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ABSTRACT Scanconverting a planar face produces depth-values for pixels totally 
or partly covered by the projection of that face. State-of-the-art hardware-supported 
scan conversion techniques use sub pixel adjustment and extended precision calcu­
lations to achieve an acceptable depth-accuracy despite numeric round-off errors. 
Unfortunately, this depth-accuracy only holds for the interior pixels of the face. Dur­
ing the scanconversion of the boundaries of polyhedral solids or of the tesselations 
of curved surfaces, significantly larger depth-errors may occur at pixels traversed by 
the projection of the bounding edges. These errors are due to the use of the wrong 
surface equations resulting from an erroneous classification of pixels with respect to 
the projections of faces. They may lead to logical mistakes of serious consequences 
for hidden-surface removal and for solid-modeling applications. To address this prob­
lem, a new scanconversion technique is presented, which exploits surface data and 
face/face adjacency information to infer face-projections. For simplicity, the exposi­
tion is confined to triangular faces of manifolds, where each edge is adjacent to two 
triangles. At pixels covered by the projection of an edge, the surface depth computed 
in the standard manner is compared to the depth of the surface supporting the adja­
cent triangle. Pixel classification is obtained by taking into account the result of this 
comparison and the orientations of both faces. 

9.1 Introduction 

The race for graphics performance has led to the development of a variety of hardware­
supported graphics architectures [1]. Most common ones include a rasterizer, which re­
ceives 3D vertex coordinates in image space and associated color values; and which pro­
duces interpolating depth and color values for all of the pixels entirely or partly covered 
by the projection of the face bounded by these vertices [15, 34J. This process will be called 
scanconversion throughout this paper. For simplicity of exposition, and as it is often done 
in practice, we consider that faces are split into triangles before scan conversion. Efficient 
face triangulation is addressed in [3J. Figure 9.1 illustrates the scanconversion terminology. 

The depth-values computed by the rasterizer are often used for selecting at each pixel 
the visible faces, i.e. the faces closest to the viewpoint. The selection is made possible 
by associating with each pixel a z-buffer memory holding the depth of the closest surface 
point encountered so far for this particular pixel [9J. 

Additional pixel-memory may be exploited for storing logical values or several depth­
values and lead to important new applications of the graphics pipeline. Examples of 
such applications include correct transparency [23], shading from CSG [13, 16], or solid 
cross-section and interference visualization [26]' which are visited in Section 2. These 
applications exploit topological properties of the model and rely on the accuracy of the 
depth computation at each pixel. Section 3 demonstrates three types of scanconversion 
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FIGURE 9.l. Face scanconversion: Given the location of the viewpoint (left) and of the screen (center) 
in the model-space, perspective geometric transformations and clipping are applied to compute the pro­
jection of a face (right) onto the screen. Pixels, which correspond to rectangular portions of the screen, 
that are (partly) covered by this projection are visited during the scan conversion process in an order 
prescribed by the scan conversion algorithm. At each pixel, the depth of the corresponding surface point 
and the color components are computed and used to conditionally update pixel memory. The viewing 
direction is usually associated with the z-axis and z-values are often called depth. 

errors that may jeopardize the logical assumptions underlying the algorithms used for 
these applications. Previously known solutions for reducing errors of the first two types: 
depth-calculation round-off and classification inconsistency are outlined. Section 4 focuses 
on the third type, the edge round-off error, which has not been previously addressed. A 
simple solution, based on depth-comparisons between the surfaces of adjacent triangles is 
presented. 

9.2 Applications 

This section reviews several applications that exploit scanconversion data and pixel mem­
ory. It motivates the rest of this paper by summarizing the requirements imposed by the 
underlying algorithms on the scan conversion. 
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9.2.1 Visible Surface Selection 

Z-buffer pixel-memory is usually exploited for selecting, at each pixel, the surface-points 
that should be displayed. The selection process, sometimes called hidden-surface removal, 
compares the depth produced by scan conversion with previously produced depth values 
stored in the z-buffer. Errors in evaluating the depth of two nearby surfaces may lead to 
incorrect selections and to the display of hidden portions of surfaces. 

