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ABSTRACT Interactive 3D graphics applications require significant arithmetic pro­
cessing to meet the ever-inreasing desire for higher image complexity and higher 
resolution in displayed images. 
This paper describes a graphics processor architecture with a high degree of paral­
lelism connected to a distributed frame buffer. The architecture can be configured 
with an arbitrary number of identical, high level programmable processors operating 
in parallel. 
Within the architecture an automatic load balancing mechanism is presented which 
distributes the processing load between geometry and rendering section. 
After the unique features of the architecture are described the load balancing mech­
anism is analyzed and the increase of performance is demonstrated. 

4.1 Introduction 

Since human visual perception is the most effective method to perceive a lot of informa­
tions in a short time, the photorealistic rendering for the visualization of medical, physical 
or technical data requires speed improvements and demands for developing innovative ar­
chitectures. 

Modern workstations with a state of the art graphics platform incorporate some form 
of hardware support for graphics applications to release the CPU from the burden of visu­
alization tasks . Sophisticated user interfaces within any CAX application in conjunction 
with high interactivity and realistic images require to split and parallelise the system to 
distribute overall computing load . 

This paper describes considerations made within the work for the GRACE project 1, a 
development which tries to satisfy the requirements of a graphics processor architecture. 

4.2 Background 

4.2.1 Contemporary Architectures 

Common to all raster display systems is the frame buffer, which stores the image on a 
pixel by pixel basis and decouples image generation and video refresh process. The design 
of the frame buffer with its partitioning related to object or screen space and the degree 
of parallel access possibilities are a keyfeature to systems merit [16J. 

Attempting to satisfy the demands of increased calculation rates a lot of architectures 

'This project was funded by the Commission of the EUIopean Community in the ESPRIT-II-Program, Project­
No 2569 (EuroWorkStation) 
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with different basic concepts have been developed [9] showing the demands of integrating 
more system functionality on a single chip. 

A well known approach making extensive use of full custom VLSI devices is the design 
of the Pixel Planes [15]'[8]. 

To achieve higher rendering performance and to overcome the frame buffer bottleneck 
the rasterization processor and the frame buffer memory are integrated on the same chip. 
Similar approaches were proposed in the Scan Line Access Memory [7] and the Smart 
Image Memory [4]. 

Other architectures try to parallelize functional modules of the image generation process 
e.g. by mapping the geometry section to a multistage pipeline of customized VLSI devices 
[5]. This design was enhanced and is now available as a full parallelized state of the art 
workstation [2],[3]. 

Another more general architecture is the Pixel Machine, a MIMD computer based on 
an array of asynchronous processor nodes with parallel access to a large frame buffer [14]. 
The advantage of this approach is the homogeneous structure and the programmability 
which allows all algorithms to be implemented in software. 

4.2.2 Goals 

4.2.2.1 Principal Considerations 

1. Frame Buffer 
The memory in which an image is stored on a pixel by pixel basis is called the frame 

buffer or image memory. This memory is accessed on the one hand by the rendering 
processor, which writes data into the memory and on the other hand by the video refresh 
controller, which reads from the memory and conveys pixel data to the video output 
circuitry and the display monitor. 

The image memory built up with conventional DRAMs can bother image generation 
process at rendering processor side as well as at video refresh side. Using todays available 
video RAMs (VRAMs) improves the speed offrame buffer access dramatically (Whit84). 
Nevertheless a certain level of performance implies the need of parallelism within the frame 
buffer. A resolution of 1024x1280 visible pixels with a 60 Hz refresh rate (noninterlaced) 
requires a pixel frequency of about 110 MHz or equivalent 330 Mbyte/s transferrate for 
full colour representation with 24 bits/pixel. A monolithic frame buffer can not achieve 
that. The maximum clock frequency of the VRAM shift register measures 30-40 MHz and 
is therefore limited to resolutions 640x480 pixels with 60 Hz video refresh rate (noninter­
laced) or equivalent. 

