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A New Space Partitioning for Mapping 
Computations of the Radiosity Method onto a 
Highly Pipelined Parallel Architecture 

Li-Sheng Shen, E. Deprettere and P. Dewilde 

ABSTRACT Despite the fact that realistic images can be generated by ray-tracing and 
radiosity shading, these techniques are impractical for scenes of high complexity because of 
the extremely high time cost. Several attempts have been made to reduce image synthesis 
time by using parallel architectures, but they still suffer from communication problems. In 
this paper, we present a new space partitioning which is adaptive to the local environment 
seen by a bundle of rays. Two tracking mechanisms are embedded to guarantee adaptation. 
When using a shared memory parallel architecture, the communication load between the 
host and the PEs can be alleviated with this approach. Furthermore, the partitioning 
provides a better balancing between processing throughput and I/O bandwidth which will 
enhance the pipelinability of computations, especially when a high speed cache memory is 
allowed for each PE. Combining those factors, a highly pipelined parallel architecture can 
be used to accelerate computations in ray-tracing and radiosity methods. The technique 
has been tested on different scenes with randomly generated patches in a 2D setting. 
When compared with the conventional technique, promising results have been observed. 
This technique can be easily extended to 3D. 

Introduction 

In the fields of solid modeling and computer graphics, the most promising method to 
render realistic images is based on ray-tracing and radiosity shading, because it can ac­
count for all important physical effects occurring in the scene. Ray tracing, first described 
by Appel [1], cannot alone account for global illumination, since that is dependent on all 
objects in the environment. Although some fairly realistic images have been obtained us­
ing solely ray-tracing, this technique ignores the interreftection of light between diffusely 
reflecting surfaces. In 1984, Goral [2] introduced a radiosity method borrowed from radia­
tive heat transfer to model the interreflection between diffusely reflecting surfaces. After 
that, substantial efforts have exerted on it: Cohen [3,4] presented the hemi-cube algo­
rithm to calculate form-factors by projecting patches onto a hemi-cube and presented the 
substructuring technique to render areas possessing high intensity gradients by adaptive 
patch subdivision. Immel [5] extended the radiosity method to treat an environment con­
sisting of non-diffuse surfaces. Wallace [6] proposed a combined radiosity and ray-tracing 
method to render a complex environment; they called it the two-pass approach. 

Despite the fact that the two-pass approach can generate realistic images, it is im­
practical for scenes of high complexity because of extremely high time and storage costs. 
In ray-tracing, a large amount of intersection computations is needed. In fact, it is propor­
tional to the number of screen pixels (even more when supersampling is used to accom­
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modate for anti-aliasing, or when secondary rays are taken into account) and the number 
of surfaces in the environment. This situation becomes even worse if form-factor compu­
tations are also based on ray- tracing, because the number of intersections computed for 
calculating form-factors is at the order of (N2 x R), where N is the number of patches in 
the environment and R is the number of rays on a hemisphere. Apart from this computa­
tion cost, the storage capacity needed to store the form-factor matrix is extremely high. 
Indeed, assuming the form-factor matrix is 90% sparse, it still requires 400 gigabytes of 
storage for an environment consisting of 1M patches. 

To overcome the storage problem in the radiosity method, Cohen [7] proposed a 
progressive refinement approach to reduce the storage capacity to O(N). To overcome 
the computation problem in ray-tracing, two main strategies have been devised. The first 
strategy is to exploit coherence. One kind of coherence is called ray coherence: Heckbert [8] 
proposed a beam-tracing algorithm in which a beam of rays, instead of a single ray, 
traces an environment consisting of polygons. Speer [9] also exploit this coherence in their 
coherent ray-tracing algorithm. Another kind of coherence is called spatial coherence. This 
sort of coherence is exploited in space partitioning techniques to reduce the number of 
patches to be considered. Many different encoding schemes for space partitioning have 
been proposed: octree [10], binary tree [11] and voxel [12). Basically, the 3D object-space 
is subdivided into cells based on a specific encoding scheme. One ray is shot and tested 
against each patch in the first ceiL If the ray hits some patches in this cell, a nearest 
distance test must be invoked to determine the intersection point. Otherwise, the next 
cell (or cells) will be traversed and tested again until there is a hit or the boundary of 
the data structure is reached. After that, the procedure proceeds to the next ray and 
iterates again. One very promising result of the space partitioning technique is that the 
performance is nearly independent of the scene complexity. 

