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ABSTRACT Current graphics processors are very slow for displaying shaded 3D objects. 
A lot of work is being done in order to define faster display processors by using massive 
parallelism and VLSI components. Our proposal goes along this line with the supplemen­
tary aim of displaying images in real time, i.e., 25 or 30 times per second. We choose to 
design a graphics module without any working memory and thus without frame buffer. A 
massive parallelism over objects, and thus a pixel pipe-line, are used. Each Object Pro­
cessor handles one 3D object; all the processors work in a synchronous way, processing 
the same pixel simultaneously at pixel rate. These processors are built from very simple 
Elementary Processors (2 adders, 2 registers and 6 memory words) computing linear or 
quadratic expressions V(x,y), where (x,y) are the coordinates of a pixeL A pipelined tree 
made of basic operators (min, max, or, and, ... ) gathers the results given by the Ob­
ject Processors and makes inter-objects operations, at least hidden part elimination. 
Such a choice of course involves a high hardware complexity when displaying rather sim­
ple scenes. However, we feel that it is the price to pay for building graphics processors 
allowing real-time interactive animation (e.g., the graphics unit of a driving simulator). 

1 Introduction 

Our concern in this paper is to propose an original architecture for displaying images 
in real-time, thus obtaining a graphics processor for interactive animation. We use geo­
metric rendering methods rather than ray-tracing or radiosity which are currently quite 
incompatible with the real-time constraint. Our choices are to associate graphics objects 
to processors and to use massive parallelism. 

In a first part we shortly describe the display process of an image and the generally 
proposed architectural solutions. Then we present new solutions being studied and using 
a massive parallelism. At last we introduce a solution allowing for a real-time display 
processor. 

The second part is a complete description of the LM.O.G.E.N.E. machine. A special 
emphasis is put on the design and realization of Elementary Processors. 

2 State of the Art 

2.1 Rasterization [1] 

The process generating pictures elements values from a geometric description of the image 
is called rasterization, and may be divided into four steps. 

http://www.eg.org
http://diglib.eg.org
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Fig. 1. Scan Conversion 

• 	 Traversal 

-	 Traverse the data structure, delivering graphics objects and light sources to 
the appropriate processor( s). 

• Transformation 


Objects and light sources positioning. 


Coordinate system transformation. 


Clipping. 


• 	 Scan Conversion 

Transform each object into a set of pixels. 


Hidden part elimination. 


• 	 Display 

This description dearly shows that rasterization may be split into two main steps, one 
dealing with objects, and the other with pixels. As a matter of fact converting graphical 
objects into pixels requires many computations. 

When real time animation is required, rasterization must be done for all the objects 
at image display rate. Moreover, rasterization may deal with more complex inter-objects 
computations (such as shadowing or transparency) that have not been presented here. 

2.2 The Classical Architecture [2] 


Figure 2 shows the architecture of currently available display machines . 


Transfor­

I
Data I 
Structure mation 

unit 

Driving Module 

-+ 
Render- Frame 

ing Buffer Unit 

Unit ....BEJ 
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Fig. 2. Classical Rasterization Systems 

All the current commercial graphics machines use this architecture. The most powerful 
ones are the Silicon Graphics 4D/240 GTX [3] and the STELLAR GSIOOO [4]. They are 
able to display 100,000 small Gouraud-shaded three-dimensional triangles per second. 
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Such an architecture has the following limits: 

• 	 Limited real-time performances. 

• 	 Poor image quality due to Gouraud shading. 

• 	 Strong bottleneck between the rendering unit and the frame buffer. 

• 	 Triangle tesselation is not always an accurate solution. 

2.3 New Architectures 

In the recent years have been proposed many new architectures in order to build very 
powerful graphics modules. The most powerful ones use massive parallelism and VLSI 
components. When using such components, new constraints arise with regard to the ma­
chine design: the processors we intend to use must be simple enough to be realised in VLSI, 
and identical in order to limit costs. It is then interesting to choose a modular architecture 
in order to be able to increase machine capabilities only by adding new components. 

With these assumptions, two approaches may be considered for the graphics module 
architecture: 

• 	 Image space partitioning, i.e., to associate processors to pixels. One processor per 
pixel is used, with massive pixel parallelism and thus object pipe-line. This solution 
can be viewed as an intelligent frame buffer. 