On the other side display processors with 25ns cycle times have to compete for the 
random access port of a VRAM with a normal cycle time of about 150ns (no page, nibble 
or static column mode is taken into account) slowing down image generation. 

The solution appears to be found in writing multiple pixels into the memory in parallel, 
the basic concept of the distributed frame buffer. The frame buffer could be divided into 
rows, columns, or arrays [9] [16] and each of these parts is attached to a separate rendering 
processor thus overcoming the memory access bottleneck. 
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2. Floating Point Versus Fixpoint Calculation 
While designing a system- architecture the central question is arising which processor 

is the most suitable for that design. 
Graphics applications are very arithmetic intensiv tasks and therefore need processing 

devices with very powerfull arithmetic and logic units (ALUs). 
State of the art processors include a floating point unit on chip. But nevertheless only a 

few of these processors incorporate sufficient powerfull arithmetic units to perform floating 
point operations as fast as integer operations. Especially if the system signed with appli­
cation specific integrated circuits (ASICS) it is worth while to consider which accuracy 
for mathematical calculations in a graphics system is needed. Numerical intensive opera­
tions are performed in the geometry and the rendering section. Typical tasks within the 
geometry section requiring floating point calculation with high accuracy are the following: 

- Transforming objects with world coordinates to image space, 
- Interpolating vertex normals (Phong shading) 
- Normalizing interpolated vertex normals (Phong shading) 
-Performing the lighting calculations (Phong and Gouraud shading). 
U sing a single precision floating point number results in a maximum inaccuracy of 2exp-

150 (decimal equivalent: 7*10exp-46) per operation [13]. This is a sufficient precision for 
the operations mentioned above without visible effects. The rendering section comprises 
operations like 

- colour interpolation (Gouraud shading) 
- z-value interpolation for z-buffering 
- transparency calculation 
- algorithms for image processing. 
For an image with a limited resolution most of this operations could be done with 

fixpoint arithmetic in an appropriate precision. 
Suggesting a resolution of 2048 x 2048 pixel and a fixpoint representation with a frac­

tional part consistng of 16 part consisting of 16 bits, a RGB model colour interpolation 
over a whole scanline would incorporate a binary error of 2exp-6 - a deviation not per­
ceptible for the human eye on todays monitors. 

This shows that for the mathematical calculation in the geometry section floating point 
units are necessary but in the rendering section the mathematical computations could 
be done with fixpoint precision. Therefore, if a straightforward architecture for a specific 
application is implemented with no parallelism on board or module level, fixpoint arith­
metic may suite well - an approach that was realized and tested well for a fast Gouraud 
triangle shader [1]. 

In the system-architecture discussed in this paper the processors should be able to 
perform rendering tasks as well as geometry calculations. This argue mainly led to the 
decision to incorporate digital signal processors (DSPs) which have a floating point unit 
on chip and were at the time of system design the fastest processors available on the 
market. 
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4.2.2.2 System Characteristics and Design Goals 

The architecture to be realized should be capable of generating high quality images within 
a moderate time. That means the hardware should be as fast as possible but not as big 
as possible. The employed computatiomal power should be used very effectively. Other 
characteristics are: 

- A flexible system, high level programmable to enable the implementation of all graph­
ics functions necessary and various algorithms for image generation. 

- Parallelism should be implemented wherever possible 
- Homogene. To become familiar with an off-the-shelf VLSI device needs some time. 

To become familiar with a few different such devices needs a lot of time. Therefore the 
number of different off- the-shelf VLSI components had to be reduced to a minimum to 
ease system use and shorten software development time. 

