
Hardware Acceleration of Texture Mapping

Graham Dunnett, Richard G1'imsdale, Paul Lister, and Martin H/hite

ABSTRACT
We present a hardware design based around scan-line algorithms. The design can
perform colour mapping, environment mapping and produce shading effects which
include a specular term. We describe the algorithms which are implemented, and the
approximations we have made to achieve near real-time performance.

1.1 Introduction

Texture mapping plays an important role in the generation of high-quality images. The
benefits of introducing surface detail into a scene with colour mapping, and specular reflec­
tions with environment mapping are well documented [6, 1, 14]. We predict that texture
rna,pping hardware will become an increasingly common feature of future workstations.
Most manufacture already produce high-end machines with this capability [13, 7]. The
design of specialised VLSI circuitry which can perform the mapping of a two-dimensional
image onto an arbitrary three-dimensional object is therefore of great interest. The need
for fast update rates, increasing aser-expectations, and the complex nature of texture
mn.pping lead us to conclude that approximations to the true algorithms are necessary.

1.2 The Texture Mapping Algorithm

In his recent paper, Heck bert [11] reports that to correctly map part of a 2D image onto a
triangulated object which has undergone perspective projection, the following expression
must be evaluated at each pixel:-

u

v =

A.\.T + BY + C } DX+EY+F

ex +HY +1
DX +EY +F

(1.1)

where u and ,yare the 2d texture coordinates varying across the image being mapped,
X and Yare screen coordinates, and A to I are coefficients which vary for each surface
"displayed and characterise the mapping. This formulation is known as rational linear
interpolation and is an efficient solution to texture mapping in software,

The presence of the division operator in the per pixel stage of texture mapping makes
real-time performance difficult to achieve if we attempt to generate the texture coordinates
with this method, either in software or with specialised hardware. No commercial processor
is yet capable of performing division at a rate of 40 Million per second-the rate required
for a screen refresh rate of 2.5 Hz, and 800,000 texture-mapped pixels per frame. In this
paper we propose an hardware solution to this problem using qua,dratic interpolation to
approximate Equation 1.1. .

12

http://www.eg.org
http://diglib.eg.org

Graham Dunnett, Richard Grimsdale, Paul Lister, and Martin VVhite

1.3 Quadratic Approximation

1.3.1 Approximation Equation

Equation 1.1 can be approximated with a quadratic function in two variables [13]:

U ~ aX2 + by2 + eXY + dX + eY + f (1.2)

A similar expression (with different coefficients a to 1) will be used to approximate v.
The coefficients a to f will be different for each triangle processed and must be computed
before texture coordinates can be generated. To solve for the coefficients requires six
equations to be established and solved simultaneously. For a given triangle we assume
that the u and v components are known at each vertex. It is then straightforward to
compute the exact value of u and v at the midpoints of each edge using equation 1.1. (In
fact two additions and one division are all that are required per texture coordinate). This
provides sufficient information to establish the following matrix equation:

X 2
0

y2
0 XoYo Xo In 1 a Uo

X2 • 1 y? 1 Xl}} Xl Y1 1 b Ul

X 2 y2 X2I'2 X 2 Y2 1 C U2
(1.3) 2 2

X 2 y2 X31'3 X3 Y3 1 d U3 3 3
X 2

4
y2

4 X4 I'4 X 4 1'4 1 e U4
X 2

5
y2

5 X51s X5 15 1 f U5

The 6 simulataneous equations must be solved for the coefficients a to f. Solving Equa-.
tion 1.3 requires Gaussian elimination, a process which takes much computational power.

1.3.2 Forward Differencing

Once the coefficients a to f have been found, texture address generation may proceed
incrementally through use of forward differencing [16J.

If f(x, y) represents equation 1.2, then along a scanline y is constant. For increments
in x we may write

l::, fx(x,y) = f(x + 1,y) - f(:r,y) = a(2x + 1) + ey + d (1.4)

Now we notice that l::,fx(x,y) is a linear expression. Y is still constant, so applying
forward differences again we obtain

(1.5)

The second order increment is always constant. If at each step we updatel::,fx(x, y) with
l::,2fx(x,y) after updating f(.':'Y) we need only 2 additions as we step along a scanline
from one pixel to the next.

