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Correct Shading of Regularized CSG Solids Using a 
Depth-Interval Buffer 

J aroslaw R. Rossignac and Jeffrey Wu 

ABSTRACT A convenient interactive design environment requires efficient facilities for 
shading solid models represented in CSG. Shading techniques based on boundary eval­
uation or ray casting that require calculations of geometric intersections are too ineffi­
cient for interactive graphics when eSG primitives with curved (parametric) surfaces are 
involved. Projective approaches, where the primitive surfaces are scan-converted using 
standard hardware-supported graphic functions are preferred. Since not all the points of 
the faces of a CSG primitive lie on the CSG solid, scan conversion must be combined 
with a procedure that tests the produced 3D surface-points against the original CSG ex­
pression. Point classifications against primitives defined by arbitrary curved boundaries 
may be performed, without geometric intersections, through depth-comparisons at each 
pixel. This approach has been implemented for the Pixel-Power machine by researchers 
at UNC. It deals with complex CSG trees by converting CSG expressions into sum-of­
product form and repeatedly scan-converting the primitives of each product. The Trickle 
algorithm, which considerably reduces the number of scan-conversions in the general case 
has been developed at IBM Research and presented elsewhere. This paper discusses sev­
eral recent improvements to the original Trickle algorithm. The overall algorithm has 
been simplified. The scan-conversion process and the point classification tests have been 
modified to correctly handle cases where several primitive faces coincide within an arbi­
trary numerical resolution. These enhancements are not only necessary for on/on cases in 
regularized Boolean expressions, but also for processing pairs of faces near their common 
edges. Finally, we point out that a simple two-pass extension of the trickle algorithm 
using an auxiliary shadow buffer suffices to compute directly from CSG shaded images 
with shadows. 

Introduction 

Mechanical parts commonly designed in CAD systems are seldom polyhedral and only 
in rare cases can be expressed as extrusions of 2D contours. Three-dimensional design 
techniques are thus necessary. The most popular technique for interactively designing 
models of 3D mechanical parts is Constructive Solid Geometry (abbreviated CSG), where 
designers construct solid models by combining sub-solids or parameterized primitive vol­
umes through regularized Boolean expressions [1]. Such CSG specification is typically 
parsed and stored in a CSG tree, or more precisely a binary directed rooted acyclic graph. 
The internal nodes of the graph correspond to regularized set theoretic Boolean operators 
(union, intersection, or difference) and define sub-solids. The root defines the entire solid­
typically a semi-algebraic three-dimensional r-set, which could be empty or composed of 
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disconnected volumes. Terminal leaves of the graph represent parametric primitive shapes, 
which in traditional eSG-based systems were restricted to be intersections of planar or 
simple quadric half-spaces, such as cylinders or spheres. The graph is not Necessarily a 
tree since the same sub-solid may be used several times in the final Boolean expression. 
Although the graph can always be expanded into a tree, a systematic expansion should 
be avoided, especially when dealing with eSG definitions containing many instances of 
complex eSG sub-solids. 

Often eSG graphs also contain linear transformations (often restricted to rigid body 
motions) that define the relative position of children nodes with respect to the parent 
node's local coordinate systems. The effect of these transformations are usually combined 
during tree traversal and propagated all the way down to the primitives to establish their 
final positions. The correct processing of these transformations is trivially combined with 
the approach described here and will not be discussed any further. We shall simply assume 
that the final position of each primitive instance is known whenever necessary. 

eSG graphs can be conveniently edited by simply changing the Boolean expression or 
the primitives' type, position, orientation, or size parameters. Other representations, such 
as a boundary graph, are much more difficult to edit without endangering their validity. 
eSG is thus the preferred medium for performing an incremental (trial-and-error) design 
process. Interactive editing requires interactive feedback to guide the designers towards 
the desired solution. Interactive graphic from eSG is thus an essential component of the 
design process and shaded images have become the de facto standard for visualizing solid 
models. Several techniques for shading eSG solids have been reported. 