- The arithmetical and logical units (ALUs) should be available off-the-shelf. 
- The frame buffer design should overcome the access bottleneck on the generation side 

as well as on the video side and incorporate hardware support for fast window handling. 
- The frame buffer resolution is 1280 * 1024 pixel with a video refresh rate of 60 Hz 

(noninterlaced). Every pixel has 24 bit colour and is double buffered as well as z-buffered. 
- The frame buffer should provide double buffering in order to accomodate dynamics 

and z-buffering too. 

4.3 The Architecture 

4.3.1 Overview 

Taking into account the demands of the different tasks within the image generation process 
the mapping of the functional sections to hardware suggested the splitting into units as 
shown in Figure 4.l. 

Above of the frame buffer there are three different units handling the image generation 
process: 

- The Master Module 
- The Geometry Module 
- The Rendering Module. 
The master module is the systems supervisor, handles the communication to the host 

processor and is responsible for start-up and synchronising activities. 
The geometry module transforms and clips the graphic primitives, subdivides bipara­

metric patches and the lighting calculations that are necessary and tasks like this. 
The rendering module performs the shading algorithms and transfers pixel data to the 

frame buffer. The rendering module also supports too all functions of the geometry module 
(Figure 4.1). 

All modules contain a digital signal processor (DSP) with up to 256k * 32 bit wide, 
fast static memory for instruction and data storage. This type of processor was chosen 
because of its 60ns instruction cycles, the on-chip cache and the floating point unit and 
the two independent, parallel bus interfaces [10]. 
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FIGURE 4.1. Mapping functional sections to hardware 

4.3.1.1 The Master Modul 

The communication to the host processor is handled over a 256k * 32 bit dual ported 
memory allowing to transfer and process data in parallel. The interface is asynchronous 
and interrupt driven for fast response and transfers data up to 20 Mbyte/s. 

The master module traverses the graphics data structure and feeds graphics data to a 
special first-in-first-out memory (FIFO) for delivering to the appropriate processors. 

In the case of synchronizing or updating (e.g. graphics context, colour lookup tables, 
etc.) the master takes over system control and bypasses the pipeline with a direct access 
to the appropriate resource. 

4.3.1.2 The Geometry Module 

Graphics data are transferred to the geometry modules by a rate of 33 Mbyte/s. The 
geometry module performs the transformation, clipping, polygon and patch subdivision, 
normal interpolation and renormalisation and lighting operations in an appropriate man­
ner and delivers the processed graphical primitives to the rendering module data FIFOs. 

4.3.1.3 The Rendering Module 

The structure of the rendering module is similar to that of the geometry module. For 
rendering calculations like shading and scan conversion the processor fetches data from 
its data FIFO and conveys the calculated pixel values to the frame buffer. For image 
processing purposes data are read from the frame buffer, manipulated and written back. 

Because the rendering module can act as a geometry module too, it can also directly 
fetch graphics data from the master data FIFO and deliver processed data to the FIFOs 
of the appropriate rendering modules (see Section 4.5). 
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FIGURE 4.3. Frame buffer interleaving 

4.3.1.4 The Frame Buffer 

The frame buffer is distributed and divided into 5 parts with an overall resolution of 
1280xl024 pixels with 88 bits per pixel (2x24 bit colour, 24 bit z-buffer, 8 bit transparency, 
8 bit window identifier) with a video refresh rate of 60 Hz (noninterlaced). 
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Clipping at arbitrarily shaped windows is supported by hardware as well as fast copying 
of windows and bit block operations at high data transfer rates [11]. 

4.3.2 Overall Architecture 

The system is organized as a pipeline with additional parallelism on functional level 
by multiplying geometry and rendering modules (see Figure 4.4). The number of the 
rendering modules is fixed to a multiple of five due to technical reasons, whereas the 
geometry modules can be multiplied theoretically unlimited. The current configuration 
comprises three geometry and five rendering modules. 

Three independent busses enable parallel data transfer to and from multiple resources 
of the system. 

All modules are connected to the geometry bus which acts as the system bus. All system 
resources are accessable by the master. System, graphics or update data are transferred 
in single or broadcast mode with 33 Mbyte/s. 