An identical argument can be constructed to show how the texture coordinates vary as
y is incremented and :r is held constant. In this case we find

6 fy(x,y) = b(2y + 1) + ex + e

6 2 fy(:r,y) = 2b

13

(1.6)

(l. 7)

Hardware Acceleration of Texture Mapping

1.4 Texture Filtering

1.4.1 Texture Anti-aliasing

The colour map or reflection map used in the texturing process is a raster image with
discrete values. As we use the information stored in the map we are in danger of under­
sampling or over-sampling, leading to jagged effects in the texture. This is identical to
the artifacts experienced with geometry except that is affects the texture. Many methods
have been described in the literature for reducing aliasing of texture [15, 3, 10, 8, 2].

L4.2 Mipmaps

To assist in the filtering of the texture we use the Mipmap method [15J. This is a prefilter­
ing technique where multiple levels of the texture are stored at varying resolutions. Each
level stores the texture at one quarter of the resolution of the previous level. As pixels are
scan converted, texture values are read from the map with the most appropriate level of
detaiL Conceptually, the levels are arranged to form a pyramid, and the level of detail can
be thought of as the height in this pyramid. Other filt.ering methods have been considered,
however, none are suitable for the style of hardware we are proposing.

1.4.3 Level Select

For each textured pixel we must determine which level in the miprnap holds the detail we
require, and this means we need an estimate of the area of the pixel in texture space [9].
The screen pixel "viII map to an irreguiar quadrilateral in texture space, and we can
approximate its a.rea in a number of ways. The partial derivatives of Equation 1.2 are
found to be useful here. IIcckbert [9] recommends that the following equations are used:

11 VU~'{ + vi
rn Vu?,. + v?,

max(n, 117.) (1.8)

In Equation 1.8, I is the level in the pyramid we require. This formula assumes that the
quadrilateral can be approximated by a paTallclogram, and uses the maximum side length
to select thc leveL

1.4.4 Blending

In general, selecting a tcxel from one level will over-, or under-sample the texture, de­
pending how close the area is to one level or the next. Instead, it is preferable to select
two levels and blend t.he two t.exels t.o better approximate the true texel value. The blend
ratio required for this is related to how close t.he pixel area in text.ure space is to either
of the two levels, If the area is known then the blending is easy to perform.

1.5 Postprocessing

1.5.1 Gomaud Shading Problems

\Vhen texture mapping is used it is not possible to use the \\"ell-loved Gomaud shading
algorit.hm to perform t.he shadillg task. The reason for this is simply t.hat the colour of
the surface is not known lIntil after texturing is performcd (3. pixel rat.e cornputation).
This requires us to]wrform pixel-rate shading, which can introduce a potentially severe

14

Graham Dunnett, Richard Grimsdale, Paul Lister, and Martin White

bottleneck into a rendering system, particularly if advanced shading techniques are used
to produce highlights.

1.5.2 Diffuse Interpolation

If the surface colour components are factored out of the traditional Gouraud shading
illumination equation, we are left with an ambient and diffuse term which describes the
incoming illumination received by a surface. This illumination can be interpolated across
a triangle primitive, and combined with the (texture mapped) surface colour at each pixel.
A second way of explaining this is that we pretend the surface is white and interpolate
the intensity of the surface before blending in its true colour. As in Gouraud shading, we
sum the diffuse contributions from all light sources in the scene and take the geometry of
the surface into consideration.

Technique

Gouraud Shading:
Diffuse Shading:

1.5.3 Specular Interpolation

High-lights

Interpolate

The Gouraud shading model does not use a specular term. One reason for this is that
the edges of a highlight are straightened and look unnatural. The linearization is a di­
rect consequence of linearly interpolating colour. Adaptively subdividing triangles in the
vincinity of highlights can improve the image quality, although at the expense of addi­
tiona.l triangle setup costs, and identifying candidate triangles. An alternative is to use a
quadratic interpolation scheme for the specular term [4]. This permits the boundary of
the highlight to be curved, giving a more natural appearance. A setup, identical to that
discussed in Section 1.3 can be performed, with incoming specular intensity replacing
texture coordinates.

Reflections

Environment maps can be used to give the impression of mirror reflections in a. scene.
Rather than using texture coordinates to access these maps, an indexing di1'ection is used
instead. This direction is the reflected view direction vector which is used to intersect
an axis-aligned plane conta.ining the map itself. The reflection map stores the colour
of the incoming light received from that direction. Figure 1.1 shows a simple geometry
illustrating the concepts of reflection mapping.