Depth-calculations are performed with fixed precision [17], which depends on the overall 
z-scaling factor in the world-to-screen mapping transformation. For example, let point A 
of face Fa lie slightly in front of point B on face Fb, where both A and B project onto 
the same pixel. The depths of both points will be undistinguishable if their difference 
is sufficiently small so that they are both rounded to the same z-value. In that case, 
the color displayed will depend on the order of surface traversal and on the particular 
depth-comparison test used (less-than or less-or-equal). The result is thus predictable. 
Unfortunately, no matter how close, two points may produce two different rounded z­
values. For example, 135.49, the depth of A, may be rounded-off to 135 and 135.51, the 
depth of B, to 136. Since this situation typically occurs at some pixels and not at others, 
the overall ordering information resulting from depth comparisons is inconsistent with a 
geometric ordering of two planar faces in depth at each pixel. Images where the colors 
of two almost coplanar faces are mixed in seemingly random interference patterns are 
characteristic of this rounding effect. 

It is commonly accepted that contemporary z-buffer rendering will not reliably select 
the visible face among faces that are closer to each other in depth than the z-resolution. 
On the other hand, there is an implicit assumption that the visual feedback obtained 
by graphics hidden-surface removal is consistent with the displayed geometry, within this 
tight tolerance of the depth-resolution. Specifically, applications strive to set the maximum 
z-scaling factor for a particular scene assuming that when the depth of the two points, A 
and B, are further apart than the z-resolution (or some fixed and small multiple of it), 
the ordering will be always correct. Failure to meet this assumption makes the reliability 
of z-buffer techniques questionable for the visual inspection of geometric models. 

In conclusion, visible surface selection algorithms require that the maximal depth error 
encountered during the scan conversion of a surface be tightly bounded and defined in 
terms of the resolution of the z-buffer. 

9.2.2 Sorting for Transparency 

In order to correctly render a set of translucent surfaces, it is necessary to order them 
along the viewing direction, so as to account for the higher contribution of the foremost 
surfaces. A depth-interval buffer (double z-buffer) may be used to achieve this ordering 
[23]. A possible approach is briefly outlined below, skipping details for sake of simplicity. 

U sing the maximum-depth selection test (i.e . a greater than depth-comparison test), one 
computes in the z-buffer ZI the depth of the furthest surface and initializes the intensity 
buffer 11 with the color contribution of that surface. Then the process described below is 
repeated until all surface layers are processed. (The term layer refers to a traversal of the 
surface as one moves along the viewing direction.) 
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The depth of the z-buffer Z2 is reset to zero and the color in the intensity buffer 12 is 
reset to background. The entire scene is scanconverted again. Z2 and 12 are only updated 
when the depth computed by the scan conversion falls between Zl and Z2. The result of 
this pass produces in Z2 and 12 the surface information for the surface layer directly in 
front of the previously processed layer. The resulting color information is then merged 
with the content of 11 according to prescribed surface translucency properties. 

Depth-errors produced during scanconversion will result in wrong surface ordering and 
thus in incorrect pictures. Consequently, this approach to transparency rendering imposes 
on scanconversion the same constraints as the visible-surface selection algorithm discussed 
above. 