The second strategy relies on parallel processing. Parallel architectures can be clas­
sified into three classes: processing without dataflow [13,14], processing with ray data­
flow [15,16], and processing with object dataflow [17,18]. The drawback of the first class 
is that it cannot render complex scenes due to the limited size of local memories. As for 
the second class, a ray might pass through a number of processors such that the efficiency 
of the system will be degraded due to this communication overhead. This can be resolved 
by assigning rays to processors as the third class does, but it requires an efficient way 
to access the whole database. For comparison purpose, we refer to the third class as the 
conventional technique throughout this paper. 

Ray tracing has already been used as a method for determining the form-factors in 
the radiosity method. We have capitalized on a hardware oriented two-pass approach [19] 
in which both the preprocess and the postprocess are ray tracing based. Unfortunately, 
the two strategies stated above can not be applied successfully in this case. This is due 
to the following: 

• 	 In the radiosity method, each patch in the environment will be chosen as a source to 
start a ray-tracing algorithm to compute form-factors. For each source patch, a costly 
depth-sorted list of polygons mnst be constructed. The time spent on constructing 
such a list will be at the order of O(N2) at worst, where N is the number of polygons 
after splitting which is larger than the original number [20] . 

• 	 Since any patch in the environment will become the source patch, the architec­
ture with ray dataflow is certainly undesirable. As for the architecture with object 
dataflow, many regions can be processed in parallel, but each processor still works 
on a serial ray base within its own region. Consequently, a patch might be loaded 
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many times from the global or local memory because the neighboring rays are most 
likely to traverse similar cells and even hit the same patch. This accounts for a lot 
of waste in the sense of communication. 

In this paper we present a new space partitioning technique to alleviate the com­
munication problem stated above. Moreover, two tracking mechanisms are considered to 
exploit the ray coherence with low cost. 

The outline of the paper is as follows. After defining some basic terms in Section 2, 
we present the main technique in a two-dimensional setting and suggest two possibilities 
to extend it to 3D in Section 3. We formalize the intersection computation time and the 
speedup fact,or of this technique in Section 4. In Section 5, the results from a number of 
scenes with randomly generated patches are shown and compared with the conventional 
technique. 

2 Basic Terms 

In this section we define some basic terms to facilitate the discussion in subsequent sec­
tions. 

Definition 2.1 (Polygonal Patch) A polygonal patch P with v vertices (v ~ 3) is de­
fined by the inner area of a convex planar polygon with simple or non-self-intersecting 
boundary. It will be represented by the coordinates of its vertices Vi = (Xi, Yi, Zi), 
i 1,2, ... , v, the coordinates of its center point 0 = (Xc, Yc, zc), and the unit normal 
vector ii of the plane enclosing P, i.e., 

P = {Vi,O,n I i = 1,2, ... ,v}. 

Usually, a polygonal patch can only emit light energy into its front side, i.e., the half-space 
containing n. Similarly, a polygonal patch can only receive light energy from its front side. 

Definition 2.2 (Backward Polygonal Patch) Given polygonal patches P and pi, pi 
is said to be a backward polygonal patch for P when it is not located at the front side 
of P. 

Definition 2.3 (Spherical Bounding Box of a Polygonal Patch) Let 

P {Vi,O,nli 1,2, ... ,v} 

be a polygonal patch with v vertices, and let the polar coordinates of vertex Vi be r" 8 i , 

and <I>i. The spherical bounding box B of P is defined as the region bounded by six surfaces 
represented in the polar coordinates: l' 'I'm,n, r 1'max,8 = 8 min , 8 8 max , <I> 

<I>min, and <I> = <I>max, where the min and max denote the minimum and maximum value 
of the corresponding polar coordinates. 

Definition 2.4 (Spanning Angle and Flatness of a Polygonal Patch) Let B, 
which is the region bounded by six surfaces represented in the polar coordinates: l' = 
1'min, l' = 1'max,8 8 m,,,,8 = 8 m""" <I> :::::; <I>min> and <I> = <I>max, be the spherical 
bounding box of a polygonal patch P. The spanning angles We, and W4> of P are de­
fined as We = 8 mux - 8 m •n , and W4> = <I>max <I>min. The flatness 1] of P is defined 
as 7J = rmax - 1'min· 
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Definition 2.5 (Sector) Let a hemisphere ray ri be represented by its origin that is the 
centroid of the hemisphere, and the unit direction vector 

ii; = (sin CPj cos 0 i , sin CPt sin 0i, cos CPi). 