Note that reflection mapping can only be used to model perfectly reflecting surfaces.
No scattering of the reflected light is possible such as from rough surfaces. Pre-computing
the reflection map with this scattering included is non-trivial. Light sources could be
incorporated into these maps, however, this alters the map creation step, which normally
is just a straightforward rendering of the scene from the position of the shiny object.

Clearly it is not feasible to perform real-time intersection testing. Instead a setup task
can compute intersections at triangle vertices and midpoints. These give map coordinates
which can be interpolated across the triangle. Colour map coordinates and reflection map
coordinates can then be treated in an identical manner. This is immediately attractive
because the texture coordinate generat.or and address synthesis hardware can be dupli­
cated.

15

Origin
and View
Position

/'

Hardware Acceleration of Texture Mapping

Object being
Environment Mapped

/

Reflected rays
may intersect map

Environment Map
aligned with x-axis

x

FIGURE 1.1. Reflected Rays are Intersected with the Reflection Map

1.6 Texture J\1apping Hardware

1.601 Texture Coordinate Generator

Figure 1.2 shows the interpolation stage we have designed to produce texture coordinates
for each pixel. Two interpolation units operating in parallel will be required to generate
u and v. The interpolation unit design is straightforward, being very similar to linear
units we have designed in the past [5]0 Fixed point arithmetic is used throughouL The
figure shows that in parallel to the increment for the texture coordinate il, the first or­
der X and Y derivatives are updated by second order terms. The design shown here can
increment/decrement in X (along scanlines) or Y (from scanline to seanline). Our cur­
rent scan-conversion controller does not need to decren'_'nt in Y, and so we ma.y remove
this capability from the design. The data widths are being analysed for optimisation. A
complication exists in that we may want to use the quadratic interpolation unit for other
purposes. See Section 1.5.3. This may require us to redesign the interpolation units to use
floating point arithmetic. We permit replications of the texture up to 16 times in each
of the u and v directions. This allows tiling of a single texture, and reduces the storage
requirements for a texture which repeats. Texture maps may be stored at resolutions up
to 512 x 512, and so the f output must have a width of 4 + 9 = 13 bits. Hardware can be
used to damp the output to the range (0 .. 1] if wrapping is not wanted. (The test-multiplex
stage for this is not shown in the figure.)

1.6.2 Control Signals

A small state machine is used to control the scan conversion of each triangle primitive.
Signals provided by the logic include whether a.n increment or decrement has been ma.de
along a scanline, or whether an increment or decrement has been made to a new scanline.
These signals are used to control whether an x or y illcrement is made to the texture
coordinate value, and whether the first order differences need updating. The table below
shows how the qua.dratic interpolCltor signals are generated from the output of the scan­
conversion state machine.

16

Graham Dunnett, Richard Grimsdale, Paul Lister, and Martin 'White

Unit

start -1)1---,,\ start -11--..\

newScanUne

xK yK

righ.;.;.t-+t_~ UP_H--o>\

Ix fy

FIGURE 1.2. A Quadratic Interpolation Unit

Signal Creation

newScanLine up OR down
xK up OR down
yK left OR right

left_down left OR down

1.6.3 Mipmapping Hardware

Figure 1.2 shows that the first-order differences fx and fy are output along with the tex­
ture coordinate f. In conjunction with the second interpolation unit, this provides all
the information we need to perform mipmapping. A LUT, using the partial differences
as input, generates the mipmap levels and blending factor needed for correct filtering.
The LUT stores entries implementing Equation 1.8. The optimal size of the LUT is still
under investigation. Once the mipmap level has been determined two addresses are com­
puted using a simple address generation unit. This takes the texture coordinates and the
mipmap level as input. The level identifier is decoded into two physical start addresses
in memory, corresponding to the two mipmap levels. An offset is computed using the
texture coordinates and two addresses synthesised. The two texels can then be accessed
in parallel over two 32-bit buses. vVe arrange the texture memory to ensure that all even
levels of the mipmap are stored in one memory bank, and odd levels in another. Accesses
can then be made in parallel to both banks. The texture information stored in the mem­
ories is red, green, blue and alpha, and each is stored in 8 bits. Once texels have been
returned, four 8-bit add-multiply stages perform the blending on the four channels using
the blending factor produced from the LUT. The results are then passed forward to the

17

Hardware Acceleration of Texture Mapping

general blending units for shading and other image synthesis tasks.

