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ABSTRACT A new space partitioning technique is elaborated. In part I of the 
paper [3], we proposed a shell-like structure which is to be superimposed on a uni­
form grid data structure and is adaptive to the local environment seen by a bundle 
of rays. Here we extend this segmentation by embedding it in a static partition­
ing which is determined by low resolution ray casting. This partitioning is useful in 
achieving a balanced computation while mapping it onto a pipelined parallel architec­
ture. Moreover, a run-time control of workloads is applied during a subsequent high 
resolution ray casting so as to adjust low resolution partitioning. The technique has 
been tested on practical and randomly generated scenes. The performance evaluation 
of a pipelined parallel architecture has been done by queueing network simulation. 
Promising results have been obtained. 

12.1 Introduction 

Recently, several attempts to integrate radiosity and ray tracing have been developed. 
One approach could be to separate the calculation of direct and indirect lighting into two 
passes. The first pass calculates the indirect lighting for each diffuse patch and is done by 
the radiosity method. The shading over a patch changes slowly at this step so that the 
patch refinement can be kept coarse. The direct lighting is then calculated at the second 
pass by casting shadow rays as in traditional ray tracing. In this approach, there are 
two crucial issues to be explored. The first is to select light sources which will contribute 
to the direct lighting. The other is to reduce the number of shadow rays. More detailed 
discussions can be found in [1,4]. 

To come up with a hardware-oriented version of this approach, it quickly becomes clear 
that in particular the second pass, which is basically software-oriented, causes serious 
problems. On the other hand, the first pass is very amenable to VLSI implementation due 
to the high degree of coherence. This expresses a high parallelism that can be exploited 
by hardware. Therefore, it would be beneficial to try to replace the second pass with a 
hardware friendly version. For example, instead of calculating the direct lighting by cast­
ing shadow rays and adding it to the indirect lighting calculated in the first pass, the final 
shading of an intersection point could be computed by gathering the contribution of all 
the other patches as in the radiosity method. However, this entails new problems because 
the number of rays might increase overwhelmingly. Such problems, which typically result 
from attempts to migrate wholly software-oriented algorithms to some kind of hardware 
environment, can be avoided by reconsidering the problem directly from hardware per-
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spectives. Thus, we advocate a two-pass approach in which the two passes are based on 
ray casting, both making use of a low density (hence low resolution) preprocessing step to 
provide ray density estimates for the ultimate high density ray casting. The advantages 
of this approach are: 

• the two passes are very similar, hence a unified set of hardware is sufficient for them; 

• the ray explosions due to blind space oversampling can be avoided. 

The issues of interest will be now the following. First, there is the problem of how to 
minimize the number of computations and their execution times as a whole. Our strategy 
is to combine space partitioning techniques and parallel processing. In [3], we presented a 
first step along this line. The main idea there was to derive a shell-like structure which is 
adaptive to the local environment seen by a bundle of rays. While conducting operations 
with this structure, the number of ray-patch intersections and also the necessity of loading 
patches can be reduced considerably. Furthermore, pipelinability which is generally high 
due to the high coherence of patches can be exploited. Second, there is the problem of 
how to balance workloads and hence improve pipeline efficiency when using a pipelined 
parallel architecture. To solve this problem, we propose an improved space partitioning 
based on low resolution ray casting such that each PE can be assigned with roughly equal 
workload, which can be further adjusted by a run-time control if necessary. This will be 
the main theme of this paper. 

The outline of the paper is as follows. After retrieving the background of the shelling 
technique proposed in [3], we present an extension of this technique and a new dynamic 
workload balancing in Section 12.2. In Section 12.3 the queueing network model used for 
simulation and the results gleaned from simulation are shown. 

12.2 The Shelling Technique 

There is a high degree of inherent parallelism when applying ray casting to compute 
form-factors in the radiosity method. The problem is how to exploit this parallelism 
in an optimal way which means: (1) minimum overall computation time, (2) minimum 
communication overhead, and (3) linear speedup in terms of the number of PEs. We tackle 
this problem by exploiting benefits from (1) space partitioning, (2) parallel processing, 
and (3) workload balancing. The emphasis here will be on the workload balancing. The 
other two issues have been considered in [3]. For the sake of clearness, we shall briefly 
review in the next Subsection the motivation behind the proposed approach in [3]. See [3] 
for details. After that, we proceed with our extensions to the present approach. 