• 	 Object space partitioning, i.e., to associate processors to graphics objects. Thus ob­
ject parallelism is used. Different objects are processed in parallel at pixel rate, pixels 
being processed in a pipe-lined way. With this solution the frame buffer appears to 
be unnecessary if inter-objects processings are done at pixel rate. Objects could be 
processed at a different rate, but this would involve the two following constraints: 

There are access conflicts between the Objects Processors and the (necessary) 
frame buffer. 

-	 Inter-object operations can only be done in the frame buffer. 

Thus, object massive parallelism is interesting only when Object Processors do work 
at pixel rate. 

2.4 Pixel-oriented Systems [5] 

Such a machine has one processor per pixeL Two solutions with regular architecture can 
be considered for sending the objects to the processors: 

• 	 Broadcasting: all the objects are sent separately to all the pixels, all the processors 
being independent. The Pixel-Planes machine [6, 7] belongs to this class, if consid­
ering that all the objects are coded with linear expressions and that the adder trees 
are a broadcasting mechanism. 

• 	 Pipe-line network: the objects go from left to right through the network. The inputs 
are on the left edge; every processor receives the objects from its left neighbour and 
transmits them to its right one. The objects must have been split into horizontal 
spans. It is likely that such an intelligent frame buffer could be built by using one 
thousands of SAGE chips [8]. 
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The main features of intelligent frame buffers are: 

• 	 Rigidness: as processors are designed for specific data types, any change would imply 
their full redesign. 

• 	 Uniformity, which allows an efficient VLSI implementation. 

With regard to our aim (a graphics module for real-time animation), this solution 
appears to have some drawbacks: 

• 	 The execution time on different processors depends on the number of objects the 
processor has to deal with. So it is hard to guarantee that real-time will be obtained. 

• 	 There are access conflicts to the frame buffer between processors and video stream [9]. 

• 	 It is not obvious that the whole scene could be loaded during the time of one image. 

These are the reasons why we choose the other solution: associate the processors to 
the objects to be displayed. 

2.5 Object-oriented Systems 

Figure 3 shows the architecture of a general object-oriented machine. Every Object Pro­
cessor (O.P.) outputs for every pixel at pixel rate the features of the corresponding object. 
The decision unit makes inter-objects operations, i.e., at least hidden part elimination. 

lo·p·l­
IO·p·l-

Decision 
Unit ....0... 0 

Driving Screen 
Module lo.p.!­

Graphics Module 

Fig. 3. Object-oriented rasterization system 

Three open questions remain: i) how to make the decision unit, ii) with what strategy 
to allocate objects to the Object Processors, iii) what graphical primitives to choose? 

The GSP-NVS machine [10] is a recently proposed massively parallel object-oriented 
machine. It uses the pipeline structure of the Weinberg machine [11], which was the first 
object machine proposed in 1981. GSP-NVS is made of a pipeline of VLSI processors. 
Every processor handles a 3D triangle. The hidden surface elimination is made by a 
pipelined Z-buffer algorithm. Every processor receives from the previous one in the pipeline 
the value to be displayed for every pixel. If, for a given pixel, the corresponding triangle 
has a smaller depth, the processor replaces the value by one of its triangles, else the 'old' 
value follows. Indeed the decision unit is distributed over every line. A pipelined post­
processor computes the shading by a Phong's method for 5 light sources. PROOF [12] is 
another project using the same approach. 
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With regard to real-time display, such a machine reveals some drawbacks: 

• 	It requires for every image a sort of the triangles depending on the vertex with the 
maximum ordinate, which is unthinkable in real-time . 

• 	It may happen that on a given line there are more triangles than Object Processors. 
Thus all the triangles cannot be processed in one pass and real-time is lost. 

The only solution to ensure real-time is to assign objects to processors before the 
display phase. Moreover, each Object Processor should handle only one object, because 
assigning several objects to the same processor would require preprocessing incompatible 
with the real-time display. 

