10  Testing Geometric Primitive Shaders

G. J. Dunnett
M. White

P. F. Lister
R. L

. Grimsdale

-

ABSTRACT We present a design and test strategy for Geometric Primitive Shaders—
integrated circuits which perform rasterisation of primitives such as vectors and tri-
angles. The design strategy proceeds through various levels of detail, and we describe
the need for testing as the design advances. A suitable set of test are given for a typ-
ical shader. Our experiences in applying the strategy to a real device are discussed,
together with the tests which we devised, and practical compromises which we had
to make.

10.1 Introduction

Advances in VLSI technology have made it possible to design complex chips to perform a
wide range of graphics functions, and off-load image generation from host processors. As
the functionality of these chips becomes ever greater, the importance of testing designs
thoroughly before they are cast in silicon increases. At each stage of the design process,
testing a model against a known standard helps ensure that these chips perform exactly as
they were intended. This is particularly important when the evolution of a design is carried
out by a geographically distributed design team who may have different understandings of
how the design achieves its aim [2]. Previous papers have concentrated on device testability
or design testing, for example [9]. Here we consider functional testing, and the validation
of evolving designs. Nimmo [11] has described functional testing before.

In Section 10.2 we describe the functionality of a range of Geometric Primitive Shaders
and distill from them, and our predictions of future devices, a list of generic functions
which they perform. From this we present a typical Geometric Primitive Shader, and
describe how we would construct a test strategy for it. Later, in Section 10.3, we outline
how we applied the test strategy to a real shader—the SPIRIT-I ASIC Drawing Engine
[7], designed as part of the SPIRIT Workstation graphics subsystem [16]. We describe in
some detail the tests which we had to develop for this device.

10.2 Development of a Geometric Primitive Shader

During the last decade we have seen memory prices fall, and processor clock speeds in-
crease remarkably. These two factors have allowed high resolution graphics on worksta-
tions to be supported. High resolution screens of over one million pixels, and 16 million
displayable colours are now common [8]. To drive ever larger displays, however, takes
vast amounts of processing power. Manufacturers of graphics oriented workstations are

delivered by

EC

www.eg.org

EUROGRAPHICS

DIGITAL LIBRARY
diglib.eg.org



http://www.eg.org
http://diglib.eg.org







144 G. J. Dunnett, M. White, P. F. Lister, R. L. Grimsdale

XandY
Generator

r—
Control T M Pixel Address

Windowing

T Valid Pixel Address

Parameter - Parameter
Interpolation Interpolation

I = 5 T

Blending and
Anti-aliasing

T

Pixel Data to
Framestore

FIGURE 10.1. A Geometric Primitive Shader

X and Y Generator This block generates pixel addresses that lie within the primitive
being rendered. Control information fed back from the edge units determine in which
direction the next pixel lies in.

Edge Units These units determine when an edge of a primitive has been reached, and
allow the XY generator to decide where the next pixel is found. Additionally, this
unit calculates the fraction of the current pixel covered by the primitive to assist in
the filtering of edge pixels.

Windowing Unit Pixels lying outside of the current window region are culled by this
unit.

Parameter Interpolation Units From the pixel coordinates fed from the previous
block, these units calculate pixel parameters such as R, G, B, and Z, etc. and where












148 G. J. Dunnett, M. White, P. F. Lister, R. L. Grimsdale
10.3 Application to the SPIRIT-I ASIC Drawing Engine

We now describe how we applied the design and testing strategy outlined above in a real
situation, as we designed and tested a drawing engine with other members of the SPIRIT
WORKSTATION CONSORTIUM.

10.3.1 Overview of the ASIC Drawing Engine

The ASIC Drawing Engine (ADE) is a custom VLSI device used as a pixel address gener-
ator, and can provide bilinearly-interpolated colour, depth and anti-aliasing information
for each pixel. It performs Gouraud shading , and can assist Phong shading. The ADE
scan-converts triangle and vector primitives using the Pineda [12] and Bresenham [5]
algorithms respectively.

In addition to Gouraud shading, wireframe and hiddenline triangles can be generated.
All primitives can be generated with anti-aliasing information, with a new pixel output
available at every clock cycle. To achieve this, the internal architecture has been exten-
sively pipelined.