12.2.1 Motivation 

Space partitioning is a technique to reduce the number of ray-patch intersections by ex­
ploiting spatial coherence, which is instrumental in achieving a minimum overall computa­
tion time. One drawback is that some dependencies will be introduced. While mapping the 
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target patch 

source patch 

FIGURE 12.1. The ideal structure in the shelling technique. 

computations onto a parallel architecture, this might degrade performance when improper 
partitioning schemes are used: 

• The object space is partitioned into regions, and each PE is assigned with a region. 
The patches residing in a region are stored in the corresponding PE. With this 
partition, rays are passed from PE to PE via messages and consequently degrade 
the performance. 

• When assigning neighboring rays to PEs, memory contentions which occur when 
multiple PEs attempt to access the same patch, will deteriorate the performance. 

Certainly, it is worthy of preserving the benefits of the space partitioning technique. 
Now the question is how to solve the above two problems. One solution is to partition 
rays into sectors and each PE works with one sector on a serial ray base. However, there 
are two drawbacks in this approach: 

• Although many sectors can be processed in parallel, each PE still works on a serial 
ray base within its own sector. Consequently, a patch might be loaded many times 
from the global or local memory because the neighboring rays are most likely to 
traverse similar cells and even hit the same patch. This accounts for a lot of waste 
in the sense of communication. 

• The potential pipelinability available in computations cannot be exploited effec­
tively. This is because cell traversal time and loading time will jeopardize the effi­
ciency of a pipeline. 
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This motivated us to devise a new space partitioning called the shelling technique. 
Conceptually, it can be viewed as a method that strives to construct an ideal structure 
as shown in Figure 12.1. The half-space seen by the source patch is first subdivided into 
sectors. Then, a sector is subdivided into a number of shells . Ideally, a shell should match 
with the the active patch which actually defines the shell. When this structure has been 
constructed, the bundle of rays in a sector is shot and tested against the active patch 
within the shell currently considered. With this arrangement, each active patch needs to 
be loaded only once as desired. The shelling technique has a further advantage is that 
the resulting structure is amenable to a highly pipelined parallel architecture. It is rather 
straightforward that sectors can be processed in parallel while each shell within a sector 
can be processed in a pipelined fashion . 

To make the explanation a bit easier, we have assumed an ideal structure in the above 
discussion. In fact, there are two detrimental factors to do this: 

• It is very costly to match a shell with the active patch which defines the shell. This 
is because the degree of ray coherence of this patch is hard to be derived . 

• The number of computations within a sector is not enough to fill up the pipeline 
especially when rendering an environment constituting of smaller patches. This may 
result in an inefficient usage of the pipeline when mapping these computations onto 
a pipelined parallel architecture. 

In [3]' we proposed an adaptive tracking mechanism to overcome the first problem. As 
to the second problem, which has not been addressed yet, our strategy is to maintain a 
balanced structure by controlling the granularity of computations through static partition­
ing and balancing workloads through run-time control. For this purpose, we extend the 
shelling technique to be a partitioning of space such that a balanced computation can be 
achieved while mapping this partitioning to a pipelined parallel architecture. Notice that 
the adaptive coherence tracking is now a local procedure embedded in the partitioning. 

12.2.2 Static Partitioning 

As shown in Figure 12.2, the object space is partitioned into sections (5), sectors (5') , 
shells (s), and subshells (s') . A subs hell is the primitive construct for conducting computa­
tions, which can be set adaptively by neighborhood information, and a shell is a grouping 
of subshells. Those two constructs are relevant to the scheduling of computations. As for 
the other two constructs, they are meaningful for processor assignment as can be seen in 
the following. 

While mapping this partitioning onto a pipelined parallel architecture, a section and 
its corresponding sectors can be mapped onto a cluster which consists of an intersection 
computation unit (!CU) and a number of cell traversal units (CTUs). Both!CU and CTU 
are of type pipeline. With this arrangement, the adaptive coherence tracking is only kept 
within a sector. It is not necessary to track across a sector because the CTU assigned 
for a sector can derive tracking information of its own. The problem is how to design a 
computational array in which the computations can be balanced and the communication 
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FIG URE 12.2. An example of the static partitioning. 

