
11 An Architecture for a High Performance Rendering
Engine

Hans-losef Ackermann
Christoph Hornung

ABSTRACT
We present an architecture for a high-performance programmable rendering engine.
This chip or chip-set will be able to deliver one Gouraud-shaded, z-buffered, texture­
modulated and alpha-blended pixel every clock cycle. Focus of the paper is the deriva­
tion of the architecture of the pixel processing block from the applied algorithms.

11.1 Introduction

Nowadays graphics systems often consist of high performance RISC-processors for geom­
etry calculations and specialized ASICs for rendering. Such an architecture provides high
performance for both geometry processing and rendering, but offers only little flexibility in
the rendering area as discussed in [1 J. Yet there is a clear trend towards more flexible ren­
dering algorithms. Beyond Gouraud-shading, alpha-blending to implement transparency
and anti-aliasing as well as different kinds of texture and data m~pping become standard
features of graphics applications [2J. Even more [3], [4J require configurable and multiple
stage shading algorithms using iterative and/or recursive techniques. This chapter ad­
dresses this problem and proposes an architecture for a programmable rendering engine
(PRE). This chip or chip-set will provide both high rendering performance by executing
basic shading functions in a single clock cycle and flexibility by being programmable. Be­
sides the overall architecture of PRE, the chapter will mainly focus on the pixel processing
block described in Section 11.4.

11.2 Goals

As the Triangle Shading Engine described in [5J, the PRE-processor is intended to work
together with one ore more Digital Signal Processors in a system, which is balanced in
its geometry calculations to rendering performance ratio. The main goals of the proposed
architecture are to reach both high performance and wide flexibility. Besides this, inter­
facing the PRE-processor should be kept as easy as possible in order to achieve a simple
overall system design minimizing necessary PCB space and optimizing cost / performance
ratio.

11.2.1 Performance

To achieve high performance, the PRE will be able to output a pixel, processed using one
of the following basic algorithms, each clock cycle:

http://www.eg.org
http://diglib.eg.org

158 Hans-Josef Ackermann, Christoph Hornung

- z-buffering
- Gouraud-shading
- a-blending
- texture-mapping

Compared to the intended cycle time of the PRE, access to standard dynamic memory
used as r,g,b,a and z-buffer is a bottle-neck. Thus the memory interface will be designed
to allow one read and one write access each clock cycle using interleaving technique.

Depending on the available process, a single cycle execution time down to 25ns corre­
sponding to a rate of 40 Mpixel/sec is projected for a single PRE system. For high end
applications, multiple PRE processors could be used within a distributed graphics system
to achieve scalable performance.

11.2.2 Flexibility

To gain the aspired degree of flexibility, the PRE-processor will be on-line micro-programmable.
Thus simple shading algorithms as well as complex and lately developed ones will be sup­
ported. The "Shade Trees" approach [4] has been chosen as a test-bed to prove the flexi­
bility of the PRE architecture. Although the architecture of the PRE-processor is fit for
a wide variety of shading algorithms, it will be optimized to support the basic algorithms
listed before. All data will be processed using a fix-point representation.

11.3 Architecture of the Programmable Rendering Engine

The Programmable Rendering Engine consists of the following components as shown in
Figure 11.1:

- edge processing block
- pixel processing block
- control block
- memory interface

The edge processing block scan converts the edges of the rendering primitives. The pixel
processing block forms the inner loop by doing the pixel processing for a scan line. the
control block contains the micro sequencers. The memory interface provides flexible and
fast memory access according to different memory organizations.

11.3.1 Edge Processing Block

The edge processing block interpolates the different data (coordinates, z-values, colors,
alpha, texture coordinates) along an edge of the rendering primitives. Rendering primitives
supported will be:

- lines
- triangles
- planar trapezoids

- triangle strips

11. An Architecture for a High Performance Rendering Engine 159

The edge processing block must be able to do proper subpixel calculations to support
alpha-blending, texture-mapping and anti-aliasing. This can be reached using the algo­
rithm proposed in [5]. The input data consisting of coordinates, color-, and z-values of
the primitives edges as well as edge and span increments will be processed in fix-point
representation. The resolution of the fractional part will be sufficient to avoid rounding
errors in any case.

