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ABSTRACT A structural simulator is used both to test hardware and to visualize 
software that should run on that hardware. In a layered set of graphical hardware 
simulators, a structural simulator bridges the gap between hardware fidelity on the 
one side and sufficient performance to visualize graphics algorithms on the other. Es­
sential design requirements were code extensibility and reusability. In order to achieve 
this, object-oriented methods were adopted. Important design criteria for graphical 
hardware simulators at this level are that both the exact digital state of the hardware 
and the graphical output be visualized interactively. The experience with using the 
XInPosse simulator is presented and analysed. XInPosse simulates a large systolic 
array in custom VLSI for second order interpolation; in this case to produce shaded 
scanlines. XInPosse provides the user with a means of tracing commands within the 
array while interactively setting breakpoints and displaying processors of particular 
interest. It verified that the hardware could execute the graphics algorithms correctly 
and that the limitations on numerical accuracy and range were graphically accept­
able. An unexpected use was to facilitate communication between chip designers and 
the graphics researchers. Problems in the documentation of the hardware and work­
arounds for hardware "bugs" were found more easily through the common reference 
frame provided by the simulator. It is the intention of the authors to use the modular­
ity provided by the object-oriented design to produce a toolkit for building graphical 
hardware simulators. 

2.1 Introduction 

Software simulation is a common if not compulsory part of hardware development. A 
simulator allows system designers to visualize the internal operation of the hardware 
interactively using both text and graphics. This paper discusses one such simulator for 
graphics hardware based on custom VLSI. We place equal emphasis on the need for a 
simulator, on its design, and on the lessons learnt from using it. 

The research described here stems from a project whose aim is the development of a 
prototype graphics system based on "A new technology for raster graphics on the basis of 
VLSI1". In our system [3], a systolic array of FUSS0I2 processors occupies the last place 
in the image-generation pipeline, that of rasterization and display. The preceding phases 
perform perspective projection, visible-surface calculation, and shading; the results of 

'This study is partly funded by the Dutch Technology Foundation(STW) CWI79.1249 
2 Fast Universal Systolic Second Order Interpolator 
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which are quadratic shading functions [4, 1] which approximate Phong shading. Proces­
sors, allocated one per pixel along a scanline, interpolate these functions generating pixel 
intensities at screen refresh rate. 

The XInPosse3 simulator models this systolic array of processors at the functional level 
with fidelity and granularity sufficient to predict and evaluate their behaviour. Its graph­
ical user interface allows one to initiate, control, and observe the execution of commands 
in the array. Individual processors can be displayed and their states observed whilst com­
mands pass through them. An intensity graph for each scanline is drawn; along with a 
complete output image. 

In the midst of designing a complete graphics system, we observed our occasional dif­
ficulty in coordinating and communicating our work. We will show that, apart from its 
utility for software and hardware designers, our simulator supported and facilitated com­
munication among our disparate group of specialists. 

This first section discusses the antecedents to the need for a structural level hardware 
visualizer. In the remaining sections we discuss: The major consideration which drove the 
design and implementation of the simulator, our experience in using it so far, concluding 
remarks, and an outline of further work. 

2.2 The Need For Hardware Simulation 

The simulator was developed in a project whose overall aim is to build a fast interactive 
graphical workstation aimed, in the first instance, at the Computer Aided Design market. 
A substantial part of the hardware is based on custom VLSI [3]. 

In developing custom (VLSI) hardware a number of simulators may be built; together 
they represent an integrated set of layered simulation tools. These include at least the 
following: 

A. Electronic, or mask level, simulation. An analog simulation of the digital hardware. 

B. Exact low level technology independent logic simulation. This is used by the chip 
designers. 

C. Structurally and functionally accurate simulation. Registers, flags and logic are ex­
actly simulated. This is the simulator discussed here. 

D. Algorithmically accurate simulation. Need not use exactly the same data and control 
as the hardware. Used for fast software implementations to test algorithms. 

The reason for using less accurate simulators at all is that accuracy is very expensive 
in terms of computing resources. Low level simulators (A and B) are, generally speaking, 
utterly impractical for testing software. 

The algorithmic simulator (D) is used primarily to verify that algorithms will perform 
as expected in practice. It has sufficient speed to allow simple graphical results to be 

3in posse, Latin. Literally "in potentiality," 
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visualized. The memory requirements are such that a complete hardware (sub- )system 
can be simulated on a workstation. 