1.1 Boundary Tesselation 

eSG graphs may be converted into a boundary representation by boundary evaluation 
procedures [2J which computes edges and vertices by intersecting surfaces. Then, the 
bounding faces may, for example, be tesselated and rendered as a triangular mesh. The 
boundary evaluation is usually very time consuming, especially if higher degree implicit 
or parametric surfaces are involved. Tesselation is also delicate, because one must ensure 
that no cracks or overshooting occurs near the intersection edges. 

1.2 Primitives' Tesselation 

To avoid dealing with complex and expensive surface intersection and boundary tesse­
lation procedures, many commercial solid modellers tesselate the primitives prior to the 
boundary evaluation. Good accuracy requires a large number of facets, and thus boosts 
up the cost of boundary evaluation, without even guaranteeing topological consistency. 
Furthermore, independent tesselations of coincident curved faces of different primitives 
may not be aligned properly creating models that topologically do not correspond to 
the designer's intent and that may even be invalid models for solids, due to numerical 
problems. 

1.3 Ray-casting 011 eSG 

Ray casting can be used directly on eSG, thus bypassing the expensive and delicate 
boundary evaluation, because the original 3D eSG expressions may be localized to each 
single ray, in which case it combines one~dimensional intervals obtained as intersections of 
the ray with the primitive solids [3]. Using these ID models, the first point (along the view­
ing direction) on the ray that lies on the actual intersection of the ray with the solid can 
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be easily computed. Efficient direct approaches for shading from eSG through ray-casting 
have been developed in software. They have been optimized for facetted models [4,5,6]. 
A hardware implementation exists for Boolean combinations of quadric half-spaces [7,8]. 
However, ray-casting involves computing a large number of ray/surface intersections and 
becomes particularly inefficient when higher degree algebraic or parametric surfaces are 
involved. 

1.4 Projective Methods with Software Classification 

Since, for parametric formulations, surface evaluation is faster than ray/surface inter­
section calculation, scan conversion techniques with (adaptive) tesselation of primitive 
surfaces have been used for shading boundary models. A hardware depth-buffer can be 
used for automatically selecting the visible faces. Because the faces of a eSG solid are 
not directly available, the depth-buffer visibility test must be combined with a trimming 
process that selects the portions of primitive faces that lie on the solid. 

A software implementation of this selection has been combined with a depth-buffer 
test in [9] and works as follows. A point P on a front-facing face of a primitive A is 
first compared to the depth stored in the z-buffer of the corresponding pixel. If P is 
in front of what is stored in the z-buffer, it is 'classified', i.e., tested, against the eSG 
graph. Points on the boundary of the solid are rendered into the z-buffer. Outside points 
out are discarded. A point inside the solid will be automatically rejected by the z-buffer 
visibility test. Therefore, one can improve performance and avoid testing P against certain 
primitives in the graph, by classifying P against the I-zone of A, which is the intersection 
of a subset of the nodes of the original eSG graph [10]. If P lies inside the I-zone of A, 
it lies on the final solid or inside it. The software selection described in [9] classifies 
points against solid primitives by evaluating, at the tested points, the implicit functions 
that define the half-spaces bounding the primitive volumes. (Typically, a primitive is the 
intersection of such half-spaces. For example, a truncated cylinder is the intersection of 
one quadric half-space with two planar half-spaces.) These classification results are then 
combined up the tree according to the Boolean expression of the I-zone of the particular 
primitive on which the classified point lies. 

1.5 Projective Methods with Z-buffer Classification 

When sculptured primitives are used in the eSG expression (for example, primitives de­
fined in terms of their boundary composed of trimmed NURBS surfaces), no set of implicit 
equations are available for classifying points against the primitive. As mentioned ear­
lier, software implementation of such classification (for example through ray-casting [11]) 
would be far too expensive for graphics. A convenient alternative is to use depth compar­
isons and primitive boundary scan-conversion to classify points. 