1.7 Blending Hardware

1.7.1 General Blending Unit

As identified in Section 1.5 there are many uses for blending operations at the rear end of
a rendering pipeline. Our hardware design recognises this and we have a flexible network
of blending stages. Each stage is capable of performing:

Ci = ((A - Bi)exi + Bi) (1.9)

on three parallel channels, where A, B and ex are inputs, and C is an output, and i varies
from 0 to 2. Figure 1.3 shows the architecture of our blend unit. This uses basic library
components and is simple in design.

B A alpha

A-B 8

8

8 C • alpha

8

E

FIGURE 1.3. A mending Unit

The output D shown in the figure is the 8 high order bits of the 16 bit result of the
multiplication. This arrangement considers the ex and C channels to be 8 bit, fixed point
numbers between 0 and 1.

1.7.2 Blend Pipeline

Colour Mixing

Texture-maps may be used to perturb (or modula.te) surface colour ra.ther than provide
surface colour. This action can mix the colour of the surface with the colour derived from

18

Graham Dunnett, Richard Grimsdale, Paul Lister, and Martin \Vhite

the texture accesso A blending unit is required to perform this task. In our design we allow
the blending ratio to be constant across an object, and be provided by the user, or vary,
and corne from the alpha channel of the texture map.

1.7.3 Diffuse Illumination

Linearly interpolated diffuse illumination is is used to modify the pixel colour. A second
blending unit is used for this purpose. The illumination is just a weighting of the incoming
colour by the diffuse illumination, and so the B channel of the blend unit is connected
to a zero input. This achieves the weighting correctly, and the output is the illuminated
surface colour.

1. 7.4 Specular Accumulation

Specular reflection from a surface may come from two sources, the environment or lights in
the scene. A quadraticinterpolation of the specular lights will be performed, and combined
with values read from an environment map stored in the framebuffer. The environment
map will have been produced by an earlier scanconversion pass, and so will already exist
in the framebuffer. A separate pair of quadratic interpolators will be necessary to generate
the environment map addresses, permiting both colour mapping and reflection mapping
to be performed on each surface. The highlight and incoming specularly reflected light
contributions should be summed together to give the total specularly reflected component.
In our system, however, we provide more flexibility by performing a linear blend between
these two values. This allO\vs finer control over how bright the specular highlights are,
compared to the reflected objects. The user will supply the blend ratio n for this operation
as part of the scene database. A blending unit is used for this.

1. 7.5 Specular Illumination

The final stage in the blending pipeline is to mix the diffusely illuminated surface with
the specularly reflected light. Once again we use a blending unit to perform this task.
Allowing a mixing between the diffuse colour and specular colour is an approximation,
but will give the user the ability to produce non-physical effects. In addition this method
helps prevent colour component overflow which is often a problem in scenes with multiple
light sources. The blend ratio provided by the user for this stage we call n.

1.7.6 Overall Network

Figure 1.4 illustrates the overall blending network we have designed to perform colour
mapping, environment mapping and illumination with a specular componento

1.8 Results and Conclusion

A software model of the interpolation and blending hardware has been produced. This
has been written in 'C'. Results obtained from this indicate that the approach we have
taken is valid. In particula.r the quadratic approximation to equation 1.1 is accurate to
within 2 pixels in 200, or 1 percent. Figures 1.5, and 1.6 show rational linear interpolation
and quadratic interpolation of texture coordinates, respectively. The differences in these
two images are shown in Figure 1.7. The chequerboard is a worst-case texture, with the
eye easily picking out errors in the mapping. For less well-defined textures we find that
the approximation performs well.

19

Mix

1.8.1 Further Work

Setup

Hardware Acceleration of Texture Mapping

HOST PROCESSOR NETWORK

FRAME BUFFER

FIGURE 1.4. The Blending Network

FIGURE 1.5. Rational Linear Int.erpolation

We consider that the setup cost for quadratic interpolation is rather high. We are looking
at alternatives to the Gaussian elimination. One such area, under investigation is to expand

20

Graham Dunnd,t, Richard Grimsdale, Paul Lister, and Martin 'White

FIGURE 1.6. Quadratic Int.erpolation

F'1(;llHE 1,/,])iff<'l't'II('('S Belll'C('1I TcclIlliqll('s

EqUeliiOll 1.1 as" power series ill X (111<1 V. This <lpproClch will iwoid the III at rix proc('ssing.