9.2.3 Shading from CSG 

Models of solids are often constructed in CAD systems by combining primitive shapes 
through regularized Boolean operations. The combining expression may often be captured 
in a CSG graph [28, 35]. Several techniques have been proposed for producing shaded 
images of the resulting solids directly from CSG graphs. They bypass the difficult and 
expensive boundary evaluation process, which computes trimming curves of the solid's 
faces by intersecting primitives' surfaces. Ray-casting amounts to scan converting all of the 
faces of a model simultaneously. Sorting and coherence techniques may be used to improve 
performance [2]. At each pixel, the face-point closest to the viewer is displayed. Ray-casting 
may be adapted to CSG by replacing the computation of the closest intersection point 
along a ray with the Boolean merge of line intervals [30]. Optimization techniques for 
software ray-casting on CSG with polyhedral primitives are discussed in [6-8, 18, 20]. A 
customized hardware solution is offered with the Ray-Casting Engine (RCE) prototype 
developed at Duke and Cornell [12]. The RCE combines a series of parallel ray-primitive 
classifiers with a matrix of parallel interval-merging units to which the CSG structure 
is mapped. Although the RCE is currently limited to quadric half-space primitives, its 
extensions to cubic implicit half-spaces are underway. Other hardware-based solutions are 
discussed in [21,22]. 

Software scanconversion can easily be combined with point-in-solid tests against CSG 
graphs to produce shaded images of CSG solids [27]. To further improve performance, 
scanconversion hardware has also been applied to CSG rendering, as proposed in [19]. 
Approaches in [13, 16] use a generate-and-test paradigm illustrated in Figure 9.2. Tentative 
surface points are produced through scanconversion and stored in an auxiliary z-buffer, Z2. 
Then, a more complicated selections than hidden-surface removal is performed, because 
tentative points that are not on the boundary of the CSG solid must be discarded. 

Both approaches in [13] and in [16] test the tentative points for inclusion in a product 
of the disjunctive formulation of the CSG expression. This test is performed by establish­
ing whether the tentative point lies inside all other positive primitives of that product 
and outside all negative primitives of that product. This test is implemented through 
scanconversion as follows. Given a surface-point, r, whose depth is stored in the z-buffer 
of some pixel, x, and given a solid primitive, C, the point-in-primitive test establishes 
whether r lies inside C or not by scanconverting all of the faces of C and by toggling the 
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S=(A+B)-C 

c 
FIGURE 9.2. Rendering from CSG: Among the points p, q, and r on the boundary of primitive A, only 
q is displayed. Point p is eliminated by a standard hidden-surface test, because it lies behind some point 
on the boundary of B. Point r is eliminated by a point-in-primitive test, because it lies inside primitive 
C. 

parity-bit associated with pixel x each time the surface-point of C that projects on x has 
greater depth than r. The approach is illustrated in Figure 9.3. This point-in-primitive 
test against primitive C is performed simultaneously for all points stored in the memory 
of the different pixels. There is no restriction on the nature and shape of C, except for 
having a valid description of its boundary suitable for accurate scanconversion. 

The above technique is based on a topological property of the primitive's boundary 
that ensures the classification alternating rule: Any line crosses the primitive's boundary 
an even number of times and the classification alternates at each crossing as one moves 
along the line. When primitives' boundaries are bounded (i.e. not infinite) and when 
classification at infinity is known (usually outside), classification of any point r may be 
obtained by casting a half-ray from r to infinity and by counting the parity of the number 
of times the boundary of the primitive is crossed by the half-ray. The half-ray is cast 
along the viewing direction, and thus, the parity of the number of its intersections with 
the boundary of a primitive C may be computed by scanconverting the faces of C and 
counting only points that lie behind r. 
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FIGURE 9.3. Point/primitive classification: Among the three points (large dots), only the top one lies 
inside the hatched area. Notice that there is an odd number of boundary points of the hatched area 
behind (i.e., to the right of) that top point . (We assume that the viewer is positioned on the left.) 

In conclusion, graphics hardware-assisted point-in-primitive tests cannot be trusted 
unless scanconversion preserves the alternating parity rule. 