10.3.2 Hardware Architecture

The hardware structure of the ADE can be broken down into the functional units [10],
illustrated in Figure 10.3. These are:

1. A PLA state-machine which acts as a controller for the entire device.
2. Data loading unit and input registers.

3. Pixel address computation and depth interpolation units.

4. Colour computation units.

5. Distance to the ideal line computation units.

6. Colour and depth formatters.

7. Anti-aliasing information formatter using a subpixel bitmask memory.
8. Output formatter for the depth and colour values.

The ADE is designed around 9 bilinear incremental interpolators operated in parallel.
These incrementers are loaded by a host processor through input registers which permit
the incrementers to scan-convert one primitive whilst the setup information for the next
is being written into the registers. At each clock cycle the incrementers can be made to
increment or decrement in X, or increment in Y. Two of the incrementers are used to
calculate the current X and Y values (pixel address).

The scan-conversion is controlled by a PLA state-machine which receives inputs from
three edge units (three incrementers). For each pixel These calculate the distance of the
pixel centre to each of the three edges of the triangle being displayed. The pixel centre






150 G. J. Dunnett, M. White, P. F. Lister, R. L. Grimsdale

to be implemented and evaluated for hardware suitability. After algorithms were selected
the logic design was started, and the rendering and scan-conversion routines of the Frame-
work replaced by a functional model. The testing of this model against the behavioural
model was not performed at this stage. The final functional code—the asic code—was
then supplied to a foundry as a detailed specification for the drawing engine. The foundry
used the Genesil silicon compiler for their implementation. We considered it most impor-
tant that the Genesil design produced by the founder was thoroughly tested against the
functional software before the chip was fabricated from the Genesil output. This was to
guard against any misinterpretation of the specification.

The requirement to generate test data in a form suitable for supplying to the Genesil
model meant that the input and output formats used by the Framework had to be ex-
tended. A register-level interface was implemented allowing register—-data value pairs to
be given, instead of the usual display list information such as vertex coordinates, colour,
shading method etc. Similarly the output from the asic code was modified, allowing the
values present on the output pins and buses to be captured, instead of pixel being plotted.
Programs to translate to-and-from the Genesil format were written, allowing the output
from both models to be compared. Figure 10.4 shows the interfaces between parts of the
Framework, the asic code and the Genesil model.

10.3.4 Test Parameters for the Asic Drawing Engine

The test parameters used to test the SPIRIT-I drawing engine basically followed those given
in Section 10.2.5, with additions to test features peculiar to our device. The additions were:

e Test that the asic can locate the triangle from any start position on the screen.

e Test that anti-aliasing information is correctly produced when the edge flags for
each edge are combined in all possible ways.

Further information regarding the test parameters is given in the following section.

10.3.5 Description of Tests

Each test parameter gave rise to many separate tests to be performed. We describe the
tests which we developed in more detail here.

10.3.5.1 Screen Position

Triangles are described to the ADE as 3 intersecting infinite lines, each splitting the plane
into two half-planes. This makes it easy to specify triangles which do not lie in the screen,
and may in fact partially overlap it. To test this we generated many triangles overlapping
the screen. Triangles which intersect each of the 4 screen edges, pairs of edges, three edges
at once, and all four edges were devised, for a total of 28 tests.

10.3.5.2 Geometry—Size and Orientation

The ADE edge units play a large role in the successful scan-conversion of triangles and
vectors. Edges can be approached from both inside and outside of the triangle, and this






152 G. J. Dunnett, M. White, P. F. Lister, R. L. Grimsdale

led us to identify 12 distinct geometric test cases. In order to test the scan conversion
routine fully we rotated each of these 12 cases into each of the 8 octants and applied a
small random perturbation to the vertices (intersection points). This forced the triangle
to be non-aligned with the (integer) pixel grid. The tests were generated for both greasy
and thin triangles. At this stage the anti-aliasing information produced was ignored. Of
consideration was only whether the correct pixels were being located.