During scan-conversion, surface points are generated, which project onto individual 
pixels along the viewing direction. The depth of the 3D points (computed along the 
viewing direction away from the viewer) may be stored in the z-buffer memory associated 
with the corresponding pixel. A 3D point whose depth is stored in some pixel's z-buffer 
may be classified against a primitive by scan-converting the boundary of that primitive 
and computing the parity of the number of layers of the primitive's surface that are 
behind the point being tested. (One needs only to compare depth values of surface points 
projecting on the same pixel as the tested point with the value stored in the z-buffer. Each 
time the scanned point depth is larger than the stored one, a binary flag associated with 
that pixel is inverted.) Note that this process may be used to classify in parallel a large 
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number of points, as long as they project on different pixels. This technique is described 
in [12] and mathematically justified in [13]. 

To classify a point against a eSG expression, it is not sufficient to classify the point 
against all the primitives. Point-primitive classification results must be combined accord­
ing to a Boolean expression. For some simple Boolean expression, such as an intersection, 
no storage is necessary because the result can be formulated as the conjunction of Boolean 
results. The classification algorithm may process the primitives in any order and stop as 
soon as one of these results is FALSE. (This would be the case when, for example, the point 
was out of a primitive in a Boolean intersection.) If all the primitives are processed an no 
FALSE result is found, the point is inside the solid defined by the Boolean expression. 

Unfortunately, the evaluation of more complicated eSG expression may require a large 
amount of temporary storage for intermediate binary results. Usually a stack mechanism 
is used for the temporary storage. The required stack depth may reach the depth of the 
eSG graph. 

Since the amount of memory per pixel is limited, one cannot use a stack of arbitrary 
depth at each pixel. Yet, we want to perform classification operations in parallel for all 
pixels, so as to minimize the number of required primitive scan-conversions. 

A technique that circumvents this memory limitation converts the eSG expression into 
a much larger (sum-of-product) form [14] in which primitive instances can be duplicated 
many times, appearing in several products. Techniques for eliminating redundant (empty) 
products have been discussed in [14]. 

Primitive faces are first trimmed against the appropriate products using repeated 
primitive scan-conversions. The resulting trimmed faces are then merged using a final 
depth buffer for selecting the front-most faces among all the products. Note that products 
can interfere and thus a front face of a product needs not lie on the solid. The z-buffer 
is used, as in [9], for both visible surface selection and for discarding faces interior to the 
solid. 

This paper pertains to the implementation of this projective approach. It focuses on 
correct algorithms for computing the visible front-faces of a product, given that depth­
buffer comparisons are performed with limited resolution and that one needs to correctly 
handle situations where faces of several primitives overlap or where the ray of a pixel 
intersect two adjacent faces very close to their common edge. In both cases, due to scan­
conversion round-off errors, we cannot rely on the computed depth values, but must still 
produce a picture that corresponds to a regularized version of the eSG expression. A 
solid is regularized when it is equal to the topological closure of its interior with respect 
to the three-dimensional Euclidean space. Regularized solids have no dangling edges or 
faces. Thus, faces or edges that lie on several primitives, but are not bounding any three­
dimensional volume in the final result, should not be displayed. 

The next section presents a new algorithm for shading eSG solids and briefly dis­
cusses its historic evolution. Then we point out the accuracy and regularization problems 
and explain how we solve them. We also point out a simple extension of our algorithm 
that produces shaded images with shadows directly from eSG, without computing any 
silhouette edges that are usually required to define the limits of shadow volumes. In the 
final section, we demonstrate in detail the progress of the trickle algorithm on simple 
products with coincident faces. The appendix shows the content of the three buffers as 
the trickle algorithm progresses through the a real CSG object with many coincident faces 
and a non-convex primitive. 
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2 The Trickle Algorithm 

Researchers at UNC [14] have implemented a hardware algorithm for trimming primitive 
faces by comparing them to all the front and back faces of all the primitives in a product. 
A variation of this approach was also reported in [4]. The comparisons are done indepen­
dently at each pixel and involve depth tests, masks, counters, and logical bit operations 
at each pixeL The algorithm has been efficiently implemented on the Pixel-Power graphic 
system that has one processor with local memory at each pixel [14]. 

