p) ;

else /* not FIRST */
{ if (REJECT) /* previous out*/
{ if (subspace & REGION)
{ /* reject trivially */
S=p;
REGION &= subspace ;
EDGE = TRUE ;

else

{ /% clip and delermine new mode */
CLIPPED = TRUE ;
if (EDGE) SH_dlip (S) ;
SH_clip (p) :

S=p;

REJECT = (subspace != 0} ;
REGION = subspace ;
EDGE = FALSE ;

}
else /* previous in */
{ if (subspace == 0)
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"/ if(EDGE) output (S) ;
S=p;
EDGE = TRUE ;

else
{ /* clip and goto trivial reject mode */
CLIPPED = TRUE ;
if (EDGE) SH.clip (S} ;
SH.clip (p) ;
S=p;
REJECT = TRUE ;
REGION = subspace ;
EDGE = FALSE;

} /¥ previous in */
} /* not FIRST */
}

void MCH._close (void)

if (REJECT)
{ if (! CLIPPED)
/* do nothing */
output {"close™) ;
else
{ if (EDGE) SH.clip (S) ;
SH_close () ;

}

else

{ if (STARTSPACE == 0)
{ if (EDGE) output (S) ;

output ("close”) ;

else
{ if (EDGE) SH_clip (S) ;
SH_close () ;