Vector primitives are scan-converted using two edge units. One unit describes the line
on which the vector is located, and the second is used to count the number of pixels
plotted. Scan-conversion finishes when this count reaches a previously calculated figure.
The Bresenham algorithm is performed only in the first octant, and so we tested that the
vector algorithm could perform as expected in each octant. Perturbing the end points, as
for the triangle cases, exercised the Bresenham algorithm more fully.

The ADE cannot draw triangle primitives which are smaller than a pixel in size, unless
the triangle is classed as greasy, enabling pixels around the primitive to be considered.
Scaling the 12 geometric cases to be sub-pixel sized allowed us to test that the ADE could
correctly scan-convert small primitives.

Four half-screen sized triangles were created, with vertices at each screen corner. These
tested the scan-conversion of large triangle primitives. Scan converting 2 vectors placed
diagonally across the screen tested the drawing of large vectors.

10.3.5.3 Anti-aliasing

As mentioned above, rotating a triangle causes its vertices to fall at non-integer screen
locations. This causes pixels to be only partially covered by the triangle and thus require
anti-aliasing. We took advantage of this to test the anti-aliasing information produced by
the ADE. A “normal” and long-thin triangle were each used in these tests with a small
rotation angle and vertices perturbed randomly by +1 pixel to generate many partially
covered pixels. We kept the triangle size small—~ 9 pixels—to force most pixels to be
partially covered. The treatment of anti-aliased, hiddenline triangle primitives is extended
to allow border pixels to be considered as either inside the triangle, or part of the edge.
Pixels which lie on the border can be anti-aliased or not, depending on the precise mode.
Tests were created three times over, once for Gouraud, and twice for the two modes of
hiddenline triangles.

The antialiasing of vectors was tested in a similar manner, with a short vector—~ 3
pixels long. This was rotated and perturbed to create many test cases. These tests were
repeated twice, once with the ADE configured in one-pass mode, and the second in two-
pass mode. The background colour was important for the one-pass tests, and so the tests
were generated on a black, and on a white background to exercise both cases—background
lighter, and background darker than the primitive.

10.3.5.4 Windowing

Testing the interaction between primitives and windows caused the largest number of tests
to be developed. Two cases were important, a window clipping a primitive corner to corner,
and a primitive crossing the edges of a window. These cases were treated separately. We
identified 38 cases of the first type and 182 of the second. We generated thin and greasy






154 G. J. Dunnett, M. White, P. F. Lister, R. L. Grimsdale

combination worked particularly well, since for the test documentation we would have
had to have drawn the test cases anyway. To test that the translation from the drawing
package to the test generators was correct, more code was written, this time to display
the tests on our workstations. This allowed us to compare the cases drawn using the
drawing package to what we saw on our screens. When the test stimuli were generated we
could be reasonable sure that they were free of any errors. In the process of generating
the test stimuli, we fed cases through the Framework to check that the formatting of the
display lists was correct, that offsets onto the screen were being calculated correctly, and
many other things. Indirectly, this demonstrated errors between the functional model and
behavioural model—the Functional Framework demonstrated anamolies. This caused us
to regression test the functional Framework and modify the specification given to the
foundry. Of course, we should have performed this test much earlier.

We could vary the number of tests we generated with most passes of the generator suite
by varying the number of times each primitive was perturbed. The list of tests described
in Section 10.3.5 in fact is only a minimum test set, and we increased the total number
of tests to approximately 5000.

10.4 Conclusions

We have presented a design and test strategy which we believe can be applied to a wide
range of hardware accelerators, and help produce working silicon. This strategy has been
used to design a new ASIC device and proved itself useful, both in producing simulations
at a variety of levels, and identifying errors in our final specification. The device is still
being fabricated and so it is too early to know whether it will work entirely as expected,
although we strongly believe that it will.

We found that our approach generated far too many test vectors to apply to the Genesil
model in a realistic time. Each clock cycle takes many minutes to simulate with the Genesil
package, and this meant that many of our tests could not be used. Having all the tests to
hand, however, allowed more accurate detection of errors when problems did appear.

Acknowledgements:

The authors wish to acknowledge France Glemot, Pascal Gros and the CAPTION SpPIRIT
team in general for their efforts in the design of the ASIC and their contribution to this
paper. This project is part of the Esprit II program supported by the European Commis-
sion.