In addition to its dependency on the consistency of scanconversion with the parity rule, 
direct rendering from esc is very sensitive to scanconversion depth round-off errors-and 
this, much more that hidden-surface removal or transparency-for the following reasons . 
Often, the faces of esc primitives overlap. Round-off errors occurring during the world-to­
screen transformations combined with scanconversion round-off may result in significantly 
different z-values for two logically identical surfaces at the same pixel. Fail to recognize 
that points with slightly different depth-values lie on the same surface results in arbitrary 
decisions regarding point-in-primitive classification, and thus lead to incorrect pictures. 
Small discrepancies may be caught using a depth-tolerance during the scanconversion. 
For example, in [29] the test Z2 ::; Z ::; Z3 is preferred to Z2 ::; (Z - E) ::; Z3. (Here 
Z denotes the depth generated by scanconversion and Z2 and Z3 are the corresponding 
contents of two depth-buffers.) The use of such a tolerance amounts to testing a point 
slightly behind the 5canconverted point, as shown Figure 9.4. 

The E tolerance must be chosen so as to exceed depth-calculation errors during scan­
conversion. On the 'other hand, too large a tolerance will have side-effects that we call: 
E-regularization. Standard 3D regularization is a process that removes zero-thickness walls 
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scanned point (Z3) tested point (Z2: 

FIG URE 9.4. Coincident faces: Large dots represent points on the boundary of A. The viewpoint is on 
the left. Since the front face of A coincides with a face of B and a face of C, standard depth-comparisons 
may not be used for point-in-primitive testing. Instead, a tolerance is used, which simulates the effect of 
testing a point slightly behind the front face of A against primitives Band C. These virtual points are 
shown as smaller dots. 

and cracks from a solid model's representation [24]. (A pointset is regularized if it is equal 
to the closure of its topological interior. Representations of solids used in contemporary 
CAD systems are regularized.) E-regularization is a special case of an opening of the solid 
by a line segment of length E aligned with the z-axis. (An opening is a morphological 
operation used in image processing and porosity analysis for removing noise and small 
details [33].) To cope with the limited resolution of graphics implementations, we use £­
regularization understanding that it may remove object's features that are thinner that E 
in depth, as shown Figure 9.5. These features not only contain thin walls and cavities, but 
also portions of the model that are close to silhouette edges. E-regularization is consistent 
in spirit with the discrete nature of graphics-provided that E is small. 

In conclusion, £-regularization is important for correctly processing singular, or nearly 
singular, geometric situations. However, to limit the side-effects, it is important to main­
tain as small a value for £ as possible and thus to control the possible extent of scancon­
version depth-errors. 
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~ depth resolution 

FIG URE 9.5. Cracks and walls: The use of a tolerance for depth-tests eliminates narrow constrictions, 
cracks, and chamfers silhouettes. 

9.2.4 Cross-Section and Interference Visualization 

Cross-sections through solids are important for visualizing complex assemblies and com­
posite solids. Shaded images of such solids with portions removed (i.e. clipped away) may 
be produced automatically by combining the effect of the standard clipping planes with 
a capping (i.e.: cross-section filling) operation. To avoid the expensive computation of 
geometric intersections with the cross-sectioning planes, capping is done automatically 
by the graphics hardware using scan conversion and masking [26]. Tentative points on the 
cross-section planes are written into the z-buffer and then tested for inclusion in all of 
the solids by scanconverting these solids and performing the parity-based point-in-solid 
inclusion test discussed above. An extension of this capping technique for the display and 
automatic detection of interferences is also presented in [26]. It uses parity-preserving 
scan-conversion to perform the necessary point-in-primitive tests. A sufficient but not 
necessary condition is used to automatically establish that subsets of an assembly are free 
from interferences and to position a cross-sectioning plane at the beginning of the first po­
tential interference encountered along a given search direction. Realtime implementations 
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of such automated facilities for checking the validity of a design prior to sending it to man­
ufacturing are key factors for the designers' productivity. The limited pixel-resolution may 
be compensated during interference detection by using a thicker line-width while drawing 
the faces' outlines, so as to guarantee a sufficient- although not necessary-condition for 
disjointness. However, parity errors and scan conversion inaccuracies lead to pixel errors 
in the capping and to wrong decisions in the interference detection algorithms, and, if not 
controlled, make these hardware-based solutions unreliable. 