The structural level simulator (C) must have a sophisticated user interface to allow 
interactive inspection and debugging of executing programs. The simulator must allow 
visualization of important aspects of the modelled processor. An applications programmer 
must be able to verify that the output from a shading algorithm, say, will be accurate on 
the target hardware. A hardware specialist must be able to trace the data and commands 
as they pass through the simulated hardware and be able to interrogate the state of any 
part of the system at any stage. 

It is this dual visualization that makes this simulator a useful adjunct in dealing with 
one of the problems which crop up in hardware design. Research in hardware based on 
custom VLSI requires close cooperation within a large team of specialists with very different 
backgrounds. Intensive and detailed interaction is needed because: 

1. The hardware is closely coupled to a specific and very demanding application domain 
(i.e., graphics) . 

2. The ways in which the hardware can be realized are not fixed and there are a number 
of trade-offs between various sub-systems. 

This means that a successful project is vitally dependent on dialogue between system 
and hardware designers. Once a VLSI design has been decided upon4 The VLSI design 
team has to document their design. Unfortunately it may well be that these efforts are 
not effective in communicating with the higher level designers. The VLSI team is trained 
to communicate with peers and fail to understand the difficulties of non-specialists. 

In this paper we will be considering simulators as an essential element in the commu­
nications between specialists. The low level simulators (A and B in the list above) are 
not suitable for this since they cannot execute realistic code and they are comprehensible 
only to hardware designers. The algorithmic simulators provide no information which a 
hardware designer can use. The structural level simulators are particularly useful in giving 
the system designers a concrete idea of what the hardware designers have implemented. 
On the basis of the simulation, questions can be formulated by the higher level users in 
terms which can readily be understood by the hardware designers. 

2.3 Design Issues 

Garzia [2] defines modelling, in very general terms, as a representation of an entity other 
than the entity itself. The primary requirement of our model was that it exhibit replicative 
and predictive validity on a functional basis. The nature of the components to be modelled 
also suggested a structural validity - that our software structures correspond to and 
interact as their counterparts in the modelled system [2]. This perspective lead quite 
naturally to an object-oriented approach. 

'The process by which the design is finalized won't be discussed here . It is even more the result of intensive 
communications between graphics and interaction specialists and VLSI designers. 



I2 M.A.. Guravage, E.H. BIake, A..A.M. Kuijk 

COMMANDS DESCRIPTION 
refresh output the accumulated intensity 

accmodeO disable accamulation. of n.egative n.umbers 
seti(x, i) set intensity in one processor 

setdi(x, di) set first derivative in one processor 
setddi(x, ddi) set second derivative in one processor 

dis(x, dx) disable a range of processors 
evaIO(x, dx, i, di, ddi, dddi) interpolate a cubic shading function 

eval1(x, dx, i, di, ddi) interpolate a quadratic shading function 
eval2(x, dx, i, di) interpolate a linear shading function 

evaI3(x, dx, i) interpolate a constant shading function 
evaI4(x, dx, i) interpolate a constant shading function 
setpi( x, dx, i) set intensity in processors x,x+dx, ... 

setpdi(x, dx, di) set first derivatives in processors x,x+dx, ... 
setpddi(x, dx, ddi) set second derivatives in processors x,x+dx, ... 

nopO no operation 

TABLE 2.1. FUSSOI scanline commands 

To demarcate the user interface and simulation functions logically and functionally, it 
was originally decided that each would occupy it own distinct UNIXs process. Unfortu­
nately, for reasons described below, the asynchronous communication mechanism which 
connected the two processes proved too complicated and error prone for the volume of data 
processed. These problems were resolved, without compromising modularity, by merging 
the user interface and simulator processes into a single process. 

2.4 Interaction 

The simulator is logically and functionally split in two halves. The first half is an X­
Windows program which manages the user interface - its graphics, event handling, and 
command parsing. The second half performs the simulation. 

We concern ourselves in this section with the design of the user interface and begin 
with a description of the FUSSOI commands, the parser, and the graphical user interface. 

The data that drive a simulation are commands which describe shading functions along 
scanlinesj see Table 2.1. The arguments to the commands specify the shading function's 
initial values for intensity f(x), and optionally, its first, second, and third forward differ­
ences. 

