
3 Silicon Compilers for Graphics Hardware Design?

Oliver Renz
Alwin Groene

ABSTRACT Experiences with the realization of an object processor using a silicon
compiler will be described. Object processors are parts of the object oriented dis­
play processor architecture PROOF (Pipeline for Rendering in an Object Oriented
Framework; [9] and [8]). Placed in an object processor pipeline the object processors
perform the scan conversion, the interpolation of the depth values and the normal
vectors of the primitive objects of a scene to be rendered. The suitability of the sili­
con compiler GENESIL 1 for the development of graphics hardware will be examined
using the object processor as an example.

3.1 Introduction

The goal of each chip development is to achieve a high quality design in a short design
cycle. High quality in this context means high performance and compact layout. Silicon
compilers claim to be a tool for a fast development of chips that can compete with full
custom designs. The hardware realization of some typical graphical algorithms allowed us
to test the suitability of the silicon compiler GENESIL in this context. The experiences
were gained during the following activities:

o the development of an object processor (OP) [4]. Object processors are an essential
part of the display processor PROOF. An OP is responsible for the scan conversion
and shading of a single primitive object, which is in our case a triangle or a vector.
The algorithms and their realization in GENESIL will be described in the following
sections.

o the development of an ASIC 2 [7], [5] for the scan conversion of triangles (using an
algorithm described in [3]) and of vectors. Antialiasing is performed using subpixel
masks.

o Test of the conversion of an existing logical design (a filter stage) into a GENESIL
design. This filter stage is like the OP a part of PROOF and performs antialiasing
and the handling of transparency.

The experiences with the three architectures were quite similar. Therefore only a few
important components of the first mentioned design will be described further.

1 GENESIL is a trademark of MENTOR GRAPHICS Silicon Design Division.
2This work has been partly supported by the Commission of the European Communities through the ESPRIT

II-Project SPIRIT, Project No. 2484.

http://www.eg.org
http://diglib.eg.org

3. Silicon Compilers for Graphics Hardware Design? 21

3.2 Structure of the OP

In this section a short overview of the parts of PROOF and the essential components of
an OP will be given.

PROOF consists of three stages being placed in pipeline manner (see figure 3.1):

1. The object processor pipeline (OPP): The OPP consists of OPs arranged in a pipe­
line. The task of the OPP is to perform the scan conversion and the hidden surface
removal. Further the OPP generates data which is necessary in the next stages.
Each OP is responsible for the processing of a single primitive object (triangle or
vector). Generally one OP exists for each object in the OPP. The computations of
an OP are sequential for each pixel. For each pixel a list of depth sorted objects is
maintained. These objects cover the pixel partly (The last object in such a pixel list
covers the pixel totally). Because of these pixel lists the filter stage is able to perform
the hidden surface removal, the antialiasing and the handling of transparency. In
the z-buffer mode the pixel list contains only one object per pixel. This object is
next to the viewer and has a coverage different from zero.

2. The shading pipeline: The following shading algorithms are provided: Flat shading,
Gouraud shading and Phong shading. The color components (RGB) will be com­
puted with 8 bits of accuracy. In the case of Gouraud shading the OPP calculates
the color components or in case of Phong shading the components of the normal
vectors. A possible implementation of the shading pipeline is described in [1).

3. The filter stage: If filtering or antialiasing should be performed the OPP generates
depth sorted pixel lists. These lists contain geometrical information about the ob­
jects, so the filter stage can compute the final pixel color (The filter stage determines
the pixel area, that is covered by each object and blends the pixel color correspond­
ing to this area.). This will reduce aliasing effects. A description of this stage is
given in [6).

The bottom of figure 3.1 shows the principle structure of an OP. A FIFO receives data
and control signals from the predecessor OP and passes the signals to a delay stage and
to seven processing units. Three of the processing units (shown as Int. R, Int. B, Int. G)
generate the shading data; one computes the z-value (Int. z); another three processing
units (Int. d1, d2, d3) perform the geometrical computations on which the coverage unit
can decide whether the considered pixel lies inside the pixel. The comparator performs
the mentioned management of the pixel lists.