9.3 Scanconversion Errors 

To scanconvert a triangular face, the rasterizer typically receives, for each one of the three 
vertices, their x and y coordinates in the screen coordinate system and a series of scalar 
values, such as the depth (i.e. oriented distance to the viewer) or the color information 
(e.g.: red, green, and blue components). Most graphics architectures use between 24 and 
32 bits per pixel for storing the depth values and 8 to 16 bits per pixel for storing color 
components. 

For all of the pixels completely covered by the projection of the face and for some of 
the pixels traversed by the projection of the edges, scanconversion computes interpolated 
values of the depth and of the three color components. A detailed discussion of the interpo­
lation process may be found in [11J. Numerous architectures for parallel implementations 
of scanconversion have been proposed (see [10, 32J for examples). 

For the sake of efficiency, the computation of interpolated values are performed incre­
mentally from one pixel to the next, using additions [14J. Since a triangular face is convex, 
the projection of the face on the screen may be decomposed into a series of adjacent spans 
of pixels . Spans are usually constructed of consecutive pixels in the horizontal direction. 
The first pixel of a span is defined by the leading edge of the triangle in the direction of the 
spans. The last pixel is defined by the trailing edge. Thus, scanconversion must establish 
which are the leading and trailing edges for each span and then compute at which pixels 
the span beginning and at which pixel it ends. Suppose the spans are accessed top-down 
in the y direction. The top vertex defines the starting pixel. The slopes (dx/ dy) of the 
two adjacent edges to that pixel may be used for the incremental calculations of the span 
starting and ending pixels. 

The linear interpolations of the scalar values (here we mention only depth and color 
components) are computed by first calculating their slopes (i.e., rates of change, or abso­
lute variations, for unit displacements along the x and y direction, or for the displacement 
by one unit in y along an edge), and then by adding these constant slope-values when 
going from one pixel to the next one in a span and when going from one span to the 
next along the leading edge. These slopes may be easily precomputed from the vertex 
coordinates and from the associated scalar values. 

In conclusion, scanconversion must establish, for each span, the starting and ending 
pixels as well as the values of the depth and of the three color components. Then, the 
precomputed slopes are used to incrementally produce interpolating values for the con­
secutive pixels of the span. Scanconversion errors arise from mistakes in establishing the 
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starting and ending pixels for a span, from errors in accurately computing the starting 
scalar values for each span, and from round-off errors in the slopes, the computed depth, 
and the color components. These errors and their consequences are discussed in the fol­
lowing subsections. 

9.3.1 Depth-Calculation Round-Off 

The limited precision fixed·point representation of the starting z-value and of the z­
increment yield cumulative round-off errors. The problem is usually addressed by pro­
viding a sufficient resolution for storing the depth and increments so as to guarantee that 
the maximum round-off error is less than the resolution of the z-buffer. For example, if 
N bits are used for storing the depth information in the z-buffer, and if the screen is K 
pixels wide and K pixels large, using N +10g(2K) bits for computing the running depth 
and the increment guarantees that the final depth is computed to the full resolution of 
the z-buffer. 

9.3.2 Classification Inconsistency 

Pixels traversed by the projection of an edge are only partly contained in the projection of 
the scanconverted triangle. Processing only pixels that are entirely covered by the face's 
projection would result in gaps between adjacent faces (see Figure 9.6) and could entirely 
miss faces whose projections are thinner than a pixel's width. 

Processing all pixels even partly covered by the face would solve the gaps and the 
skinny triangle problems, but could jeopardize the parity calculations needed by many 
applications, as discussed earlier. If only one of the adjacent faces to a given edge is 
front-facing , the parity will be correct at the pixels traversed by the edge's projection 
provided that their classification be consistent for both faces. Such edges are called profile 
or silhouette edges. On the other hand, if the edge is not a silhouette edge, i.e., if both 
faces are either front-facing or back-facing, as shown in Figure 9.6, pixels covered by their 
common edge will be counted twice, yielding the wrong parity. 