Researchers at IBM [15J have developed a more efficient algorithm for processing 
products, called the Trickle algorithm. It requires, in general, a much smaller number of 
primitive scan-conversions and of buffer-merging operations than the UNC algorithm and 
may be better suited for implementation on emerging commercial graphic workstations, 
because it only requires simple extensions of existing programmable depth-buffer func­
tions. Both the UNC and the IBM algorithms handle non-convex primitives by producing 
and trimming the successive layers of a primitive's faces. 

The strength of the trickle algorithm lies in the fact that it processes the primitive 
faces of a product in a front-to-back (away from the viewer) order independently at each 
pixeL This ordering permits to stop the processing of a product as soon as a visible point 
(or the background) has been reached at each pixel. Furthermore, while moving 'deeper' 
(away from the viewer) from one primitive-face layer to another at a given pixel, the 
trickle algorithm skips primitive-face layers that clearly cannot lie on the product because 
they are out of at least one primitive in the product. 

A drawback of the trickle algorithm is that it uses three depth and intensity buffers 
(the standard depth and intensity buffers used for visible surface selection, plus a new 
depth-interval buffer, abbreviated DIB, composed to two depth buffers and two intensity 
buffers). Note that the UNC algorithm only requires two additional buffers and a counter. 
However, the trickle algorithm may be configured to run in four passes, once for each 
quadrant of the screen. Splitting the screen into four quadrants provides enough buffers 
for the trickle algorithm, even with the standard configuration of one depth and two 
intensity buffers commonly available on graphic workstations. Unfortunately, this four­
pass approach requires that intensity buffers be sometimes used as depth-buffers, which 
is currently impossible with commonly available commercial graphic systems. 

In this paper, we report a new version of the Trickle algorithm, which was originally 
published in [15]. A very high-level view of the trickle algorithm follows: 

initialize buffer 1 
for each product P do: 

compute the front of P in buffer 2 
merge the result into buffer 1 selecting the visible faces 

Buffer 1 (depth and intensity) is used to select the visible surfaces of a union of 
products. The visible front faces of each product are computed one after the other using 
a DIB as summarized below. The result is stored in buffer 2. 

initialize buffer 2 to the background 

while not done, circulate through the primitives Q of P and do: 


compute into buffer 3 the next face of Q that lies behind buffer 2 
At pixels where the next face of Q is front-facing copy buffer 3 into buffer 2 
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The details and advantages of the Trickle algorithms are described in details in the 
companion paper [15]. We can only briefly mention that the trickle algorithm works be­
cause, when a point in buffer 2 immediately precedes in depth a front face of a primitive Q, 
it lies out of Q, and thus out of the product. Furthermore, the interval between the tested 
point and the corresponding front point on Q is also out of Qand thus out of the product 
(see Figure 1). 

Zl, the point of the boundary of Q that lies immediately behind the point Z2 stored 
in buffer 2 is computed using buffer 3. If Z2 lies on a front facing portion of the boundary 
of Q, the segment separating Zl and Z2 lies out of Q and the trickle algorithm advances 
buffer 2 to Z3 bypassing any point r that may lie between Z2 and Z3. 

We propose below a pseudo-code presentation of a new version of the trickle algorithm. 
We have slightly simplified the algorithm of [15] by integrating the initialization steps 
into the main loop. The main improvement is in the carefully enhanced depth-tests that 
provide correct treatment of all singular (so called 'on/on') cases that involve coincident 
primitive faces and pixels in the vicinity of the projection of silhouette edges. 