The idea of dealing with shading in a post-processor appears to be very fruitful, 
because the driving unit does not have to take care of these (heavy) computations. This 
post-processor must receive for every pixel the visible object with its depth and normal, 
and computes at pixel rate the RGB values. The driving unit must send at the beginning 
of every frame the positions and features of the various light sources. Another advantage 
of such a solution is that shading is computed for visible pixels only. 

The previous analysis gives us the general architecture of a real-time object-oriented 
machine (see Figure 4). 

Fig. 4. Real-time object-oriented rasterization system 

The configuration unit assigns the objects to the processors and defines the structure 
of the decision unit. The a.nimation unit every processor at image rate the features 
of the corresponding object. The whole graphics module is synchronised by the command 
unit. 

Description of LM.O.G.E.N.E. [13J 

I.M.O.G.E.~.E. (Image by Means of Objects GEnerated by Numerical Expressions) is a 
special implementation of the above architecture. 

We choose to have synchronous Object Processors, i.e., they process the same pixel 
at the same time. Then the decision unit is a binary tree with log2 N levels, N being the 
number of objects. The decision unit makes the hidden part elimination by a distributed 
Z-buffer algorithm [13]. 

We will now describe in detail each unit of l.M.O.G.E.N.E. 
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3.1 Object Processors 

Introduction 

It is quite difficult to choose the object processors, since this choice on the one hand 
determines the kind of scenes that can be displayed, and on the other hand the VLSI fea­
sibility. Indeed, if we choose a too simple basic object, the number of processors necessary 
for a good modelling will be very high; but if it is too complex, VLSI integration could 
be impossible. 

Whatever the Object Processor may be, it has to indicate the decision unit whether 
the corresponding object is present or not at the current pixel. If it is the case, it outputs 
to the decision unit the depth of the object and the normal components at this point. 

Moreover, it looks interesting to choose objects as close as possible to the forms they 
have in the data structure, in order to limit the host work. We have chosen rather com­
plex basic objects, and thus rather complex Object Processors, but composed of several 
Elementary Processors working synchronously in parallel. 

The Elementary Processor 

Definition In the first part of this paper we have dearly shown that, with object parti­
tioning, the Object Processors have to output values all over the scene. The Elementary 
Processors must have the same features. Moreover, these values must be produced with 
the correct sequence (i.e., after the value in (x,y), they have to produce the value in 
(x+l,y) then (x+2,y) ... ). A simple solution consists of defining the Elementary Proces­
sor as an entity computing an expression V(x,y) = Ax· + By' + Cxy + Dx + Ey + F 
(or F(x, y) = Ax + By + C), with A, B ... F integer constants and (x, y) the pixel coordi­
nates; this value can be incrementally computed at pixel rate for every pixel at (x,y). 

Let us remark that this choice is not at all arbitrary, since Pixel-Planes 4 [6][7] and 
Pixel-Planes 5 [14J have clearly shown that such expressions could model rather realistic 
scenes. 

Realization We will now detail the incremental method used for V(x, y) evaluation. As 
the method for F follows immediately, we will not present it. 

N.B.: in the following, EPI will be the Elementary Processor F and EP2 the one 
for V. 

Given P(y) Cy + D and Q(y) By· + Ey + F, it follows that V(x, y) Vl(x) 
Ax· + Px + Q. 

The computation method consists of computing P(y) and Q(y) at the beginning of 
every line, and then for every pixel computing Vl(x}. 

Let us note that the opposite structure can be used to in­
crementally compute the first order expression Rx+S. More- R 

over, Vl(x + 1} VI (x) + (Vl(x + 1) Vl(x)), Vl(x + 1) ­
Vl(x) being a first order expression, thus computa.ble with 
this structure. VI(x) can thus be incrementally computed by 
means of two serially connected structures. This new element 
may also be used for P(y) and Q(y) computations if backup 
registers are available. Figure 5 shows the Elementary Proces­
sor scheme and its working algorithm (assuming a non inter­
laced monitor). 
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M1-2A.M~2B.M3-C. 