The problem is commonly addressed by using the center of the pixel to test its contain­
ment in the face's projection. Only pixels whose centers lie inside the face's projection 
will be visited during the scan conversion of the face, see Figure 9.7. Consequently, pixels 
covered by the projection of a non-silhouette edge will belong to only one of the two faces 
abutting on that edge. The resulting parity will be correct and there will be no gaps, but 
skinny faces may disappear. 

This approach imposes additional constraints on the scanconversion algorithm, which 
must establish, for each scanline, which are the pixels whose centers fall between the 
projections of the leading and the trailing edges. Since floating point calculations are 
avoided during scanconversion, fixed-precision techniques must be applied for tracing the 
edge [5] . 



126 J arek R. Rossignac 

_ left face 

right face 

_ both faces 

FIGURE 9.6. Shared pixels: Not processing pixels that are partly covered by both faces can produce 
cracks in the image. Processing all pixels partly or fully covered by a face's projection will produce a 
wrong parity for pixels covered by the shared edge. 

9.3.3 Edge Round-Off 

The technique outlined in the above subsection guarantees correct parity for the visited 
pixels when scanconverting the boundary of a solid or a tesselation of a curved surface. 
Pixel-classification may be performed by using a modified Bresenham's algorithm to es­
tablish the first pixel on the left (respectively right) of a leading (respectively trailing) 
edge for each span. In broad lines, the modified algorithm uses the edge's slope (dX/ dY) 
and initial error (horizontal distance between the edge and the center of the pixel) and 
updates the error for each scanline. The error is smaller than 1.0 and is either negative 
(for leading edges) or positive (for trailing ones). Since the initial error, the slope, and 
the error increment are rounded off to the nearest fixed-point value, this calculation is 
not precise, and pixels whose center is close to the edge may be misclassified (see Figure 
9.8). Note that this problem will not disappear even if floating point arithmetic is used, 
because it also has limited accuracy. 

It may seem that such small errors are of no consequences, because misclassifying a pixel 
in such a manner amounts to perturbing slightly an edge in the real model or to moving 
slightly the object in the horizontal direction. And indeed, for pixels that were misclassified 
with respect to silhouette edges, the resulting image will be one of a slightly modified solid, 
but the z-values computed during scan conversion will be within the prescribed tolerances . 

Unfortunately, misclassifying pixels with respect to non-silhouette edges leads to more 
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FIGURE 9.7. Pixel classification based on its center: Only pixels whose center lies inside a face's projection 
are visited. There is no gap between faces. 

severe errors in the depth-calculation, because the wrong surface equation is used to 
compute the depth at these misclassified pixels (see Figure 9.9). 

A two-dimensional view in Figure 9.10 illustrates these two situations. It also demon­
strates that the depth-error at misclassified points may be significantly larger that the 
distance between the center of the pixel and the projection of the edge. 

In conclusion, one cannot rely on edge tracing for accurate pixel classification, and 
arbitrarily small errors in pixel classification may result in arbitrarily large depth errors. 

Of course, in practice, the slope of the plane is rounded and the distance between the 
pixel's center and the edge is bounded. Let M be the maximum slope (dZ/ dX) that can 
be represented for a forward-facing face. Let E be the maximum distance along the X-axis 
between the center of the misclassified pixel and the edge. The maximal depth error at 
that pixel is 2ME. 

In practice, E is 1/16 or larger, because the edge's vertices are rounded off to the nearest 
subpixel [31]. The value of M may be typically as large as the depth-buffer's span (for 
example 2 * *32). Consequently, the maximal depth error may be as large as 2 * *29. 

Our experiments have demonstrated that very large depth-errors persistently appear 
along edges bounding a face with a steep slope. As a consequence, hidden objects appear 
to pierce through faces in front of them at isolated pixels along the edges, even though 
the distance separating the hidden objects from the visible surface considerably exceeds 
the depth resolution . Furthermore, sorting and point-primitive classification is unreliable, 
because E-regularization cannot trap such big errors for acceptable values of Eo 
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FIGURE 9.8. Round-off error for edge projections: A slight perturbation of the location of the bottom 
vertex (due to round-off) changes the classification of the bottom-right pixel. 