The rendering bus is designated to convey only rendering primitives to the data FIFOs 
on the rendering modules. For speed reasons data are transferred synchronously with up 
to 132 Mbyte/s. 

Theinit bus allows a direct acccess to the video and cursor planes used for fast update 
of the colour look up tables (CL UT) and generating the cursor in separate cursor planes. 

Each rendering processor writes data with 33 Mbytes/s to the frame buffer bank at­
tached to it which results in a total transfer rate of 165 Mbytes/s. 

The frame buffer and the video/cursor plane memories can be accessed also by the host 
processor in order to get a possibility to bypass the graphics pipeline. This supports e.g. 
the handling of pixel maps if the host processor wants to transfer pixel values to or read 
back from the image memory. 

4.4 Dataflow 

In the entire system graphics data are processed simultaneous and transferred to the 
subsequent modules in parallel. From stage to stage the number of elements per object 
increases as the content of information per element decreases (Figure 4.5). 

The master module traverses the graphics data structure and puts the high order prim­
itives like splines, polygons, meshes or triangles into the data FIFO. If a geometry module 
has finished the last task, it accesses the geometry bus and fetches the next primitiv or 
task automatically. All geometry calculations are done within a single module. 

The logical interface between the geometry and rendering calculations transfers trian­
gles, vectors, pixel and trapeziums with edges parallel to the screen y axis columns. The 
data structure incorporates processor specific data (due to the distributed frame buffer) 
and common data. The latter ones are broadcasted to the rendering modules. 
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FIGURE 4.5. Graphics data processing 

4.5 Load Balancing 

4.5.1 Automatical Regulation 

The effort of computation in the geometry and rendering section depends on size and 
position of the geometrical objects. Small triangles or short vectors parallel to the x or 
y axis require only a small number of rendering operations. In fact the time consumed 
to initialize the rendering processor for primitives producing only a few pixels is greater 
than the rendering time itself. On the other hand the number of geometric calculations 
for interpolating shading methods is independent from the resulting size of the primitive. 

An anlysis of scene complexity has shown, that in most cases the image is generated 
from a lot of small triangles (1-10 pixels), a number of medium sized (11-100 pixels) and 
a few large ones (101-1000 pixels) [6]. 

Further investigations with less complex scenes (no more than 5000 triangles) have 
shown a more ext rem distribution of the size of triangles incorporated (s. statistics shown 
below). The pictures are shown at the end of this paper. 

The reason is the way of modeling a scene i. e. things of interest are generated with a lot 
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FIGURE 4.6. Image statistics for "breakfast" 

of primitives to get a fine grained surface. The rest of the scene especially the background 
is defined with only a few but very large primitives (triangles). 

The pictures analyzed in the statistics below were rendered with a solution of 1024 x 
1280 pixels. 

The chessman figure is an example for a picture defined without background. 
Additionally the future increase in graphics performance will be used to display more 

complex scenes rather than displaying the same number of objects faster. Those images 
will comprise a lot of very small triangles shifting the load of computation to the geometry 
section. 

Nevertheless the size and the number of triangles an image consists of may vary from 
scene to scene or even from view to view. This will cause idle states within a fixed balanced 
architecture. With the intention of exploiting all the distributed computational power of 
the system, the processing units have to be able to adapt their activities to the actual 
processing requirements of the scene. 

To enabel such a dynamic load balancing and to speed up geometry calculation dy­
namically if required, the rendering modules are capable of performing all the geometry 
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FIG URE 4.7. Image statistics for "billiards" 

calculations too. 
After rendering an object any processor may run into an idle state if there is no rendering 

data in his input buffer. Performing a task switch it will request new unprocessed geometry 
objects and continue geometry calculations. In this wayan automaticalload balancing is 
achieved across all the processors. When several rendering modules are doing geometrical 
calculation the overall rendering performance is reduced in favour of geometry processing 
power. Doing so the exploitation of the processing power incorporated encounters more 
than 95% and no computational power is going to be wasted by a rendering module 
starting out to run an idle state. 