A sector bounded by the boundary rays 1'bl, rbz,1'~, and rb4 , i.e., the hemisphere rays 
with the following unit direction vectors: 

(sin 4'1 cos 0 1)sin CP1 sin 0 1, cos CPt), 

(sin CP2 cos O2, sin CP2 sin O2 , cos CP2), 

(sin CP2 cos 01, sin CP2 sin 0 1 , cos CP2), 

(sin CPj cos O2 , sin CPj sin O2 , cos cpd, 

is defined as the set of hemisphere rays 1, ... ,1'., with the following properties: 

• 	 The angular component 0; of the unit direction vector iii is bounded by the real 
numbers 0 1 and O2, i.e., 0 1 :::: 0 j < O2 • 

• 	 The angular component <»j of the unit direction vector iii is bounded by the real 
numbers CP1 and q,2) i.e., CPl :::: CPi < CP2. 

Definition 2.6 (Shell) Let V be a sector bounded by 1'br, rbz, 1'b3 , and 1'b4 as defined in 
the definition. A shell \7 in V is defined as the region bounded by six surfaces represented 
in the polar coordinates: r = 1'1, l' = r2,0 0 1,0 = 0 21 cP = CPt, and cP = <»2. It can be 
represented as, 

\7 {111,1~, 1'b3 ) rb4 , (lJ (2} 

where (1 and (2 denote the surfaces represented in the polar coordinates: l' 1'1 

and r = 1'2, respectively. 

Definition 2.7 (Spanning Angle and Depth of a Shell) Let 

\7 {1'b1 , rb2 , rb3 ) 1'b4 ) (11 (2} 

be a shell as defined in the definition. The spanning angles 119 , and 11", of \7 are defined 
as 118 =181 - 82 I, and 114> CPt - CP2 I· The depth r of \7 is defined as r 1'1 1'2 I· 
Definition 2.8 (Degree of Local Coherence) For a prescribed discretization (and 
hence a prescribed number of rays confined to a hemisphere) of the surface of a hemisphere, 
the degree of local coherence of a patch P with respect to a point 0 is defined as the 
number of rays shot from 0 through the hemisphere placed over 0, that hit P. 

Definition 2.9 (Active Patch) Let 0 be a point over which a hemisphere is placed 
to start a ray-tracing algorithm. An active patch with respect to the point 0 is a patch 
whose degree of local coherence with respect to the point 0 is nonzero. 

Definition 2.10 (Average Degree of Local Coherence) Consider an environment 
which consists of a number of patches. Let the degree of local coherence of active patches 
with respect to a point 0 over which a hemisphere is placed to start a ray-tracing algo­
rithm, be Db D2 , . •• ,DN. The average degree of local coherence of the environment with 
respect to the point 0, which we denote ADLC, is defined as, 

Di
ADLC 
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3 The Main Technique 

In this section, a technique relying on an adaptive tracking mechanism to construct a 
shell structure which can support a highly pipelined parallel architecture for the radiosity 
method is described. For simplicity, we first explain it in a two-dimensional setting. Then 
we propose two possibilities to extend it to 3D. We already mentioned the communication 
problems which may arise from parallel architectures. This motivates us to think out a 
new space partitioning technique featuring the following properties: 

• 	 The partitioning of space should be consistent with the direction of rays such that 
a ray does not travel through many partitions. 

• 	 The partitioning of space should be adaptive to the local environment seen by rays 
such that each active patch needs to be loaded only once from the memory that 
stores it. 

This is just what we have called the shelling technique. Conceptually, it can be viewed 
as a method that strives to construct an ideal structure as shown in Figure 1. The half­
space seen by the source patch is first subdivided into sectors. Then, a sector is subdivided 
into a number of shells. Ideally, a shell can be matched with the the active patch which 
actually defines the shelP. When this structure has been constructed, the bundle of rays in 
a sector is shot and tested against the active patch within the shell currently considered. 
With the ideal structure considered here, each active patch needs to be loaded only once 
as desired. Furthermore, when assigning sectors to processors, it is dear that a ray is 
always processed by one processor. 