11.3.2 Pixel Processing Block

The pixel processing block interpolates the different data (coordinates, z-values, colors,
alpha, texture coordinates) along a span. This block implements point sampling at the
centers of pixels according to [5]. This approach avoids all the artifacts known by using
DDA-algorithms [1]. Details will be described in section 11.4.

11.3.3 Control Block

The control block contains micro sequencers with their associated microcode RAM. The
two processing blocks and the memory interface are controlled independently. The opera­
tion of the basic building blocks in the pixel processing block are configurable in parallel
with a long instruction word in a cycle to cycle fashion.

The set-up data interface will support 32 bit and 64 bit operation. The interface will
provide automatic loading of data sets from an externally connected FIFO. The read cycle
will be 25ns. Loading set-up data will work independently from interpolation using two
sets of set-up registers.

11.3.4 Memory Interface

Compared to the estimated internal processing times of the PRE- processor, data transfer
from and to frame-, z- and a-buffer is a bottle-neck when assuming standard dynamic
memory cycle times. The Triangle Shading Engine [5] reaches a cycle time of 150ns for a
read-modifiy-write-cycle using non- interleaved DRAMs in fast page mode. To achieve a
performance of 40 Mpixels/sec, one read and one write cycle of frame- an z-buffer (plus a­
and texture-buffer if involved) has to be completed in each clock cycle which is projected
to be 25ns. A solution to this problem is the use of dual-ported frame- , z- and a-buffers
realized with standard video-RAMs. Hence page mode access time using the random ports
of the VRAMs is at least 50ns, the memory chips have to work in an interleaved fashion.
The interleave factor will be four . The serial port will serve as read port only whereas the
random port will perform write and control operations. An additional advantage when
using VRAMs is the possibility of fast buffer clearing by successively writing back the
contents of the cleared shift register to all rows of the memory array.

Unlike to frame- z- and a-buffer, the texture-buffer requires random access. Because of
the limited size of the texture-buffer (64K by 32 bits) and to satisfy the required access
times, fast static memory will be used.

160 Hans-Josef Ackermann, Christoph Hornung

EDGE -PROCESSING

CONTROL
AND

PIXEL -PROCESSING SETUP
LOGIC

MICRO-
RANDOM CODE-
SERIAL MEMORY INTERFACE RAM

TEXTURE

FIGURE 11.1. Block Diagram of the Programmable Rendering Engine

11.4 Derivation of the Architecture of the Pixel Processing
Block from the Applied Algorithms

11.4.1 General Remarks

In this section, the pixel processing block will be described. An outline of its architecture
based on the requirements of basic shading algorithms will be given. The pixel processing
block consists of the following conceptual pipeline:

- reading of buffer-values
- pixel generation
- pixel blending
- writing back processed values

The read unit is used to read the different values from the frame-buffer, the z-buffer
and the texture- buffer. The pixel generation unit processes single pixel values, normally
by linear interpolation. The pixel blending unit does a modification of pixel values. This
is essential for the calculation of one resulting pixel value out of two input values. The
final pixel values (z and rgba) are written back by the write unit. In this section, first
the elementary design of the different stages is described. Then, the different stages are
extended to allow more complex algorithms.

11.4.2 Memory Layout

The z-buffer will be 24 bit wide. It will be addressed in strictly sequential order, with
address increments of either 1 or -1. Moreover, parallel read and write is necessary. These
requirements can be fulfilled using VRAMs for the realization of the z-buffer.

11. An Architecture for a High Performance Rendering Engine 161

The rgba-buffer will be 32 bit wide, containing one byte for r, g, b and a each. It is
organized in the same way as the z-buffer.

The texture-buffer is 32 bit wide, containing a byte for r, g, b and a each. This allows
true color textures with an additional a-channel. Textures will be assumed as toroidally
closed and being of a size of 2n x 2m . As will be seen later, the texture-buffer is randomly
addressed. Therefore, fast SRAM is used.