3.3 Usefulness of GENESIL Components for the OP Design

The silicon compiler GENESIL combines some advantages of full custom design and the
facilities of macro and standard cell design. Both a macro cell library (FIFO, PLA, ROM,
RAM, multiplier, ...) and a standard cell library (gates, adders, counters, decoders,latches,
multiplexers, ...) [2) are available. In addition GENESIL provides two powerful datapath

22 Oliver Renz, Alwin Groene

>-~
~ 0

...... C/l
OJ C/l
E OJ o ()
OJ e
CJa..

PROOF

~-----------~------------~

. -4 __ _ .-.......

000

- - - - -,.' - - - - - - - - - - - - - - - - - .- .- - ~ : -

. -r---

E
5 0 0

C\J (") a: CJ ro N "C "C "C iii
.E 'E 'E 'E 'E E E 'E Co
u::: c.

il E
0 0

U

Delay Stage

FIGURE 3.1. Proof

3. Silicon Compilers for Graphics Hardware Design? 23

libraries3 for controlling and processing parallel data. This enables a design to use efficient
bus operations with high bit widths .

GENESIL forces the designer to use a 2-phase non-overlapping complementary clock
for the chip development (But several independent clock regions are allowed.). This clock­
ing strategy prevents unclocked feedbacks. GENESIL carries out automatic consistency
checks 4 and accepts a circuit only, if there are no unclocked feedbacks. Therefore an edge
triggered design is not possible. The designer cannot built his own latches or flipflops.

The following sections examine the usability of GENESIL circuit elements for the OP
design and similar graphics hardware.

3.3.1 Datapath Module

All pixel calculations in the OP can be done by interpolating a bilinear equation of type

F(x,y)=ax+by+c

(x, yare the screen coordinates of a pixel).

These calculations include

o three equations to determine the distance between a pixel and a primitive object,

o three equations to interpolate the colors/normal vectors in a triangle, and

o one equation to calculate the z-value of pixels covered by a triangle.

The incremental calculation of values F(x,y) during a frame is done similar to the fol­
lowing algorithm:

F(O,O):= c;
for y=O to max.scanline-l do
begin

end

for x=O to max..pixel _per_scanline-l
F(x+1,y) := F(x,y) + a;

F(O,y+1) := F(O,y) + b

/* New Frame * /

1* New Pixel * /
/* New Scanline * /

This algorithm can be implemented in each of the seven interpolation units as shown in
figure 3.2.

The initializations and calculations are controlled by three multiplexers (and of course
by some load signals for the latches which are not shown in figure 3.2). The command
NEWFRAME loads the c-values into the registers 'd' and 'dO'. The NEWPIXEL command
writes the output ofthe adder (d+a) into the register 'd' . Last but not least the NEWLINE
command writes the output of the adder (dO+b) into the registers 'd' and 'dO'.

'The Parallel Datapath Library for 1.5 I'm or 2.0 I'm fablioes (supporting IOTAI/1.5 design rules) and the
so called New Datapath Library for 1.0 I'm fablioes (IOTA2 design rules).

'This is done by timing attributes attached to the circuit elements and their signals. The timing attributes
express the relationship between the clocks and the signal timing.

24 Oliver Renz, Alwin Groene

NEWFRAME X o dO, d

NEWLINE 0 dO+b dO, d

NEWPIXEL d

FIGURE 3.2. The structure of an interpolation unit

The interpolation units are almost identical. The main difference is the number of
bits. The distance calculations are done with 30 bit, the color values (or components
of normal vector resp.) with 39 bit, and the z-value calculations with 47 bit fixed-point
numbers. Because of these large bit widths these units can be implemented only with
GENESIL datapath modules. Usually a GENESIL datapath module consists of several
functional units (called datapath blocks). The following operations can be implemented
with datapath blocks:

- addition, subtraction (complement of 2)
- comparison operations
- ALU functions (a complete ALU module is available)
- shift operations
- random logic operations
- latch operations
- control of data flow (e.g. multiplexer, I/O-modules, change bus functions)

All operations are also available for tristate and precharge signals. The datapath blocks
receive their input data via I/O-ports or by two global data busses. In addition neighboring
blocks can be linked by two local busses.