Besides the saving in communication cost, the shelling technique has a further ad­
vantage is that the resulting shell structure is amenable to a highly pipelined parallel 
architecture. To see this, recall first that for achieving high throughput, the conventional 
technique can exploit concurrency at the patch side, i.e., each ray traced can be tested 
against all the patches within a cell in a pipelined fashion. However, the following two 
factors will jeopardize the pipeline efficiency2: 

• 	 When using a shared memory parallel architecture, it is very time-consuming to 
load a patch from the memory. This will preclude the applicability of pipelined 
computations. 

• 	 In general, a ray can only hit one patch at most. This implies that the conventional 
technique can only fill up pipeline with irrelevant hidden patches, which would 
be meaningless. 

On the contrary, the shelling technique exploits concurrency at the ray side, i.e., a 
bundle of rays can be tested against each relevant patch within a shell in a pipelined 
fashion. With this approach, the two detrimental factors mentioned above do not exist. 
This is because: 

• 	 When using a shared memory parallel architecture, the shelling technique provides 
a better balancing between processing time and 1/0 time such that the pipeline 

1A shell is said to be matched with a patch when the shell is aligned perfectly with the visible part of 
the patch. Hence one necessary condition for this definition is that the spanning angle of the shell must 
be equal to the degree of local coherence of the patch. 

2The pipeline efficiency is used to measure the performance of a pipeline and is defined as the ratio 
of busy time-space span over the total time-space span. 
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Fig. 1. The ideal shell and sector structures in the shelling technique. 

efficiency will be higher than the conventional technique. This property will be very 
promising when a high speed cache memory is allowed for each PE. This is because 
the intersection computation time between a bundle of rays and a patch can readily 
balance with the loading time of the next patch for an environment with reasonable 
degree of local coherence. 

• 	 In general, a patch can be hit by many rays, it is desirable to fill up pipeline stages 
with those rays. 

However, there are two major problems in constructing the shell structure. First, this 
specific structure cannot be chosen as an original data structure because it varies with the 
source patches. Second, it is costly to match a shell with the active patch which defines 
the shell. A simple solution to the first problem is to superimpose this structure on an 
uniform grid data structure as shown in Figure 1 such that relevant patches can be found 
by working on this well-developed data structure. As for the second problem, the actual 
degree of local coherence of an active patch can be estimated from its neighborhood with 
low cost. This is due to the fact that in realistic situations, neighboring patches appear 
to possess similar shapes. This can be understood from the following: 

• 	 Neighboring patches most likely belong to the surface of the same object. For an 
object with smooth surface, neighboring patches are often similar in some sense. 

• 	 When using the substructuring technique as proposed in [41 to account for the effect 
of high intensity gradients, it is necessary to provide a reasonable initial subdivision 
for the surfaces of a scene such that neighboring patches will become similar indeed. 

Exploiting these an adaptive tracking mechanism which employs the neighbor­
hood information to estimate the degree of local coherence is devised. In the next section, 
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we shall discuss the shelling technique with this tracking mechanism. We shall call it the 
stochastic shelling technique hereafter. 

3.1 Main Procedures 

From the above discussions, the stochastic shelling technique can be broken into four main 
procedures: preprocessing, screening, tracking, and intersection computation. 

• 	 Preprocessing 

The main purpose of this step is to build a data structure on which the shell structure 
can be superimposed such that relevant patches can be searched efficiently. We have 
chosen the uniform grid cells with macro-regions proposed in [21] as our underlying 
data structure. 

• Screening 

Because the intersection computation for each patch will proceed with a bundle of 
rays in the shelling technique, it is necessary to screen out irrelevant patches before 
computing intersection points. This step is similar to that of searching small sets 
of surfaces by cell traversal in the conventional space partitioning technique, but 
additional angle comparisons are necessary to cull patches which reside within (at 
least partly) the shell currently considered. Meanwhile, backward patches which are 
located at the back side of a source patch will be screened out. 