Eye 

Z2 z 

Fig. 1. Move forward: Point p lies on a primitive in the current product and its depth is stored in Z2. 
The primitive Q is scan-converted and the depth of point q on Q is stored into Z3 because point q is 
the first point on Q (in terms of depth) to be hidden by p. Point q is a front point for Q. Therefore, the 
segment (p,q) is out of Q and thus out of the product. The algorithm moves forward by storing the depth 
and intensity of pinto Z2 and 12. Note that point r, on a different primitive in the product is skipped 
because it lies between p and q and thus is not on the product. 

After an initialization of buffer 1, i.e., depth buffer Zl and intensity buffer 11 are 
set to maximum depth and background color, (lines 1-3), the algorithm processes each 
product. For each product, buffer 2 is initialized to minimum depth and background 
color (lines 5-7). Then, the visible front faces of the product are computed and stored 
in the depth buffer Z2 and intensity buffer 12 (lines 9-31). Finally, the result is merged 
into buffer 1 (lines 33-35) wherever the current product's front is in front of previously 
processed products. 

To compute the visible front faces of a product, we proceed as follow. A counter k is 
first initialized to -1 (line 9). It will be used to count how many primitives of the current 
product have been processed without affecting buffer 2. If there is only one primitive in 
the product, we need to scan it twice to properly produce the effect of regularization. If 
all primitives have been processed in this manner, there is no need for any further scan­
conversion for this product, because we already have its visible faces in buffer 2 and we 
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01: FOREACH x IN pixels DO initialize final buffer 
02: {ZI [x] infinity; back plane 
03: n[x] == black;} background color 
04: FOREACH P IN products DO 
05: {FOREACH x IN pixels DO initialize product buffer 
06: {Z2[x] = 0; in it buffer 2 
07: I2[x] == black;} 
08: 
09: 
10: UNTIL(k==NumberOfPrimitivesIn(P)) REPEAT 
11: {k++; count useless passes 
12: change==O; set if any pixel has changed 
13: Q== NextPrimitiveInTheCircularListOfPrimitivesIn(P); 
14: FOREACH x IN pixels DO initialize Z3, 13, and ff 
15: {Z3[x] == infinity; 
16: I3[x] = black; 
17: IF IsPositive(Q) THEN ff[x]=l ELSE ff[x]==O;} 
18: FOREACH F IN faces(Q) DO 
19: {FOREACH x IN PixelsVisitedByScanconverting(Q) DO 
20: Z=DepthOfScanconvertedPointOn(F,x)j 
21: 1= Intensity ReflectedByScanconvertedPointOn(F ,x); 
22: IF (Z2[x] < Z eps < Z3[x]) 
23: {Z3[x]= Z; 
24: IF (IsFrontFacing(F)) I3[xJ=I;} 
25: IF (Z2[x] < Z - cps) ff[x]=!ff[x];} 
26: FOREACH x IN pixels DO move back if bad point 
27; {IF(ff[x] AND Z2[x] 1== Z3[x]) 
28: {Z2[x] Z3[x]; 
29: I2[x] = I3[x]; 
30: change TRUE;}} 
31: IF (change) k= OJ} 
32: FOREACH x IN pixels DO merge into final z-buffer 
33: {IF(Z2[x] < ZI [x] + cps) 
34: {ZI[x] = Z2[xJ; 
35: l1[x] == I2[x]i}}} 
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exit the UNTIL loop (lines 10-31). In the worst case, the trickle algorithm scan converts 
each primitive of the product roughly as many times as there is layers in all the primitives 
of that product. (Each layer may produce a tentative point for buffer 2, and it may be 
required to scan all but one primitives of the product to declare that the point in buffer 2 
is out of the product.) However, in the average case, the algorithm stops the loop very 
early. Note that k is initialized to -1 (line 9) to ensure proper processing of products with 
a single primitive. 