4.5.2 Task Switching 

The capability of automatically distributing the work load between geometry and render­
ing modules means inherently task switching between two jobs within the same applica­
tion. Supported by the large local memory (up to 256k x 32bit) the switching is reduced 
to the saving and restoring of all processor registers, processing interrupt control and in-
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FIGURE 4.8. Image statistics for "chessmen" 

specting the rendering FIFO status. This is performed in less than 5 us. Since this time is 
very small with respect to the time consumed for geometry processing the self balancing 
is even useful for scenes comprising only very small triangles (see below). 

4.5.3 Performance Increase by Task Switching 

The task switiching capability of the rendering processors accelerates the geometry calcu­
lation but as mentioned above the switching itself consumes time. How much calculation 
time is eaten up by task switching and by which factor geometry calculations are ac­
celerated if a rendering processor switches to geometry processing is evaluated in this 
chapter. 

The peak performance of this architecture is delivered when all rendering processor 
power is exploited for rendering calculations and the rendering are working continuously. 

If the balancing mechanism is activated the peak performance is not achieved, but the 
processing power of the rendering modules is used to speed up geometry calculation. This 
has two effects: 
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FIGURE 4.9. Exploitation of the rendering processor computation power 

- it prevents the rendering modules from running into an idle state and 
- speeds up image generation by supporting substantially geometry processing. 
For simulation of the architecture the DARENDER graphics software was chosen [12]. 

This is a functional implementation for PHIGS-PLUS/PEX. It is fully written in and 
incorporates no optimazations in form of assembler routines or similar. The hardware for 
simulation was a 32 MHz application board of the Digital Signal Processor development 
toolkit. The scene used for exploitation measurement shows several goblets in 3D space. 
The goblets were fed into the architecture in a b-spline representation with different 
parametrizations: -Case A: The goblets were tesselated into 10082 triangles covering 81389 
pixels (about 8 pixel/triangle). -Case B: The goblets were tesselated into 800 triangles 
covering 79713 pixels (about 100 pixels / triangle) . 

Backface culling was disabled, so all the traingles were rendered with Gouraud shading 
and z-buffered. 

The hardware architecture was simulated with one geometry processing and five ren­
dering processing modules. Figure 4.9 shows important results of the simulation. 

First, for the goblet scene only 5.6 % of computation time in case A and 13 % in case 
B were needed for rendering. 

Second, without load balancing the rendering processors are going to waste a lot of 
their computational power within an idle state. 

The time for all task switchings and for data transfer was taken into account. Figure 4.10 
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image 
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billiards 3,69s 1,82s 2,03 

breakfast 11 ,18s 3,37s 3,32 

chessman 11,02s 2,46s 4,48 

FIGURE 4.10. Image generation speed up 

FIGURE 4.11. Breakfast 

shows the resulting speed up using dynamic load balancing for the images shown below. 
The configuration choosen incorporated one geometry module and five rendering modules. 

The simulations done so far are very appropriate for this architecture in the way a 
scene was rendered, which burdens a big computational load to the geometry modules 
and threrefore shows the load balancing mechanism working very effectively. Further simu­
lations will be accomplished with less complex primitive representation and different scene 
definitions in order to evaluate the effectiveness of the dynamic load balancing mechanism 
in more detaiL 
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FIGURE 4.12. Billiards 

FIGURE 4.13. Chessmen 
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4.6 Summary 

The presented architecture has a high degree of parallelism and overcomes the bottleneck 
of frame buffer access with its distributed frame buffer as well as overcoming the bottle­
neck of data dependencies with its dynamical regulation mechanism for load balancing. 
The high level programmability and homogeous structure make it easy to handle and 
designated for future enhancements. 
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