• Tracking 

After the screening step, the spanning angle and flatness of relevant patches in the 
shell are computed and they will contribute to the ADLC and the average flatness 
of the shell. We use the ADLC of the first shell in a sector to set up the next 
sector. All the shells in the next sector can be constructed by subdividing the sector 
along the radial direction. In order to pass neighborhood information smoothly, 
we choose a constant shell depth, but shells can be further subdivided based on 
the ADLC and the average flatness coming from one of their neighboring shells to 
reduce the number of intersection computations. In the case when there is no such 
neighborhood information, the algorithm will choose default values. Conceptually, 
the way of tracking is to traverse a region, which is most probably empty as match 
as possible in the radial direction but as narrow as possible in the angular direction. 
On the contrary, it will traverse a region which is most probably nonempty as narrow 
as possible in the radial direction but as match as possible in the angular direction. 

• 	 Intersection Computation 

When the local shell structure has been constructed, the bundle of rays in a sector 
proceeds to compute the intersection points with each relevant patch within the 
shell currently considered. Only remaining rays leaving one shell will enter the next 
shell and need to be processed again until there is no ray left or the boundary of 
the data structure is reached. Intersection computation is the most time-consuming 
step because a huge number of intersection points need to be computed, but the 
regular and repeatedly executed nature of this operation makes it very appealing 
for a pipelined circuit. For polygonal patches, we can adopt the circuit as proposed 
in [22] which is built from commercial chips or the circuit as proposed in [23] which 
is built from pipelined Cordic processors. 
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3.2 Extension to 3D 

It is easier to explain the concept and the nature of the shelling technique in 2D. Nonethe­
less, it is only the 3D version that is of major interest to us. In the following, we suggest 
two possibilities to extend it to 3D . 

• 	 Intuitively, we can extend the 2D version directly to 3D. In 3D, a shell is defined by 
three polar coordinates instead of two. In order to pass neighborhood information 
smoothly, we must fix the shell depth and one of the two angles. Just like in 2D, 
a shell can be subdivided further in radial and two angular directions based on 
neighborhood information. However, we have found two difficulties for this approach. 
First, it is difficult to compute the spanning angle wj because max and min do not 
necessarily occur at vertices of a patch. Second, the spherical bounding box of a 
patch might be a loose convex hull of this patch. 

sweep plane 

z 

x 

Fig. 2. The geometry of a sweep plane and patches in 3D, 

• 	 We can also transform our 3D problem into a 2D problem. A simple way is to use 
a sweep plane to slice 3D hemisphere rays and polygonal patches (see Figure 2) 
into 2D rays on the hemicircle and line segments, and then rotate the sweep plane 
to coincide with the YZ-plane as shown in Figure 3. Now we can use the technique 
described above to treat it. With this approach, a modification must be made in the 
tracking step. Instead of using ADLC coming from neighboring shells, the actual 
degree of local coherence of a patch must be derived. This is because the orientation 
of line segments originating from slicing a patch will not in general parallel with the 
orientation of one of the subdivision axes of the patch such that neighboring line 
segments do not possess similar shapes at all. In order to derive actual degree of 
local coherence, a sorting procedure is necessary to sort patches by increasing angle. 
In addition to the overhead introduced by the sorting procedure, another drawback 
of this approach is that the degree of local coherence captured ill 2]) is far less than 
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Fig. 3. A coordinate system to represent rays and patches in 2D. 

the actual degree of local coherence. For clarity, we refer to the shelling technique 
with this tracking mechanism as the deterministic shelling technique. 

Finally, we want to show the resulting shell structures of the stochastic and deter­
ministic shelling techniques in Figure 4, and 5. In Figure 4, we can see sectors, shells, 
and subshells which are constructed by using neighborhood information. Some degree of 
mismatch between a subshell and a patch can be observed from the figure. This is because 
the stochastic shelling technique can only estimate the degree of local coherence of a patch 
but not its position. In Figure 5, each shell is exactly matched with the active patch which 
actually defines the shell. Notice that only a small portion of patches in an environment 
are necessary to be considered in both cases. This is due to cell traversal procedure. 

Formal Comparisons 

In this section, we derive an estimate of the intersection computation time for the shelling 
technique and the conventional technique. In order to simplify the derivation, we make 
the following assumptions: 

• 	 The patches are uniformly distributed in the space, and 

• 	 For a given number of rays, the percentage of rays leaving a shell will be constant 
if the product of the number of patches in the shell and the density of the rays in 
the shell is constant. 