11.4.3 Basic Algorithms

The algorithms of the following sections are described in a C-like notation. The C-code
pieces represent the inner loops of the underlying algorithms. There are no explicit type
declarations. Table 11.1 gives an explanation of the used types and symbols.

Table 11.1: Basic Types, Structures, Variables and Functions

Types:
tCard8
tCard12
tCard24
tCard32
tFix8_16
tFix24_16
typedef struct

cardinal value 8 bits
cardinal value 12 bits
cardinal value 24 bits
cardinal value 24 bits
fixpoint value; 8 bit integer, 16 bit fracto
fixpoint value; 24 bit integer, 16 bit fracto

{ tFix8_16 x; tFix8_16 y; tFix8_16 Z; } tFixXyz
typedef struct
{ tFix8_16 r; tFix8_16 g; tFix8_16 b; tFix8_16 a; }
tFixRgba typedef struct
{ tCard8_16 x; tCard8 y; tCard8 z; } tIntXyz
typedef struct
{ tCard8 r; tCard8 g; tCard8 b; tCard8 a; } tIntRgba
typedef struct
{
tFixXyz Par;

tIntXyz Addr;
tCard16 Offset;
tCard16 *pBase;
tCard16 *pTxt;
}
tTxtMemlnt
typedef struct
{
tIntRgba *pRgba;
tCard12 dpRgba;
tCard24 *pZ;

fixpoint value used during interpolation
of texture address
integer part of interpolated address
texture address offset
pointer to texture baseaddress
pointer to texture address in memory

pointer to Rgba in frame-buffer
delta pointer to Rgba in frame-buffer
pointer to Z in z-buffer

162 Hans-J osef Ackermann, Christoph Hornung

tCard12 dpZ;
tTxtMemInt Txt;
}
tMemInterface;
typedef struct
{
tFixRgba Rgba;
tFix24_16 Z;
}
tInterpolator;
typedef struct
{
tIntRgba Rgba;
tCard24 Z;
}
tPxlValue;
typedef struct
{
tIntRgba Front;
tIntRgba Back;
tIntRgba Rgba;
}
tBlend;

Variables:

tMemInterface Mem;
tInterpolator Inter;
tPxlValue Pxl, Buf;
tBlend Blend;

Basic Functions:

FixToIntZ(tCard24_16);
FixTolntRgba(tFixRgba);

11.4.3.1 Gouraud-Shading

delta pointer to Z in z-buffer

fixpoint Rgba-value during interpolation
fixpoint Z-value during interpolation

integer Rgba-value
integer Z-value

Rgba-value of the frontzpixel during blending
Rgba-value of the back pixel during blending
Rgba-value of the pixel after blending

memory interface
interpolation stage
pixel comparator stage
pixel blendingstage

returns the into part of a tCard24_16 value
returns the integer part of a tFixRgba value

Gouraud Shading along a span is one underlying algorithm of the PRE:
Pxl.Rgba = FixTolntRgba(Inter .Rgba);

Mem.pRgba = Pxl.Rgba;
Mem.pRgba = Mem.pRgba + Mem.dpRgba;
Inter.Rgba = Inter.Rgba + Inter.dRgba;

This basic algorithm uses the pixel generation unit and the write unit.
The pixel generation unit consists of three interpolators which work in parallel. The

components r, g, b and a as well as dr, dg, db and da are represented in a fix-point

11. An Architecture for a High Performance Rendering Engine 163

SETUP-DATA

INTERPOLATED-DATA

FIGURE 11.2. Block Diagram of a General (I+F)-Interpolator

WRITE
ADDRESS
INC/DEC

12

RGBa
ADDRESS

32

RGBa

FIG URE 11.3. Block Diagram of the Gouraud-Shading Block

format. The integer part is 8 bits wide, the fractional part 16 bits. This is sufficient to
avoid rounding errors with regard to the maximum screen resolution of 2048 by 2048 pixels.
Once initialized with a starting value and an increment value, an interpolator produces
an 8 bit integer result every clock cycle. We will call such an interpolator a (8+16)­
interpolator, for short. The block diagram for a general (I+F)-interpolator is shown in
Figure 11.2.