Figure 3.3 shows the internal datapath structure of the interpolation unit for z-values.

3. Silicon Compilers for Graphics Hardware Design? 25

PORT l

INTER 1

H~=---< LOAD_B

I NTE R2

H;-----<MUXO

I NT ER3

TS TLAT

INT ER4

H-----<MUXO 0

BUSBRK

INTERS

I NTER6

Hc-------<MUX 1

I NTE R7

PORT2

FlF"=---<READ

;._ OUT

FIGURE 3.3. Datapath of a .-interpolation unit

26 Oliver Ren., Alwin Groene

The four busses allow quite complex connections between the blocks. Feedbacks are pos­
sible and I/O-ports can be attached in each place of the datapath modules. Especially the
possibility to extend datapath registers to testability latches is remarkable. These testa­
bility latches are able to shift data into datapath registers as part of a scanpath during a
test mode. Analogously data can be examined by shifting out. Though testability latches
are four times as large as normal latches, therefore it's reasonable to use them sparingly.

The designed datapath modules consist of a great number of datapath blocks. This is
the reason why they are large and slow (up to 60 ns cycle time). Especially the adders
(width up to 47 bits) and many long busses connecting various datapath blocks cause
these high signal delay times.

Compared with the other library elements GENESIL datapath modules reach a high
integration density. The density varies depending on bit slices including just interface op­
erations or more complex AL U operations. Figure 3.4 shows the layout of ad-interpolation
unit. 5 The bit slices run vertical in groups of four. The adders in the middle of the slices
are quite compact (approx. 100 p,m2 per transistor). On the other hand they increase
the distances of multiplexers and registers between slices significantly. The resulting area
per transistor of the whole datapath amounts to about 500 p,m2 and with New Datapath
Blocks (IOTA2) about 200 p,m2 • Unfortunately we could not use IOTA2 design rules.

3.3.2 Random Logic Modules

GENESIL random logic modules are user assembled macro cells which consist of standard
cells (so called random logic blocks). The following random logic blocks are available:

- gates
- transparent latches and flipflops (1-16 bits)
- more complex functional blocks like multiplexers, decoders and adders
- blocks with internal states like counters
- buffers (e.g. tristate or precharge drivers)

The blocks vary in their width but have a uniform height. The width depends on the
specified function and the number of bits. Data enter and leave the cells always on the
upper and lower sides of a cell. The power supply and clock connectors are on the left
and right sides of a cell. During floorplanning it is reasonable to place the RL blocks in
one row (see figure 3.5).

Obviously the routing of neighboring blocks is unfavorable because it cannot be done
via the adjacent left and right sides. Instead U-turns have to be used. This long routing
results in large chips and higher signals delays. Usually an equivalent design with PLA
blocks or data path modules is more compact and therefore faster. The integration density
of RL modules is 2-3 times less than that of datapath modules.

'This layout was built in a fabline supporting only IOTA1.5 design rules. The same datapath built with New
Datapath Blocks (IOTA2 design rules) was about 2 times smaller.

3. Silicon Compilers for Graphics Hardware Design? 27

FIG URE 3.4. Layout of a d-interpolation unit

3.3.3 Independent Blocks Library

The independent blocks library consists of macro cell elements which occupy more chip
area than the standard cell elements in the random logic library. The following indepen­
dent blocks are available:

- FIFO-blocks (2-64 bits in depth and width)
- Multiplier (4-32 bits (old) or 8-80 bits (new) j both 2-complement)
- Data/power/ clock/test-pads, clockprocessor-pads
- PLA-blocks (max 512 minterms and max. 256 inputs and outputs)
- RAM-blocks (2-128 bit depth, 2-16 address bits)
- ROM-blocks (2-128 bit depth, 4-12 address bits)

All blocks support tristate and precharge signals.
The PLA blocks are quite remarkable. The AND and OR planes can be specified either as
object code (minterms) or in a Pascal like PLA description language called PLAEQ (PLA

28 Oliver Ren" Alwin Groene

FIGURE 3.5 . Routing of random logic blocks

Equations). With PLAEQ the PLA can be defined with logical equations or as actions of
a finite state machine. In all cases the definition can be optimized. The generated PLA
layout is as dense as the layout of a parallel datapath.