Based on those assumptions, we can derive a shell structure a.s shown in Figure 6 
(represented conceptually in 2D) such that the percentage of rays leaving all the shells 
can be kept the same. Let R be the number of rays in the starting shell, P the number 
of patches in this shell, and let S be the percentage of rays leaving any shell. Moreover, 
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Fig. 5. The actual shell structure of the deterministic shelling technique. 
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let T).. be the pipeline period of the intersection computation circuit as proposed in [22] 
or [23]. The intersection computation time for the shelling technique, T1 , can be estimated 
to be 

(1) 

Here we assume that the intersection computation time of one patch with respect to a 
bundle of rays can balance the arrival time of the next patch. Notice that the remaining 
rays need to visit only a fraction of patches because of cell traversal procedure. Evaluating 
the series in Equation 1, we obtain 

(1 + 52) RPT)..
Tl 	 (2)

(1 - 5 2)3 
f{1 RPT).. (3) 

where 
(1 + 52) 

(4)f{1 = (1 _ 52)3 

The effect of 5 on f{1 is depicted in Figure 7. From this, we observe that f{1 increases 
slowly when 5 is small, but it rises up very quickly when 5 approaches to 1. This ex­
plains the purpose and the necessity of introducing a tracking mechanism in the shelling 
technique. 

From the definition of ADLC, we can derive the ADLC of shell i as follows: 

f{R 
ADLCi = i2 P 	 (5) 

We compute the intersection computation time of the conventional technique in shell i, T2i, 
as follows: 

T2. = { (5 i i 2 P + 5 i
-

1 
f{ R) Tc if ADLCi > 1, (6)• (5.-1 i2 P) Tc if ADLCi ~ 1 

where f{ = (1 - 5) denotes the percentage of rays screened out in a shell, and Tc is the 
data arrival time of the intersection computation circuit which will be dominated by the 
loading time of one patch from the host when using a shared memory parallel architecture. 

From Equation 1, we can express the portion of time of Tl spent on shell i, T1" as 
follows: 

(7) 

Here we have allowed the intersection computation time of one patch not to balance 
the arrival time of the next patch. If balancing is achieved, then only the first part of 
Equation 7 will apply as was in Equation 1. 

Comparing Equation 6 and Equation 7, we see that: 

• 	 When ADLCi is not larger than 1, there is no advantage at all to use the shelling 
technique. This is because 

Tl, > T2• if 5 i
-

1 RT).. > Tc (8)
{ T1, = T2• if 5i

-
1 R T).. ~ Tc 

• 	 From the above, only in case that ADLCi is larger than is of major interest to 
us. If we can subdivide a shell into subshells such that the number of rays within a 
subs hell i is equal to ADLCi , then we have 

= 	 { f{ 5
i
-

1 
RT).. if ~~;~ T).. > Tc (9)TI

• 5 i - 1 ·2 P T f K R T < T1 c 1 i2 P ).. _ c 
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From Equation 6 and Equation 9, we obtain 

SF; = { (1 + ADic;) (k) ~ (~) T,x > Tc , (10)
S +ADLei if (TP) T,x 'S:. Tc 

where SF; = T2JTli is called the speedup factor in shell i that denotes the ratio of the 
intersection computation time that spent on shell i in both techniques. The optimum 
point lies at S O,i.e., f{ = 0, in which case SF. is given by 

SF.- _ Tl t;2ffKR~TP ,x > cL. 	 T (11 ) 
, - { ADLei if ~~ T>. 'S:. Tc 
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r 

Fig. 6. A shell structure to keep the percentage of rays leaving all the shells the same. 
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Fig. 7. The effect of S on KL 

We can make some remarks as follows: 

• 	 The shelling technique provides a more balanced structnre for time and 
I/O time. 
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• 	 A considerable speedup can be obt.ained when the environment consists of large 
patches (actually large ADLC). If a shared memory parallel architecture is adopted, 
the speedup factor will be ADLC because the data arrival time Tc is dominated 
by the loading time of one patch from the host. However, when a high speed cache 
memory is allowed for each PE and the next patch can be loaded immediately from 
that memory, the speedup factor will be the ratio of Tc over T>.. In general, the 
speedup factor lies in-between which can be determined only when the detailed 
statistics about the environment and the underlying architecture are known. 