The write unit must be able to write a 32 bit word each clock cycle. For reasons of
generality and to support advanced object shading algorithms, we will support to write
in two directions (drgba = 1 or drgba = -1). If pipelined operation of the interpolators
and write unit is assumed as well as single cycle propagation delay for each block, one

164 Hans-Josef Ackermann, Christoph Hornung

z

Z
ADDRESS

SCLK

z

FIGURE 11.4. Block Diagram of the Z-Unit

Gouraud-shaded pixel can be delivered in each clock cycle. The pipeline length is two.

11.4.3.2 Z-BufFering

Z-buffering consists of the following steps: extracting the integer part of the pixel's actual
z-value out of the interpolator, reading the buffer's actual z-value from the z-buffer, com­
paring both z-values, and writing back the pixel's z- value if necessary. Then the address
for the next z-buffer access is calculated and the z-value for the next pixel is interpolated.
This algorithm looks as follows:

Pxl.Z = FixTolntZ(Inter.Z)j
Buf.Z = *Mem.pZj
if (Pxl.Z > Buf.Z)
Mem.pZ = Pxl.Zj
Mem.pZ = Mem.pZ + Mem.dpZ
Inter.Z = Inter.Z + Inter.dZj

This basic algorithm already makes use of all the conceptual functional blocks of the

11. An Architecture for a High Performance Rendering Engine 165

PRE. In addition to an interpolator and a write unit, a comparator and a read unit are
necessary.

The read unit realizes a 24 bit interface to read a z-value which is stored in the z-buffer
as an integer. The read is done in a sequential order with an increment of 1 or -1.

The pixel-generation unit implements a (24+16)-interpolator . The design is similar to
the one of the rgba-interpolators.

The comparator unit compares two 24 bit words. The result is the z-flag indicating
whether the first value is greater than the second one. In this case, the interpolated z­
value (as well as rgba-values) of the pixel must be written to the z-buffer by the write
unit.

This basic algorithm then leads to the block diagram shown in Figure 11.4. As men­
tioned above, it is necessary to read and to write a z-value at the same time. This requires
a dual ported memory. The z-buffer will be realized with VRAMs using the random port
as write port.

11.4.3.3 Texture-Mapping

Doing texture-mapping, the color of a pixel is determined indirectly. The vertex data are
interpreted as addresses that point into a texture plane or texture space. These addresses
are evaluated per pixel and the corresponding texture value is read. In our approach, we
only support point sampling and no filtering yet. Textures are assumed to be toroidally
closed. Both 2D and 3D texture-mappings are supported. The texture is supposed to fit
into 64K words. In the 2D case, textures may be up to 256 x 256, in the 3D case, up to 32
x 32 x 32 texels. The access to texels is random. Therefore, a random address generator is
required. The x,y,z-components of the texel addresses are assumed to be (8+16). During
simple texture-mapping, no modification of rgba-values is done. The algorithm uses the
texture-read unit and the write unit only. The texture logic can be realized using three
(8+16)-interpolators and a texture address generator. This texture address generator
calculates the final texture address by merging the three 8 bit outputs of the interpolators
and a 16 bit base address to a physical 16 bit memory address. The write unit moves the
rgba-values, read from the texture-buffer to the frame-buffer. The write unit is the same
one for any write access to the frame- buffer. The matching algorithm is given below:

Mem.Txt.Addr = FixToIntRgba(Mem.Txt.Par)
Mem.Txt.Offset = (((Mem.Txt .z & (1 ~ Mem.Txt.Dim.z)-l)
~ Mem.Txt.Dim.y) + (Mem.Txt.y & (1 ~ Mem.Txt.Dim.y)-l))
~ Mem.Txt.Dim.x)) + (Mem.Txt.x & (1 ~ Mem.Txt.Dim.x)-l)
Mem.Txt.pTxt = Mem.Txt.pBase + Mem.Txt.Offset
Pxl.Rgba = *Mem.Txt.pTxt
Mem.pRgba = Pxl.Rgbaj
Mem.pRgba = Mem.pRgba + Mem.dpRgba
Mem.Txt.Par = Mem.Txt.Par + Mem.Txt.dParj