10.5 References

[1] Hans-Josef Ackerman and Christoph Hornung. The Triangle Shader Engine. In:
R.L.Grimsdale, A. Kaufman (Eds.):Advances in Computer Graphics Hardware
V,EurographicSeminars. Springer-Verlag, Berlin, 1992.



2]

3

4]

[5]

(6]

[7]
(8]

[9]

[10]

(11]

(12]

(13]

(14]

[15]

10. Testing Geometric Primitive Shaders 155

The Spirit Workstation Consortium. The Spirit Workstation, A High Performance
Technical Workstation, Part II, Detailed Project Description. Technical Report
Annex-1053-ACE, ACE, July 1990.

Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt. The
Triangle Processor and Normal Vector Shader. Computer Graphics, 22(4), August
1988.

S. R. Evans, P. F. Lister, R. L. Grimsdale, and A. D. Nimmo. The AIDA Display Pro-
cessor System. In: R.L.Grimsdale, A. Kaufman (Eds.): Advances in Computer Graph-
ics Hardware V,EurographicSeminars. Springer-Verlag, Berlin, 1991, p.15-28.

James D. Foley, Andries Van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics Principles and Practice. Addison Wesley, second edition, 1990.

Pascal Gros. Framework Documentations. Technical Report 0270, Caption Sarl,
May 1989.

Pascal Gros. ASIC Documentation. Technical Report 0277, Caption Sarl, June 1990.

David Kirk and Douglas Voorhies. The Rendering Architecture of the DN10000VS.
Computer Graphics, 24(4), August 1990.

Ralph Marlett and Stephen R. Pollock. Guaranteeing ASIC Testability. VLSI Sys-
tems Design, 9(8), August 1988.

Paul Munsch and Pascal Gros. Architecture of the ASIC for Spirit-I. Technical
Report 0264, Caption Sarl, March 1990.

Andrew Nimmo, Paul Lister, and Richard Grimsdale. A VLSI Design Strategy. In
A. A. M. Kuijk, editor, Advances in Computer Graphics Hardware III. Springer-
Verlag, 1988.

Juan Pineda. A Parallel Algorithm for Polygon Rasterization. In Computer Graph-
ics, pages 17-20. Association for Computing Machinery, July 1988.

Josef Popsel and Eckard Tikwinski. A Multipurpose Hardware Shader. In:
R.L.Grimsdale, A. Kaufman (Eds.):Advances in Computer Graphics Hardware
V,EurographicSeminars. Springer-Verlag, Berlin, 1991, p.39-51.

Andreas Schilling. Some Practical Aspects of Rendering. In: R.L.Grimsdale, A.
Kaufman (Eds.): Advances in Computer Graphics Hardware V,EurographicSeminars.
Springer-Verlag, Berlin, 1991.

Bengt-Olaf Schneider and Ute Claussen. PROOF: An Architecture for Rendering in
Object Space. In: A.A.M.Kuijk (Ed.): /it Advances in Computer Graphics Hardware
ITI, EurographicSeminars. Springer-Verlag, Berlin, 1991, p.121-140.



156 G. J. Dunnett, M. White, P. F. Lister, R. L. Grimsdale

[16] Martin White, Graham. J. Dunnett, Paul L. Lister, and Richard L. Grims-
dale. The Spirit Workstation—Graphics Hardware. In: R.L.Grimsdale, A. Kaufman
(Eds.): Advances in Computer Graphics Hardware V,EurographicSeminars. Springer-
Verlag, Berlin, 1991.



	gh_6th_ws0147
	gh_6th_ws0148_clean
	gh_6th_ws0149_clean
	gh_6th_ws0150
	gh_6th_ws0151_clean
	gh_6th_ws0152_clean
	gh_6th_ws0153_clean
	gh_6th_ws0154
	gh_6th_ws0155_clean
	gh_6th_ws0156
	gh_6th_ws0157_clean
	gh_6th_ws0158
	gh_6th_ws0159_clean
	gh_6th_ws0160
	gh_6th_ws0161_clean
	gh_6th_ws0162