9.4 A New Approach to Edge Round-Off 

In this section, we describe a new approach, which eliminates the depth-error resulting 
from the misclassification of pixels with respect to the projections of edges. 

9.4.1 Overview 

The overall approach may be summarized as follows. The face F is a subset of a planar 
surface S. The extent of F (i.e.: the triangle) is delimited by edges Ei (i=1,2, or 3) that 
are the intersection of the above plane with planes supporting adjacent faces. There are 
three such planes, Si (i=1,2, or 3), one per edge. Using the outwards orientation of the 
three neighboring faces and the concavity of the three edges, one can define an unbounded 
convex polyhedral volume V such that F is the set-theoretic intersection of S with V. V 
may be expressed as the intersection of three half-spaces, each bounded by one of the Si 
planes. Edge convexity and face orientation may be used to establish whether to use a 
particular half-space or its complement for the corresponding face. 

We propose to use the description of the volume V, in terms of the three half-spaces to 
perform pixel/face classification. 
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FIGURE 9.9. Using the wrong surface equation: The pixel (large dot on the left) was misdassified and 
is assumed to fall in the projection of the dashed front face. Therefore, the depth stored at this pixel will 
be that of point 1, instead of the correct depth of point 2. 

9.4.2 Signs of Half-Spaces 

The sign (orientation) of the half-spaces is viewpoint-independent and may be precom­
puted by testing whether the corresponding edge is convex or not. For example, when all 
the three edges that bound triangle T are convex, the volume defining F is the intersec­
tion of the three half-spaces that lie on the interior side of the corresponding faces. For 
concave edges, it suffices to use the complemented half-space, or equivalently, to invert 
the direction of the outward normal. This is illustrated in Figure 9.11. 

The rule of using the complement of the half-space for concave edges may be derived 
from the following observation: face F must lie inside the resulting half-space. 

9.4.3 Pixel Classification 

In order to exploit the results developed above, we must be able to classify, during scancon­
version, the points on S with respect to V. Since V is the intersection of planar halfspaces, 
it is convex (although it may be unbounded). 
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FIGURE 9.10. Two types of pixel misclassification: The top row shows that misclassifying the pixel 
against edge e will result in using the wrong surface equation. The error is proportional to the difference 
in the slope of both surface and to the distance between the pixel's center and the edge. The bottom row 
shows that the same misclassification with respect to a silhouette edge results in a misclassification with 
respect to an entire layer (or the whole solid) and produces a depth value that corresponds to a slightly 
translated layer. 

Note that a point lies in a convex body if it is behind the furthest front-facing half-space 
and if it lies in front of all the back facing half-spaces. The property is illustrated in Figure 
9.12. 

This property leads to the following approach: while scanconverting F, keep track of 
the sign of the depth differences, Z - Zi, between the surface S of F and the three other 
surfaces, Si. (Z is the depth of Sand Zi are the depth values for the other surfaces.) Each 
depth-difference is multiplied by a coefficient Ki that takes values of 1 or -1, depending 
on the forward/backward orientation of the faces and on the concavity/convexity of the 
corresponding edges. The result is a function that is positive over the projection of the 
face. Figure 9.13 illustrates the change of depth-ordering between two surfaces as one 
moves across their intersection line during scanconversion. 
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FIGURE 9.11. Half-space orientation for the clipping volume: For simplicity, only two ofthe neighboring 
triangles are displayed together with the forward-facing triangle marked f(left) . They are both back-facing 
in the 3D picture. The front-most (backward-facing) triangle has a concave edge with f. The other one 
shares a convex edge with f. The central figure shows a 2D view corresponding to a cross-section through 
the three faces. The line-segment in the middle represents a cut through triangle F. The other two lines 
represent the other two triangles. The two dots represent one concave and one convex edge. Hatching 
defines the inner-side of the boundary, i.e.; the inside of the solid bounded by the three faces. Arrows 
represent the outward normal. Note that the left dot correspond to a concave edge and the right dot to 
a convex one. The figure on the right represents a cross-section through the volume V (hatched) and the 
cross-section through face f (thick line). Note that V lies inside the half-space of the face sharing a convex 
edge with f and inside the complement of the other half-space, which corresponds to the concave edge. 
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FIGURE 9.12. Pixel classification against intersection of half-spaces: The dashed area corresponds to the 
intersection of three convex half-spaces. Their outward normals are indicated by arrows. The vertical 
line corresponds to the viewing direction. Points inside the area are behind all of the the front-facing 
half-spaces and in front of all of the back-facing ones. 