166 Hans-Josef Ackermann, Christoph Hornung

TEXTURE READ

BASE
ADDRES

TEXTURE
ADDRESS

16

RGBa
ADDRESS

TEXTURE

32

RGBa

FIGURE 11.5 . Block Diagram of the Basic Texture Logic

11.4.3.4 The Basic Design

Combining the three basic algorithms, we get the following basic design shown in Figure
11.6. This design implements Gouraud-shading or texture-mapping and z- buffering in
one cycle.

11.4.4 Complex Algorithms

Up to now, we have just considered basic algorithms to calculate pixel values. In this
section, we will combine these blocks to do more complex pixel calculations.

11.4.4.1 Alpha-Blending

Alpha-blending is the most complex basic algorithm of the PRE. It essentially consists of
the blending of two pixels, Front and Back, controlled by the 8 bit a-value of Front. One
of the pixels is interpolated, while the other one is read from the buffer. The decision is
made depending on the z-value. For a detailed explanation, see [6].

The algorithm looks as follows:
Pxl.Z = FixToIntZ(Inter.Z)

Buf.Z = *Mem.pZ;
Pxl.Rgba = FixToIntRgba(Inter.Rgba)

11. An Architecture for a High Performance Rendering Engine 167

z

Z
ADDRESS

SCLK

z

TEXTURE
ADDRESS

RGBa
ADDRESS

FIGURE 11.6. Basic Design

Buf.Rgba = *Mem.pRgba;
if (Pxl.Z > Buf.Z)
{
Mem.pZ = Pxl.Z;
Blend.Front = Pxl.Rgba;
Blend.Back = Buf.Rgba;
}
else
{
Blend.Front = Buf.Rgba;
Blend.Back = Pxl.Rgba;
}
Blend.Rgba = Blend.Front + (I-Blend.Front.a) * Blend.Back;
Mem.pRgba = Blend.Rgba;
Mem.pRgba = Mem.pRgba + Mem.dpRgba;
Mem.pZ = Mem.pZ + Mem.dpZ;

TEXTURE

RGBa

168 Hans-Josef Ackermann, Christoph Hornung

Inter.Rgba = Inter.Rgba + Inter.dRgbaj
Inter.Z = Inter.Z + Inter.dZ

This algorithm makes use of all the building blocks of the pixel processor. The read
unit reads a z-value in each cycle as well as an rgba-value. The interface to the z-buffer
has already been discussed (see 4.1.2). The rgba-values are read in a strictly sequential
order and 32-bit wide. Within the pixel generation unit, one rgba-value is interpolated
in parallel by four (S+16)-interpolators. This allows to interpolate the a-value across the
span, which is not commonly done, but may be useful. The two rgba-values are merged in
the pixel blending stage in the next step. This stage consists of an adder, a multiplier, and
an a-logic. The adder is 4xS bit wide. The four multipliers multiply an S bit integer r,g,b
or a-value by an S bit fractional 1- aFront-value each. The results are S bit integer r,g,b
or a-values which are propagated to the next stage. The a-logic provides Blend.Front,
Blend.Back and 1-Blend.Front.a. The length of the resulting pipeline for alpha-blending
is five.

11.4.4.2 Texture-Modulation

Another advanced algorithm is texture- modulation. Textures may not only be used for
mapping, but also to modulate a basic color or vice versa. The modulation may be done
either by addition or by multiplication. In any case, it is an operation on the integer part
of the color values only. To achieve texture-modulation, the stage shown in Figure 11.S is
included. This architecture again allows a single cycle output assuming that all building
blocks produce a result in each cycle.

11.4.5 Programmability and Advanced Algorithms

Up to now, the design has fulfilled the initial requirements of being able to support single
cycle execution of the basic shading algorithms. However, the resulting architecture is
fairly general and allows, with just subtle extensions, the realization of wider ranges of
algorithms.