FIGURE 12.3. In 2D case, the object space is subdivided into subregions by equally distributed !l()s. 
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overhead between PEs and the communication with the host do not have unacceptable 
impacts on the overall performance of the array. As we explained in [3], the communication 
overhead between the host and PEs can be alleviated with the shelling technique. In an 
attempt to achieve a balanced computation, the granularities of the sections should be 
controlled such that all ICUs have approximately the same workload and have as high 
pipeline efficiency as possible. Similarly, the granularties of the sectors should be controlled 
such that all CTUs within a section have approximately the same workload and have as 
high pipeline efficiency as possible. The difficulty is that workloads cannot be precisely 
known in advance. Our approach consists of three steps: 

• In 2D case, the object space is subdivided into subregions by equally distributed 
b;()s as shown in Figure 12.3. 

• To start with a low resolution ray casting, so that only a small number of rays is shot. 
Then the number of cell traversals and the number of intersection computations for 
each subregion are recorded. 

• Based on the information of the low resolution ray casting, the object space is reor­
ganized into sections and sectors such that the number of intersection computations 
for one section should be close to that of other sections and also close to the number 
of cell traversals for each sector belonging to this section. This is done by a technique 
called BSP in the field of computer graphics. Firstly, the object space is recursively 
subdivided into sections by using median constant () planes. Then each section is 
recursively subdivided into sectors by using median constant () planes. An example 
of this subdivision is shown in Figure 12.2. 

This technique has been tested on different scenes. As will be seen in the next Section, 
a high deviation from that is expected can be observed for a few sections. This entails the 
necessity of using a dynamic workload balancing to adjust the low resolution partitioning. 

12.2.3 Dynamic Workload Balancing 

In order to insure a good balancing, the static partitioning should be fine-tuned with 
a dynamic workload balancing. When a PE completes its own computations, it sends a 
request to get a work-item from a busy PE. A work-item is a fixed amount of data which 
can trade for the communication overhead in transmitting them. With this approach, the 
communication between PEs can also be alleviated because it is not necessary to adjust 
workloads all the times and the amount of data transmitted can trade for the cost spent 
on transmitting them. 

12.3 Performance Evaluation 

The shelling technique as described in 12.2 has been implemented in the C language. It has 
been tested on practical and randomly generated scenes. While mapping a partitioning 
onto a pipelined parallel architecture, performance evaluation has been done by queueing 
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FIGURE 12.4. The queueing network of the shelling technique without workload balancing. 

network simulation. In this Section, we first describe the queueing network model of the 
shelling technique. Then the results of a pratical scene and a random generated scene will 
be shown. 

12.3.1 Queueing Network Model 

In queueing network, physical resources are modelled as serVIce centers and each task 
is modelled as a customer circulating among the service centers. Queueing networks are 
useful as performance models of systems where performance is principally affected by 
contention for resources which would be major concerns in our case. We have chosen PAW 
as our modeling and simulation tool. It is a discrete event simulation system operating in a 
world of queueing networks in which nodes and transactions are used to represent service 
centers and customers, respectively. For more detailes can refer to [2]. In the following, 
we explain the behavioral aspects of the network (refer to Figure 12.4) . 

• Initially, Cell Pool node holds tokens which represent non empty cells sorted into the 
order of being traversed within a sector. When a transaction enters the yank node 
Start Next Shell, a yanking action is invoked by yanking a token from Cell Pool 
node and route it to Cell Traversal node. After a service time that denotes the cell 
traversal time of this nonempty cell is consumed, two yanking actions are invoked to 
request loading all the patches within this cell and start traversing next nonempty 
cell. When a batch of transactions, which is equal to the number of nonempty cells 
within a shell, enter C_Join node, they will be collapsed into one tranaction and 
routed to Cell Traversal Ready node . 

• All the relevant patches are stored as initial tokens in Patch Pool node. When a 
yanking action initiated by Load Patch node, a number of tokens , which represents 
all the relevant patches within the nonempty cell, can be yanked from Patch Pool 
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FIGURE 12.5. The queueing network of the shelling technique with workload balancing. 
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node and routed to Global Memory node. Patches are queued in Global Memory 
node to model that there is only one unique memory to store the complete database. 

• When a patch is loaded from the global memory, a bundle of rays, which is stored as 
initial tokens in Ray Pool node, can be yanked from that node and routed to Inter­
section Computation node. In order to model the pipelined behavior of intersection 
computations, each stage of the pipeline should be modelled by an Intersection 
Computation node. If a batch of rays, which is equal to the number of intersec­
tion computations within a shell, enter R_Join node, they will be collapsed into one 
transaction and routed to Remaining Ray Ready node. Together with the yanking 
action initiated by Cell Traversal Ready node, another yanking action can be initi­
ated by the yank node Start Next Shell, which indicates that next shell can start 
with cell traversal. 