The three depth-difference functions may be computed incrementally at each pixel 
by adding a constant increment in X or Y, or along an edge. Each increment is the 
difference between the increment (i.e. slope) for the corresponding surface Si and the 
depth-increment for S. 

The problem remains to locate the first span, i.e. the first row of pixels where these 
three functions are positive, and then to locate the beginning and the end of each span 
for the successive rows. Linear programming seems an overkill here, especially because 
we know the approximate location of the three vertices. It suffices to estimate how much 
error, in screen coordinates, may have been produced when computing the projection 
of the vertices. If we assume-and this is a reasonable assumption because the surface 
coefficients are derived from vertex data-that this error is always less than a pixel, it 
suffices to visit pixels entirely covered by the projection of the face as usual and add a 
special test for the pixels covered by the projections of the edges. (Pixels covered by the 

edges' projection will only be processed if the three functions are positive.) 
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FIGURE 9.13. Classification based on order: On the left of the thick edge (intersection line between 
the two surfaces) the left-most face should be displayed. (Both triangles are front-facing and the edge 
is convex.) The viewing direction is indicated by the thick vertical line. On the right, the order of the 
surface-depth changes and the other face should be displayed . 

9.4.4 Adjacency Information 

Accessing the surface information of neighboring faces during graphics requires a datas­
tructure which captures face/face adjacency information or an extended graphics repre­
sentation for triangles. 

The winged-edge datastructure [4J or the ELAG structure proposed by the author for 
storing adjacency information between triangles [25J are examples of very simple datas­
tructures that provide easy access to the three auxiliary vertices. (ELAGs associate with 
each triangle a sorted set of references to the three neighboring triangles.) 

Alternatively, the graphics format for triangles can be extended to include the normals 
to the three neighboring triangles. This solution ensures proper scanconversion of each 
triangle while maintaining the simplicity of the graphics dataflow architecture, where the 
descriptions of triangles are independently sent to the rasterizer and processed one by 
one. 
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9.5 Conclusion 

The accurate evaluation of the depth of scan converted faces is crucial for many appli­
cations. Contemporary rasterizers ensure very accurate evaluation of the surface depth 
for pixels entirely covered by the projection of a face, but may produce very large depth 
errors for pixels whose centers are close to the projection of an edge bounding at least one 
face with a steep slope. The errors are due to the use of the wrong surface equation for 
establishing the depth. The wrong surface is used when pixels are incorrectly classified 
with respect to the face's projections. Wrong classification may result from very small 
roundings of the edge coefficients, yet they may produce arbitrarily large depth errors. 
The proposed solution scanconverts a slightly enlarged area containing all of the pixels 
entirely covered by the projection of the face, plus neighboring pixels. The decision as 
to whether a pixel's center lies inside the projection of the face is carried out by testing 
the signs of three linear functions that are incrementally updated during scanconversion. 
These functions capture the depth-ordering between the surfaces containing the scan­
converted face and the surfaces containing the three neighboring faces. Their slopes and 
initial values may be easily computed by subtracting slopes and depths of the appropri­
ate surfaces. The correct signs of these functions (for the pixel to be inside the face) are 
established by considering the concavity of the corresponding edge. 
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