11.4.5.1 Separation of Diffuse and Specular Color

During Gouraud shading, usually the final color value (sum of the diffuse and specular
components) is calculated at the vertices and this color value is interpolated across the
interior

of the primitive. While this works fine for objects with one intrinsic color only, it
will lead to rather strange results when applied to texture mapped, transparent objects.
Texture-mapping is conceptually a modification of the object's diffuse color. If first the
resulting color is calculated and then this color is modulated with a texture, even the
highlights seem to be 'textured', leading to a rather strange appearance. The following
correct formula should be applied instead:

Pxl.Rgba = Diff.Rgba * Txt.Rgba + Spec.Rgba
If, however, the texture is used to model the surface's roughness, it should only be

applied to the specular component. Then, the formula should be:

11. An Architecture for a High Performance Rendering Engine 169

SCLK

RGBa
ADDRESS

RGBa

RGBa

FIGURE 11.7. Block Diagram of the Alpha-Blending-Stage

170 Hans-Josef Ackermann, Christoph Hornung

TEXTURE TEXTURE ADDRESS

12

RGBa
ADDRESS

32

32

RGBa

FIGURE 11.8. Texture-Modulation Stage

z

Z
ADDRESS

SCLI(

z

11. An Architecture for a High Performance Rendering Engine 171

PIXEL
GENERATION

PIXEL
BLENDING

WRITE
INTERFACE

RGBa

TEXTURE

RGBa
ADDRESS

FIGURE 11.9. Final Design

SCLK RGBa

Pxl.Rgba = Diff.Rgba + Spec.Rgba * Txt.Rgba
Similar arguments apply to transparent objects. A window, for example, is transparent,

but has a clearly defined highlight. This can be realized only if we distinguish between
diffuse and specular color. This advanced shading algorithms can easily be implemented
by adding another interpolator for the second color components and connect it to the
adder stage of the pixel blending stage.

172 Hans-J osef Ackermann, Christoph Hornung

11.4.5.2 Iterative Algorithms

To implement shade-trees, iterative shading algorithms must be supported. This requires
both additional memory to store the results as well as additional busses to allow itera­
tion. We want to implement such a feedback loop for each of the two internal stages of
the pixel modification stage. This allows iterative pixel accumulation as well as iterative
blending. The storage of results is done in FIFO registers which replace the initial value
and increment registers of all interpolators. The depth of this FIFOs will be four. That
means that a group of four parameter sets can be processed to iterate a final pixel value.
In order to allow interpolating and initializing in parallel, there has to be a double set
of FIFOs. Thus the final design of the pixel processing unit is shown in Figure 11.9. In
case of using iterative algoritms, the time for generation of one result depends on the
number of iterations. That means if the full iteration depth of four is used, a pixel can be
produced every four clock cycles.

11.5 Expected Performance and Complexity

The simple assumption that the described pipeline of the pixel generation block delivers
one pixel in each clock cycle implies, that even the slowest block of the pipeline requires less
than one clock cycle to finish its operation. The critical blocks are obviously the multiplier
units. As flash multipliers have been decided to consume to much of the available gate
count, advanced Wallace Tree [7] multipliers will be used. Assuming the propagation
delay times of an 1 /Lm CMOS process, a cycle time of 25ns is realistic. To assimilate the
different propagation delay times of the different stages, the multipliers themselves could
work in a pipelined fashion to increase the possible performance. But it does not make
much sense to decrease the cycle time below the minimum required strobe pulse widths
of the connected memory devices.