In the above, we have described the queueing network of the shelling technique without 
workload balancing. As discussed earlier, system performance can be further improved 
through dynamic workload balancing. Some modifications in the network must be made 
to model this run-time control behavior. We explain this in the following (refer to Fig­
ure 12.5): 

• Each section is now associated with a Ray Buffer node which is normally used to fill 
up the pipeline of its corresponding Intersection Computation node. Only when none 
is left in the queue of a Ray Buffer node, a work request transaction is generated 
to ask for a work-item from a busy Ray Buffer node. The work-item is moved in 
through a Split Work node by a yanking action which is initiated by a yank node 
Distribute Work. 

• If the requirement of work-item cannot be satisfied at the instant of requesting work, 
the request transaction will circulate in Distribute Work nodes with a specified rate 
defined in Sampling Work node. It should be noted that the size of work-item and 
the rate of sampling work will have influence on the effectiveness of balancing. 

It should be noted that all the information needed for constructing the queueing network 
are acquired by running a serial program implementing the shelling technique. Based on 
that information, a program can map the static partitioning onto a pipelined parallel 
architecture which is modeled as a queueing network. Then a trace-driven simulation is 
invoked to estimate the performance of the network. 

12.3.2 The Results 

In this Subsection, the results of two scenes as depicted in Figures 12.6 and 12.7 are 
shown. The control parameters of the shelling technique are shown in Table 12.1. In the 
following, three factors which are relevant to the performance are shown: 

• Workload Distribution: For the two test scenes, the workloads ofICUs after applying 
static partitioning are shown in Figures 12.8, 12.9, 12.10, 12.11, 12.12, and 12.13. 
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FIG URE 12.6. The test scene 1 consists of 6 walls and 20 randomly generated patches. 

TABLE 12.1. The control parameters of the shelling technique for the two test scenes. 

Number of Hemisphere Rays 969 
HLLow _Ratio 1, 10, 30 

# of Sectors in Low Resolution 25 

# of Sections in High Resolution 2,4,8 
Scene Boundaries (0,0,0) - (1, 1, 1) 

Size of a Cell 0.05 
Shell Radius 0.289 
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FIGURE 12.7. The test scene 2 consists of 808 polygonal patches. 

The Hi_Low _Ratio represents the proportionality of the number of rays used in both 
high and low resolution ray castings. Its value is dependant on the ADLC 1 of a scene. 
In our cases, it is favourable to choose 10 as the HLLow _Ratio . 

• Pipeline Efficiency: The pipeline efficiency is defined as the percentage of busy time­
space span over the total time-space span, which equals the sum of all busy and idle 
time-space spans. Without using dynamic workload balancing, the pipeline efficiency 
of the test scene 2 is shown in Figure 12.15. As can be seen in Figure 12.15, 15% 
improvement can be achieved while exploiting dynamic workload balancing . 

• Speedup: The speedup is the ratio of the overall computation time of one PE to 
that with p PEs. It represents, in fact, the number of PEs effectively used during the 
parallel processing of an algorithm. The ideal speedup is never achievable because 
of dependencies and communication overheads. On average, 15% improvement can 
be achieved by exploiting dynamic workload balancing. 

IThe Average Degree of Local Coherence of a scene represents the average nwnber of rays hit a patch in the 
scene. 
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FIGURE 12.8. The distribution of workloads for the test scene 1. 
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FIGURE 12.9. The distribution of workloads for the test scene 1. 

12.4 Conclusion 

In this paper we have proposed a new space partitioning technique such that the re­
quirement of loading patches can be reduced considerably. By controlling the granularity 
through space partitioning and balancing workloads through run-time control, it is pos­
sible to achieve a balanced computation on a pipelined parallel architecture. Our future 
work will be to establish a theoretic basis for the shelling technique and to set up an 
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FIGURE 12.10. The distribution of workloads for the test scene 1. 
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FIG URE 12.11. The distribution of workloads for the test scene 2. 
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FIGURE 12.12. The distribution of workloads for the test scene 2. 
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FIGURE 12.13. The distribution of workloads for the test scene 2. 
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FIGURE 12.14. The pipeline efficiency vs. work-item for the test scene 2. 
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FIGURE 12.15. The speedup vs. the number of ICUs. 
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environment to facilitate the mapping procedure. The key issues in that work will be 
the computational structure of the problem, the modelling of an environment and the 
underlying architecture, and most of all a suitable language for describing them. 
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