In order to control the interpolation units a gate version and a PLA version were
developed. The PLA version was much more compact and faster. The following figure 3.6
shows the layout of a PLA with 47 minterms 6. and about 1000 transistors.

3.3.4 Logic Compiler

With the Logic Compiler tool all mentioned library elements can be optimized (with
regard to aspect ratio, connector positions, additional routing channels ...). Totally new
blocks can be defined via functional models. These can be transformed into GENESIL
blocks. Unfortunately the Logic Compiler tool is optional and was not available for the
OP design.

3.3.5 Floorplanning, Routing, Timing-Analysis

The GENESIL floorplanning of a chip or a module consists of the following activities:

o Placement of blocks and modules (orientation to each other).

'There were 60 minterms before GENESIL made the automatic optimization

3. Silicon Compilers for Graphics Hardware Design? 29

FIGURE 3.6. Layout of a PLA

o Slicing and Alignment: Specification of the routing channels between the blocks
(slicing) and definition of a growing direction of these channels or a direction for
moving the blocks, if this is necessary during the routing (alignment).

o Pinout: Definition on which sides the connectors of a module or the pads of a chip
shall be located.

After these three steps the floorplanning is finished and the module or the chip can be
routed.

GENESIL offers an automatic placement which is only acceptable if the placement
is done with a small number of modules. Placement is an iterative and therefore time­
consuming process because GENESIL offers none of the common aids (like e.g. simulated
annealing). It should be optimized to achieve both small chip areas and short wire length.
Therefore the designer is forced to compromise between these two demands.

Routing can be done automatically. However usually it is necessary for the designer to
influence the router by additional instructions. Each data/clock-signal can be controlled
with these additional router instructions 7. Unfortunately this controllability is restricted
to instructions telling the router which slicing channels to use and which to avoid. U-turns

'However it is very diflicult to influence the routing of vee and VSS.

30 Oliver Renz, Alwin Groene

and other useless passing actions of the router caused by signal crossings or unfavorable
slices are difficult to control. In many cases they are not at all controllable.

During design optimization a timing analysis can help to find critical paths. Afterwards
the floorplan may have to be modified. The timing behavior can be improved by redoing
critical paths or by a different placement. Especially if the chip size is already quite large,
such a floorplaning-routing-timing-cycle is very time-consuming and therefore an optimum
is hardly ever reached.

The timing analysis of any module can be done immediately after defining the circuit
and is independent of any test vectors. Therefore the designer gets the circuit performance
(setup/hold/delay times, cycle times including phase-high times, circuit power consump­
tion) almost instantaneously.

Due to the large databus bit-width connecting the interpolation units the routing area
is enormous (almost half of the core area).

Figure 3.7 shows the routed OP.

3.4 Some OP Performance Data

The following table shows some performance data of the OP:

Technology CMOS-1
Bonding Pads / Pins 113
N umber of transistors 87691

I Process ES2 CMOS 1.5 JL VTC CMOS 1.0 JL

High 634.9 mils (= 16.1 mm) 505.4 mils (= 12.6 mm)
Width 553.2 mils (= 14.0 mm) 429.3 mils (= 10.9 mm)

Area per transistor 4.0 mils 2 (= 2586 mm2) 2.4 mils 2 (= 1596 mm2)

CORE routing 46 % 53 %
CHIP routing 37 % 42 %
CORE area 80 % 80 %
PADRING area 19 % 19 %
Ratio PADs/PADRING 76 % 80 %