Forward differencing is an efficient method for evaluation of polynomials. A polynomial, 
e.g., f( x), is specified using its initial value at the location x = t and the first forward 
difference, llf(t) = f(t + 1) - f(t). One then uses initial value at t, and adds the first 

'UNIX is a trademark of AT&T Bell Laboratories. 
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forward difference to the original value to arrive at the value f(t + 1) = f(t) + f:lf(t). 
The n-th forward difference is constant. For example, evaluation of the function f(t) = 
t3 + t2 + t + 1 over the range t = 0 to t = 6 is performed as follows: the first forward 
difference is f:lf(t) = ((t + If + (t + 1)2 + (t + 1) + 1) - W + t2 + t + 1) = 3t2 + 5t + 3, 
the second f:l2f(t) = (3(t + 1)2 + 5(t + 1) + 3) - (3t2 + 5t + 3) = 6t + 8, and the third 
f:lf(t) = (6(t + 1) + 8) - (6t + 8) = 6. The initial values for the third-order forward 
difference are then f(O) = I, f:lf(O) = 3, f:l2f(0) = 8, and f:l3f(0) = 6. This method 
computes the values of the polynomial for each location in the range using n additions 
per location; see Fig. 2.1. 

t=O t=1 t=2 t=3 t=4 t=5 t=6 

6-6-6-6-6-6-6 

~~~~~~ 
8 -14-20-26 -32-38-44 

~~~~~~ 
6j(t) 3 - 11 - 25 - 45 -7l -lO3-141 

~~~~~~ 
f( t) 1 - 4 - 15 - 40 -85 -156-259 

FIGURE 2.1. Forward differencing 

Scanline commands are decomposed into subscanline commands; fulfilling the systolic 
array's requirement that commands complete execution in one systolic pulse; see Table 
1.2. It is these subscanline commands and their data which are read by the simulator and 
are the basic unit of execution on the systolic array. 

Subscanline commands propagate along the systolic array with every processor execut­
ing its instructions each systolic pulse. Fig. 2.2 shows the state of seven processors during 
seven cycles as they execute an eval2 command (linear shading function) followed by a 
refresh command. The x,dx command specifies that commands will be active in processors 
2 through 4. The first occurrence of forward differencing is at t=4 when the di command 
reaches processor 2; The new di, next used in at t=5 in processor 3, is the sum of current 
di and ddi values. 

The primary element of the user interface is the command parser which implements 
the code produced by the well-known UNIX lexical analyzer and parser generator LEX and 
YACC. The parser provides a "little language", with modest syntax checking, which parses 
scanline commands and their data, decomposing them into subscanline commands. 

The graphical interface is an X-Windows program composed of widgets from the OSF­

MOTIF widget set. Upon invocation, three separate panels appear: a control panel, a 
scanline panel, and an image panel; see Fig. 2.3. 

The control panel has five components: a file selection widget which controls the parser, 
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COMMANDS slot #1 slot #2 slot #3 slot #4 
refresh refresh clear 

accmodeO (en )disable 
seti(x, i) x i 

setdi( x, di) x di 
setddi( x, ddi) x ddi 

dis(x, dx) x,dx 
evalO(x, dx, i, di, ddi, dddi) x,dx dddi (ddi)+dddi ( di)+ddi 

eval1(x, dx, i, di, ddi) x,dx ddi (di)+ddi (i)+di 
eva12(x, dx, i, di) x,dx di (i)+di 

eval3(x, dx, i) x,dx i acc 
eval4(x, dx, i) x,dx,i 
setpi(x, dx, i) x,dx i 

setpdi(x, dx, di) x,dx di 
setpddi(x, dx, ddi) x,dx ddi 

nopO no-op 

TABLE 2.2. FUSSOI subscanline commands 

p=O p=l p=2 p=3 p=4 p=5 p=6 
x,dx~DDDDDD t:O 
ddi~~DDDDD t=l 
di~0.DDDD t=2 
i~[2J0 IIDDD t=3 

acc--.GJGJ o· ... !! .DD t=4 
refresh~I"'f"'SIj 0 o. [:;] D t=5 

BBt=6 
BBt=7 

DD •• GBt=8 

acc 

DDD •• BBt=9 
DDDD.BB t=10 
DDDDDEJB t=ll 

FIGURE 2.2. Systolic array 

slot #5 slot #6 

(i)+di acc 
acc 
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FIGURE 2.3. XInPosse user interface 
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a scanline widget which displays the scanline read by the parser and subscanline commands 
sent to the simulator, a subscanline widget which displays an execution trace for each 
command as it passes through the systolic array, a status widget which displays error 
and status messages, and lastly a slider widget which allows one to choose and pop-up 
individual processors. 

The scanline intensity panel displays shading curves, where intensity is proportional 
to amplitude, and gray-scale values for the scanlines being processed over the array of 
processors. 

The image panel displays a complete image constructed from all the scanline commands. 
Optionally, individual array processors can be popped-up; displaying their contents and 

status. Breakpoints are automatically set which suspend execution of commands in these 
processors. Commands can then be single stepped individually or as a group. If pop-up 
processors are dismissed, breakpoints are removed and execution continues. 