M4-E-B. MS-D-A. M6-F !initialization/ 
For every screen line Do 

R1-M2.R2 - M4.R3- M6 /registers set up/ 
first adder computation 
second adder computation 
M4- R2. M6-R3 
R1- M3. R2 - MS /registers backup/ 
first adder computation 
MS- R2.R1 -M1 
For every pixel Do 

first adder computation 
second adder computation 

Done 
:I~~~~~:::I Done 

Mi backup registers 

Ri register 


Fig. 5. Elementary Processor structure 

Let us note that such a structure involves a high connection complexity and is not 
well suited for interlaced monitors. These are the reasons why we chose a less complex 
solution, using a unique backup RAM instead of backup registers (see Figure 6). The 
backup RAM must contain 6 memory words for a non interlaced monitor, and 12 for an 
interlaced one (since original coefficients must be available at the beginning of the second 
half frame). 

A pipe-line effect appears in the Elementary Processor structure (the two additions 
may be computed simultaneously). Thus pixel generation timeis set by the slowest element 
of the structure. 

The working algorithm of the Elementary Processor is a bit different from that given 
in Figure 5: registers backups must be done through the whole structure, requiring at 
least three clock cycles (but during horizontal retrace). This algorithm is implemented on 
a microprogrammed controller. 

Fig. 6. Elementary Processor architecture 

http:MS-R2.R1
http:R1-M2.R2
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Object Construction 

The outputs of the Elementary Processors may be interpreted as: 

• 	 A binary value (negative absent; positive present) indicating whether the object 
is present at the current pixel; combining such values allows to define the border of 
the object. 

• 	 The depth of the object in the viewer's reference. 

• 	 One of the components of the normal to the object at the current pixel. 

These different values are combined in a pipelined tree called the Object Maker in 
order to define a given object. Thus an Object Processor has the following structure: 

aorder[ 
~... ·······ql. ZNDepth [ 	 ~ ........ (.) 


NormaJ[ 

Fig. 1. An Object Processor Structure 

Objects must be convex so that their screen border can be computed by combination 
of linear or quadratic expressions in a fixed structure whatever the perspective we use. 
Thus, the basic objects of LM.O.G.E.N.E. are convex polyhedra, spheres, cylinders ... 

Let us remark that the explicit construction of convex polyhedra is unnecessary, since 
their faces can be considered as independent objects, the decision unit implicitly making 
the polyhedron construction by eliminating hidden parts with the Z-buffer algorithm. 

We describe in the following Object Processors associated with a 3D triangle and a 

Triangular Face 

It may be defined by: 

• Three Elementary Processors EPI defining the border of the triangle by intersection 
of three half-planes. 

• 	 One Elementary Processor EPI giving the depth for every pixel (i.e.,the equation 
of the 3D plane containing the triangle). 

• 	 Three Elementary Processors EPI computing the three components (Nx, Ny, Nz) 
of the normal to the face by a bilinear Phong interpolation if the face approximates 
a surface, three constants if not. 

Figure 8 shows a triangular face processor. 
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Object Maker 

Object Processor 

Fig. 8. A triangular face processor 

Sphere 

A sphere is defined by: 

• 	 One Elementary Processor EP2 to define the border of the sphere. 

• 	 One Elementary Processor EP2 to approximate the depth with a parabola. 

• Three Elementary Processors (one 	EP2 and two Epls) to define the normal to the 
sphere. 

The front half sphere is approximated with a parabola (the best parabola has been 
found using integral square error approximation). Simulations have shown that such an 
approximation is quite accurate. The Nz component is also an approximation of the same 
kind. 

Figure 9 shows a. sphere processor. 

3.2 The Decision Unit 

It is a pipelined binary tree implementing a distributed Z-buffer algorithm. All the nodes 
of the tree are identical; they keep the pair (Z,N) with the lower depth (see Figure 10). The 
decision unit may also deal with more complex inter-objects computations (e.g., shadowing 
and transparency), but this would involve a much higher hardware complexity. 

3.3 The Shading Processor 

It also works at pixel rate. It receives for every pixel the depth, the normal and the intrinsic 
features (basic colour, reflection coefficient) of the visible object, and computes the RGB 
values to be displayed according to light sources characteristics. In order to improve the 
quality of the images, the shading processor will handle diffuse and specular reflections. 
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Object Maker 

Object Processor 

Fig. 9. A sphere processor 

3.4 The Command Unit 

It handles the system clock, micro-controllers and screen synchronization signals, and the 
Digital to Analogical conversions between the shading processor and the screen. It can be 
built with any standard graphics controller. 