In any case, the system performance of the PRE will not only be determined by the
achievable cycle time of the pixel processing block. As shown in [5], this performance,
measured in primitives per second is determined by several other factors. The time nec­
essary for transferring set-up data to the initial value and increment registers limits the
maximum number of primitives per second. The time for one write cycle has as well been
assumed to be 25ns. For simple Gouraud shading, eleven 64 bit words have to be trans­
ferred to the PRE. Even for complex iterative algorithms, this number may hardly exceed
25. On the other hand even a latest generation signal processor is not able to calculate
the set-up data fast enough to keep the PRE working continuously when the area cov­
ered by the processed primitives decreases to a few pixels. An other determinant is the
edge processing time. Unlike the Triangle Shading Engine [5], the PRE will provide an
independent edge processing unit. It will be able to generate an edge value at least every
two clock cycles. That limits drawing of vertical lines (which is the worst case operation)
to 20 Mpixels per second. At last there is a loss of performance due to necessary mem­
ory refresh and control cycles. Projecting the performance of the PRE according to the
performance of the Triangle Shading Engine leads to 100,000 up to 380,000 triangles (100
pixels, Gouraud-shaded, z-buffered, texture-modulated and alpha-blended), per second

11. An Architecture for a High Performance Rendering Engine 173

and up to 1,000,000 Triangles (up to 8 pixels, Gouraud- shaded, z-buffered) per second,
providing that set-up data can be accessed with maximum speed.

The complexity of the PRE can be estimated according to the components used in
the different blocks. A detailed estimation can be given for the pixel processing block
(estimation based on [7]):

Table 11.2: Estimation of Gate-Counts for the Pixel Processing Block

Component quantity Gate-equivalents
INTER 8+16 8 20000
INTER 24+16 1 4000

ADDER 8 8 1000
MULTIPLIER 8 8 10000

a-LOGIC 1 500
COMP 24 1 200
MUX 2:1 160 1000
MUX 4:1 32 300

Total 37000

Table 11.3: Estimation of Gate-Counts for the Chip

pixel processing
edge processing
memoryinterface

controlunit

Total

37000
6000
7000

10000

60000

The total gate-count will be about 60,000. This is about five times the complexity of
the Triangle Shading Engine.

The approximate pin count will be 320 (Triangle Shading Engine 120 pins).

11.6 Future Work

The plan for the realization of the Programmable Rendering Engine has been started with
the conception of the Pixel Processing Block. Depending on the available complexity of the
process used for realization, functional blocks will be distributed to different chips. Future
Work will concentrate on the other building blocks, their partitioning and realization of
one or a set of chips.

174 Hans-J osef Ackermann, Christoph Hornung

11.7 References

[1] Kirk, D., Voorhies, D.: The rendering Architecture of the DN10000VS, Computer
Graphics 24(4), August 1990 pp. 299-307

[2] Hanrahan, P., Lawson, J.: A Language for Shading and Lighting Calculations, Com­
puter Graphics 24(4), August 1990, pp. 289-298

[3] Abram, G.,D., Whitted, T.: Building Block Shaders, Computer Graphics 24(4), Au­
gust 1990, pp. 283-288

[4] Cook, R., L.: Shade Trees, Computer Graphics 18(3), 1984, pp. 223-231

[5] Ackermann, H.-J., Hornung, Ch.: The Triangle
In: R.L.Grimsdale, A. Kaufman (Eds.):Advances in Computer
V,EurographicSeminars. Springer-Verlag, Berlin, 1991, p.3-13.

Shading Engine,
Graphics Hardware

[6] Foley, J., van Dam, A.,Feiner, S. Hughes, J.: Computer Graphics Principles and
Practice, second edition, Addison-Wesley, 1990

[7] Spaniol, 0.: Arithmetik in Rechenanlagen, B.G. Teubner, Stuttgart, 1976

[8] Matra Harris: Databook ASIC, MHS, May 1989

	gh_6th_ws0163_clean
	gh_6th_ws0164_clean
	gh_6th_ws0165
	gh_6th_ws0166_clean
	gh_6th_ws0167
	gh_6th_ws0168
	gh_6th_ws0169
	gh_6th_ws0170
	gh_6th_ws0171_clean
	gh_6th_ws0172
	gh_6th_ws0173
	gh_6th_ws0174
	gh_6th_ws0175_clean
	gh_6th_ws0176
	gh_6th_ws0177_clean
	gh_6th_ws_1770001
	gh_6th_ws_1770002_clean
	gh_6th_ws_1770003