2.5 Object-Oriented Implementation 

This section describes the models, written in C++, which implement the simulator. First, 
the class int36 which implements thirty-six bit arithmetic. Then the classes FUSSOI & 
OPCODE which implements the simulation proper. 

The class int36 is the simulator's arithmetic class - actually a set of collaborating classes. 
The processors perform their interpolation to a precision of thirty-six bits. Though pack­
ages and classes for multiple precision and arbitrary precision arithmetic are available, we 
wanted a class optimized for our needs. Specifically, to provide thirty-six bits of precision, 
a double is used and shifted to use the thirty-six most significant bits of the fifty-two bit 
mantissa. Familiar operators are overloaded for the class. 

The class OPCODE is the meta-class for the set of derived classes, each implementing 
the functions of one subscanline command. When an opcode and its data are read by 
the simulator, they are placed on an execution list (a circular link list), the entire list 
is traversed at each simulated systolic pulse and the opcodes applied to their destined 
processors on the systolic array. The data encapsulated in an instantiation of an class 
OPCODE are the necessary data passed from one processor to the next during execution. 

The class FUSSOI implements all the functions of a processor, i.e., reading from and 
writing to registers and performing calculations. Here, structural simulation is most evi­
dent. The function of the processors is so modelled that the architecture of the class was 
coded directly from the hardware controller state diagrams. Each member function of 
the class corresponds to one subscanline command. An array of instances of class FUSSOl 

implements the systolic array. 

2.6 Program Extensibility and Reusability 

At first sight a simulator might seem a one-of-a-kind program written to simulate one 
particular processor. However, in an experimental environment the demands placed on 
the simulator, particularly in terms of what can be visualized and the ease with which 
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important aspects may be accessed, will change. Experience will tell what the important 
questions are which are put to the simulator. As confidence with some parts of the hard­
ware increases, there is also increasing demand that more detailed simulation, on occasion, 
be dispensed with in order to speed up processing of the remainder. 

A general problem with writing simulators is getting them finished in time to be useful 
in designing the hardware. The present simulator is a case in point . It will serve a number 
of useful purposes but influencing the design of the first chip is not one of them. Realizing 
this, it was decided to concentrate on making the various modules as reusable as possible. 
The other hardware simulators we need should be much quicker in arriving. 

These requirements indicate a thoroughgoing modular approach. We opted for an 
object-oriented design. We hoped that the ability to make incremental changes to previ­
ously defined modules, via the inheritance mechanism common to object-oriented systems, 
would assist in software reuse and program extension. 

Currently, the simulator generates gray-scale intensities only. Colour could be imple­
mented by including colour data and corresponding methods in the OPCODE meta-class 
which would in turn be inherited by its sub-classes. With three modelled systolic arrays, 
each would calculate pixel intensities for the colours red, green and blue respectively. 

2.7 Experience with Using the Simulator 

The two primary tasks XlnPosse was designed and written for are: 

1. Verifying the functionality of processors, individually and arranged In a systolic 
array. 

2. Testing of various shading algorithms which eventually will be implemented in silicon 
in a level directly above the systolic array. 

Algorithmically, the simulator is being used to test routines implementing angular in­
terpolated Phong shading as well as those for anti-aliasing via exact area integration. 
The simulator is the only medium, short of the hardware itself, which offers the exact 
numerical accuracy necessary to compute pixel intensities. 

One of our first observations was that subscanline commands which set and evaluate 
intensities do so one processor, or pixel, too late - thus leaving pixel zero unreachable. 
This irregularity necessitated a change in the shading algorithms to compensate for the 
unexpected shift. The simulator therefore provided insight into the processors' architecture 
which compelled changes in higher level code. 

Another observation was that, while processors can be instructed to ignore i.e. (clip) 
negative numbers, it was observed that highly negative numbers eventually wrapped 