I"::':j (Z,N) 

1~:l::I(Z'N)

(),~ (Z,Nj"'· ~ 

~ (fj •19:fj-\j) I 
~.o··::p:/ 
~ 

.......... ....... " .. 

(Z N) (.. .l"" 
/~'Ii~··········· 

Fig. 10. The decision tree 

3.5 The Driving Module 

This unit is implemented on a general purpose computer, and is divided into two units. 

The Animation Unit 

The animation system computes the expressions coefficients according to objects and 
viewer positions. A real-time animation will be obtained only if the system is able to 
calculate them at screen rate; moreover, coefficients loading from the driving unit to the 
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Elementary Processors, and light sources information transfer to the shading unit must 
be achieved in the same time. 

It is highly likely to use several processors for such computations in the (general) case 
when objects are independent. Thus coefficients loading is distributed over several links 
and the risk of bottleneck decreases. 

The Configuration Unit 

The Configuration Unit has to initiate the Display Unit, i.e., define the object processors 
structure and the way coefficients will be loaded into the Elementary Processors, before the 
real-time activity. The data structure must also describe for every object the elementary 
processor structure needed for its display. 

Link Between the Driving Module and the Graphics Module 

In order to guarantee real-time animation, the Elementary Processors backup RAMs must 
be refreshed at the beginning of every frame. In fact, time available for the host computer 
to compute and load all the Elementary Processors coefficients is tl + t2, where tl is 
display time and t2 vertical retrace period. 

Our solution is to use a intermediate RAM where coefficients of the next frame to 
be displayed are stored. This RAM is controlled during period tl by the host processor, 
and during period t2 by a wired automata that loads new coefficients into the Elemen­
tary Processors RAMs. Furthermore, this memory should be considered as an extension 
board of the host processor memory: this greatly reduces the host work, since coefficients 
allocation may be considered as a dynamic memory allocation. 

Figure 11 illustrates the loading principle. 

host processor memory graphics module 

Fig. 11. Link between the driving module and the graphics module 

4 Conclusion 

4.1 Simulation 

We are developing a simulation of the whole machine (Object Processors, Decision Tree 
and Shading Processor) on a Transputers-based workstation. This simulation has already 
given interesting results. Direct display of spheres or cylinders generated by means of few 
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first and second order expressions looks better than the classical triangle tesselation. We 
are not studying how to build more complex objects with such expressions. 

4.2 Realization 

We have just finished the design of one second order Elementary Proccessor on a VLSI CAD 
software. We now intend to use these chips for designing an Object PCB, which would 
allow us to build a complete prototype (with of course only a small number of objects). 
The next step would be the design of a complete Object Processor, leading to a more 
powerful prototype. In the same time, we are developing the Shading processor. 

4.3 Expected Performances 

Performances directly depend on the number of Objects Processors. Moreover, classical 
performances tables (in number of small triangles per second) are inadequate for our 
machine. For example, 1000 spheres Processors would allow to display 50,000 spheres per 
second with a 50 Hz monitor (but only 1000 simultaneously on the screen), corresponding 
to at least 1,000,000 triangles per second for tesselation-based machines. 

The main drawback of our machine is the limited number of simultaneously displayed 
objects according to the number of available object processors. This limitation can be 
easily overcome by connecting a classical frame buffer to the shading unit, using several 
frames to build a complete image (but of course losing true real-time display). With 1000 
spheres processors, we could then display up to 50,000 spheres simultaneously, but at only 
one frame per second. 

4.4 Future Work 

As said in this paper, the objects our machine can handle are not true quadric volumes, 
since the second order Elementary Processor allows us to define only approximated objects 
(for the moment only spheres and cylinders). In order to overcome this limitation, and thus 
to build a dramatically more powerful machine, we are now working on a true Quadric 
Elementary Processor (called Q. E. P.), able to solve in real-time the general quadric 
equation Ax2 +By2 +Cz2 + Dxy +Exz +Fyz +Gx + Hy + Iz +K O. 

Such a processor will allow us to display in real-time any quadric (ellipsoid, cylinder, 
paraboloid, hyperboloid ... ). Moreover, these quadrics will be defined in the host computer 
directly by their equations in the screen reference. 
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