The Results 

The two shelling techniques as described in Section 3 have been implemented in the C 
language. Different scenes with randomly generated patches (actually 1000 line segments 
in 2D) have been tested. The length of the segments is within the following: 4, 8,16,32,64, 
and 128. In this section, we compare the results of three techniques: the stochastic shelling 
technique, the deterministic shelling technique, and the conventional technique. For con­
venience, the stochastic and deterministic shelling techniques are referred to shelling tech­
nique S and shelling technique D, respectively. 

In the following, three factors will be taken into account for comparison purpose: 

• 	The number of patches read in (refer to Figure 8 and 9) 

When using a shared memory parallel architecture, this is the most important fac­
tor in determining the performance. The saving from the two shelling techniques 
strongly depends on the actual ADLC of an environment. A considerable saving 
can be observed when the actual ADLC is high. Notice from the figure that the 
number of patches read in after screening in shelling technique D will approach that 
of shelling technique S. This motivates us to screen irrelevant patches out before 
loading them. 

• 	The Number of Cells Traversed (refer to Figure 10) 

The results of three techniques are much the same. This is because we did not use 
radius comparison to cull relevant patches. As said before, one drawback of shelling 
technique S is that the prescribed shell depth will limit the span of passing empty 
regions. 

• 	The Number of Intersection Computations (refer to Figure 11) 

In order to see the overhead of introducing wasteful intersection computations, here 
we compare results with actual value. It is interesting that the result of shelling 
technique S is always about twice that of the actual value. This is reasonable because 
shelling technique S can only estimate the degree of local coherence of a patch in 
a shell but not its position. So one additional bundle of rays must be introduced 
to compute intersection points. This bears a similarity with the Nyquist theory in 
communication. As for the result of shelling technique D, it is close to the actual 
value when the ADLC is low, but it will approach that of shelling technique S when 
the ADLC is high. This is due to the fact that it is difficult to isolate large patches 
by decreasing cell size. 

So far we have compared the three factors separately. From a hardware perspective, 
they are related to each other as will be discussed in the following. In fact, two-level 
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pipelining can be exploited in the shelling technique, in which the first level refers to 
pipelining at the four steps as shown in Figure 12 and the second refers to pipelining 
within each step. The second level pipelining can be understood when realizing them 
with pipelined circuits. As to the first level pipelining, it can be understood as follows: 

• 	 When the neighborhood information is known, we can start the cell traversal of the 
next shell. 

• 	 After traversing some empty cells (or macro-regions), a patch is found and then 
loaded from the host. During this time, the cell traversal still keeps on searching 
patches. 

• 	 After loading a patch from the host, we can start the preprocessing to check whether 
it is a backward patch or not. During this time, the cell traversal and loading still 
keep on searching and supplying patches for the preprocessing. 

• 	If it is not a backward patch, then a bundle of rays proceeds to compute the in­
tersection points with this patch. During this time, the cell traversal, loading, and 
preprocessing still keep on traversing, supplying, and screening out patches. 

In the conventional technique, there is only one intersection computation for one patch. 
Without solving the bottleneck, i.e., the loading, it cannot benefit from the pipelining at 
all. By contrast, a bundle of rays will proceed to compute the intersection points with one 
patch in the shelling technique. This provides a more balanced structure for the above­
mentioned four steps. From this point of view, we can assert that the shelling technique 
can outperform the conventional technique. Nonetheless, the comparison can be made 
only when the detailed statistics about the environment and the underlying architecture 
are known. 

It is known that pipeline efficiency is a measure of the performance of a pipeline. In 
the shelling technique, the ADLC plays an important role in determining the pipeline 
efficiency. If the ADLC of a shell is too small to fill up the pipeline, then the pipeline 
efficiency will be degraded. This can happen in an environment consisting of small patches 
or in an environment consisting of large patches when the tracking mechanism cannot 
capture the actual degree of local coherence. For this purpose, we use the ADLC as an 
index to show how close the coherence of an environment can be captured. In Figure 13, 
we see that the results of both techniques are desirable. 

6 Conclusion 

In this paper we have proposed a new space partitioning technique such that the require­
ment of loading patches can be reduced considerably. It can be used as a replacement 
of accommodating a large local memory for each PE. Of course, it is favourable to use 
a reasonable size of cache memory in each PE. This leads to a more balanced structure 
to fill up the pipeline such that a highly pipelined parallel architecture is applicable to 
speedup the form-factor computations in the radiosity method. 
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