around and become positive once again. 

The components of the simulator were written to correspond directly to their hardware 
counterparts, Once the components were modelled, the processors' architecture could be 
coded directly from the defining hardware controller state diagrams . Straight away, the 
simulator exhibited unexpected behaviour which strongly suggested errors in the con­
troller's documentation. The simulator allowed us to explicitly describe our observations, 
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ask the appropriate questions, and interpret the answers to resolve the errors. All were 
attributed to errors in the documentation. 

Finally, in a sister project, a pair of researchers are writing a PostScript6 interpreter 
which produces FUSSOI commands. They are using the simulator to test the results of 
their work both algorithmically and graphically. 

2.8 Problems 

Since work on the simulator was begun after work on the hardware, and the simulator 
took time to write, its contribution to the hardware (first generation at any rate) was 
minimal. 

For all the benefits of our object-oriented design and implementation, the present ver­
sion require workarounds to cope with incompatible libraries and the fact that useful UNIX 

tools (LEX & YACC) don't generate C++. 
The user interface was written with Xt and the OSF-MOTIF widget set 7, both C libraries. 

The simulator, on the other hand, was written exclusively in C++. Difficulties arose 
compiling files which contained both X-Windows and C++ code. This necessitated liaison 
functions to couple the disparate routines. 

As stated earlier, the use of UNIX pipes was central to our original design. To that end, 
all the familiar functions: reading, writing, duplicating file descriptors, closing unused ends 
of pipes, (un)buffered I/O, etc., were encapsulated in a class definition for interprocess 
communication. Alas, managing the traffic on loops of pipes among separate processes was 
non-trivial. Difficulties arose when the depth of the pipe, usually 4k bytes, was exceeded. 
Beyond that threshold, and despite careful attention paid to avoid deadlock situations 
[5], spurious errors regularly occurred. Pipes were eventually abandoned in favour of a 
traditional single process data coupled communication model. 

A problem akin to the previous one is that UNIX interprocess communication is inher­
ently non object-oriented. Using pipes to connect processes permits the communication 
of objects as C-structures where the receiving process has prior knowledge of the struc­
tures' types and sizes. Objects cannot retain their identities when passed over pipes. This 
fact precludes the use of run-time binding, the propriety of virtual functions and derived 
classes that bind objects to functions dynamically. 

2.9 Conclusion 

Structural simulation has proven to be a useful metaphor for writing hardware simulators. 
Its ability to show both high level functionality and low level architecture simultaneously 
expands the usefulness of one simulator to both system and hardware designers. The struc­
tural validity implicit in structural simulation necessitates and attests to the usefulness 
of object-oriented design. 

6PostScript is a registered trademark of Adobe Systems. 
1 At the time XInPosse was written, the U. Lowell C++ MOTIF binding was not available. 
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By testing sequences of instructions rather than testing the functionality of individual 
hardware instructions, we have observed the relationships (and problems) which arise only 
among streams of commands. 

For graphical application, the final judgement of the correctness of an algorithm can 
often best be made by observing the graphical output. This simulator offers the ability to 
generating complete images while remaining absolutely true to the hardware architecture. 

The simulator has served as a liaison between software and hardware engineers. Initially, 
it has been used to formulate and specify question about the hardware before asked of 
the hardware designers; and to evaluate their answers. Already, a number of non-trivial 
ambiguities have been resolved this way. 

2.10 Further Work 

Because of our object-oriented approach, coupled with a graphical system such as X­
Windows, we now have the beginnings of a hardware visualization toolkit. Certainly, 
our C++ classes are reusable; as are the user interface widgets. We plan to collect and 
formalize our class library and set of user interface widgets into a hardware visualization 
toolkit. 

Though the actual hardware is an MIMD machine, the processors are simulated serially. 
The simulator's performance would benefit greatly from a parallel implementation of the 
systolic array of FUSSOI processors. 
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