Symmetric cycle time 165.0 ns (= 6.0 MHz) 96.2 ns (= 10.4 MHz)
Minimum cycle time 146.5 ns (= 6.8 MHz) 96.2 ns (= 10.4 MHz)

Power dissipation 3.7W 3.9 W

3. Silicon Compilers for Graphics Hardware Design? 31

FIGURE 3.7. Routed or

32 Oliver Renz, Alwin Groene

3.5 Some General Experiences with GENESIL

Fast GENESIL chips (with 20 Mhz and more) can (probably) be developed on the fol­
lowing conditions:

o The die size of the chip should not be larger than 300 x 300 mils2 (7.5 x 7.5 mm)2.

o The number and length of the nets should be low. The best circumstances are
provided by directly connected neighboring modules. Otherwise the routing control
is very time-consuming.

o If possible do not use greater bus width than 30 bits. Bus operations should only
be implemented as Parallel Datapath Modules or New Datapath Modules.

o The modules shouldn't be too large in order to get a good floorplan. If the differences
of the modules are too great, this leads nearly always to wasted chipspace.

o All modules should be optimized with the Logic Compiler tool.

Many graphics hardware applications are more complex than the considered designs con­
cerning required computations. If similar databus bit width is used, the use of GENESIL
for a hardware implementation can only be recommended if the control logic can be
designed much easier than the OP control.

Acknowledgements:

We appreciate the guidance of Prof. Wolfgang StraBer and the cooperation with our
colleagues at the Graphics Department of the University of Tiibingen.

3.6 References

[1] U. Claussen: Verfahren zur schnellen Beleuchtung u. Schattierungsberechnung. Dis­
sertation der Fakultat fiir Physik der Universitat Tiibingen, 1990

[2] GENESIL-Designer: Compiler Library Volume I, II, III. Silicon Compiler Systems
(now MENTOR GRAPHICS), Sep. 1989

[3] J. Pineda: Parallel Algorithm for Polygon Rasterization. Computer Graphics,
22(4):17-20, Aug. 1988

[4] O. Renz: Entwurf eines Objektprozessors mit Hilfe eines Silicon-Compilers. Diplo­
marbeit am Wilhelm-Schickard-Institut fiir Informatik der Universitat Tiibingen,
Nov. 1990

[5] O. Renz: Implementierung des SPIRIT ASIC. Interner Bericht des Wilhelm­
Schickard-Instituts fiir Informatik der Universitat Tiibingen, Mai 1991

3. Silicon Compilers for Graphics Hardware Design? 33

[6] C1. Romanova and U. Wagner: A VLSI-Architecture for Anti-Aliasing. In:
R.L.Grimsdale, W .Strasser (Eds.):Advances in Computer Graphics Hardware IV, Eu­
rographicSeminars. Springer-Verlag, Berlin, 1991, p.75-90

[7] A. Schilling: Some Practical Aspects of Rendering. In: R.L.Grimsdale, A. Kaufman
(Eds.):Advances in Computer Graphics Hardware V,EurographicSeminars. Springer­
Verlag, Berlin, 1992, p.53-66

[8] B.-O. Schneider: Eine objektorientierte Architektur fiir Hochleistungs- Display­
Prozessoren. Dissertation der Fakultat fiir Physik der Universitat Tiibingen,
Feb. 1990

[9] B.-O. Schneider and U. Claussen: PROOF: An Architecture for Rendering in Ob­
ject Space. In: A.A.M.Kuijk (Ed.): Advances in Computer Graphics Hardware III,
EurographicSeminars. Springer-Verlag, Berlin, 1991, p.121-140

	gh_6th_ws0026
	gh_6th_ws0027
	gh_6th_ws0028_clean
	gh_6th_ws0029_clean
	gh_6th_ws0030_clean
	gh_6th_ws0031
	gh_6th_ws0032_clean
	gh_6th_ws0033
	gh_6th_ws0034
	gh_6th_ws0035_clean
	gh_6th_ws0036_clean
	gh_6th_ws0037
	gh_6th_ws0038_clean
	gh_6th_ws0039_clean