Bit Blttill)!;,

\Vc can consider the scail,collvc'rsioll hilr<!\\,(IJ'(' <lIld <jlladrat.ie interpolators as simple ad­
dress gCllerators, il('c('s;;illg dirrcrelt1 lIH'lllorie;; (frillllc·huffcr. text.ure l1lcmory elnd ('m'i­
rOllllwn1 mel]> hufrns). Op('J'at iOllS ill'<' p('J'rCJ!'Illl'd \)('t\\'C'('11 til(' \';tlucs ret lIrned. This is
cOl1lpara\)]e 10 hardwelJ'(' which Cilll 1)('I'rOrlll Bit·\)lt t illg Slldl <IS t]1<' TI\JSlI010 grapllies
processor [12], alt hough til(' ri\llge or ()jlnilt iC)JIS illlpklll<'II\cd ill our design is lilllited.

\Vc pial! to invest igatc' how sllited 0111' iJI(,I}(jilig pipelillc is tu perform hoolc'<lIl operations
bet\\'(,('11 Ch"llI]('ls, This will iJl\,()I\,(, it J'('·desigll or om hlclldillg ullit.

21

Hardware Acceleration of Texture Mapping

1.9 Acknowledgements

This project is part of the Esprit program supported by the European Commission.
The authors would like to thank Mike McNeill, Ian McGroarty, Simon Pearce and

others in the VLSI and Computer Graphics Research Group for their useful comments
and suggestions through-out the course of this work.

1.10 References

[1] James F. Blinn and Martin E. Newell. Texture and Reflection in Computer Generated
Images. Communications of the ACM, 19, October 1976.

[2] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes Image Rendering
Architecture. Computer Graphics, 21(4), July 1987.

[3] Franklin C. Crow. Summed-Area Tables for Texture Mapping. Computer Graphics,
Vol. 18, July 1984.

[4] Vincent C. J. Disselkoen. Real-time Quadratic Shading. Internal Report CS-R9123,
Centre for Mathematics and Computer Sciences, The Netherlands, Kruislaan 413,
1098 SJ Amsterdam, 1991.

[5] Graham Dunnett, Martin White, Paul Lister, Richard Grimsdale, and France Gle­
mot. The IMAGE Chip for High Performance 3D Rendering. Computer Graphics
and Applications, 1992. Submitted for Inclusion in the November Special Issue on
Graphics Hardware.

[6] James D. Foley, Andreas Van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics Principles and Practice. Addison ·Wesley, 2nd edition, 1990.

[7] Silicon Graphics. IRIS Crimson Technical Report: Pre-introduction. Technical re­
port, Silicon Graphics, 1991.

[8] Ned Greene and Paul S. Heckbert. Creating Raster Omnimax Images from Multiple
Perspective Views Using the Elliptical Weighted Average Filter. IEEE Computer
Graphics and Applications, 6(6), June 1986.

[9] Paul S. Heckbert. Texture Mapping Polygons in Perspective. Technical Report 13,.
Computer Graphics Lab, New York Institute of Technology, April 1983.

[10] Paul S. Heckbert. Survey of Texure Mapping. Computer Graphics and Applications,
6(11), November 1986.

[11] Paul S. Heckbert and Henry P. Moreton. Interpolation for Polygon Texture Map­
ping and Shading. In David Rogers and Rae Earnshaw, editors, State of the Art in
Computer Graphics. Visualization and Afodeling. Springer Verlag, 1991.

[12] Carrel R. Killebrew Jr. The TMS34010 Graphics System Processor. Byte, pages
193-204, December 1986.

[13] David Kirk and Douglas Voorhies. The Rendering Architecture of the DN10000VS.
Computer Graphics, 24{ 4), August 1990.

22

Graham Dunnett, Richard Grimsdale, Paul Lister, and Martin White

[14] Steve Upstill. The RenderMan Companion: A Programmer's Guide to Realistic Com­
puter Graphics. Addison Wesley, 1st edition, 1990.

[15] Lance Williams. Pyramidal Parametrics. Computer Graphics, Vol. 17, July 1983.

[16] George Wolberg. Digital Image IYa1'ping. IEEE Computer Society Press, 1990.

23