In the loop, we use a change flag (initialized line 12 and updated line 30) to see if we 
have advanced buffer 2 and if we should reset k to zero (line 31). 

We execute the inside of the loop (lines 13-31) for primitives Q in the product. We 
circulate through the list of primitives in a consistent way (line 13). We first initialize 
buffer 3 and the front facing mask (lines 14-17). The mask is set to one if the current 
primitive is positive i.e., bounded. (We assume that each primitive has a bounded bound­
ary. Primitives with a bounded interior are called positive. Others are called negative. In 
fact, if the leaves of the original esc graph are bounded volumes, negative primitives 
correspond to leaves that have been subtracted an odd number of times.) The front facing 
flag ff is used to decide, at each pixel, whether the algorithm should advance buffer 2 or 
not (line 27). 

Then we scan-convert faces of the current primitive Q (lines 18-25). For each pixel 
covered by the projection of Q, we update Z3 and 13 where appropriate using the depth 
and intensity of the scanned surface points (lines 22-24). The update takes place only if 
the scanned Z value lies between the depth stored in buffer 2 and 3 (line 22). The small eps 
value subtracted before the test is used to ensure correct treatment of coincident faces (see 
next section). Furthermore, J3 is only updated if the scanned surface is front-facing, so 
that we do not store intensities of back facing faces, should they overlap with front-facing 
ones near silhouette edges (see next section). 

The front facing flag is flipped for each face of Q that passes behind Z2 (line 25). 
Again, the eps value is used to ensure that scan conversion accuracy and round-off errors 
do not lead to incorrect results. 

Finally, once the entire primitive Q has been scan-converted, we advance by copying 
buffer 2 into buffer 3 wherever the front flag ff is set (line 27-31), i.e., wherever the points 
stored in buffer 2 are out of Q. Note that these points are replaced by front-facing points 
on Q (if any), which have been computed in buffer 3. 

The additional condition, Z2[x] != Z3[x] (line 27), is necessary to ensure proper treat­
ment of points outside of the projection of positive primitives. For these points ff=l, but Z2 
and Z3 are both equal to the maximum depth, and the algorithm does not progress. 

Line 33, an epsilon is used to prevent color mixing between overlapping faces of dif­
ferent products. 

Treatment of Singularities 

Singular situations occur when two different faces cover the same pixel and have the 
same-Qr almost the same--depth at points that project onto that pixel. Such situations 
occur in the mathematical (exact) model when faces of several primitives overlap. They 
also occur in the discretized graphic model near edges that connect a front and a back 
face or at constrictions (thin walls whose depth is less than the depth resolution of the z­
buffer). A method for computing the correct picture in all these singular cases must be 
sufficiently robust to handle depth-errors due to the round-off errors of scan-conversion. 
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In this section, we discuss these singular ca.ses and show how they a.re handled by our 
algorithm. 

3.1 Silhouette Edges Yield on/on Cases 

Different faces of the same primitive typically do not coincide. However, if a layer of the 
primitive has depth smaller than the depth resolution of the z-buffer, it will be processed 
as if it was fiat. (Layers are more precisely defined in [15]. They correspond to the disjoint 
segments obtained by intersecting a ray parallel to the z-axis with the primitive's volume.) 
Furthermore, even for large primitives, we can locally have a situation where the primitive 
appears fiat. For example, while approaching a silhouette edge, the abutting two faces of 
the same primitive (one front-facing and one back-facing) are arbitrarily dose to each other 
in depth. At that edge both front and back faces have the same depth. If a pixel very dose 
to the edge's projection on the screen is visited by the scan-conversion, both faces would 
have the same integer-rounded depth-value at that pixel. Thus, for that particular pixel, 
the primitive appears as a fiat (zero-depth) degenerate solid. Since the trickle algorithm 
proceeds independently for all pixels, it must correctly handle such degenerate primitives, 
otherwise cracks or dangling edges may appear. The initialization (line 9) of the counter k 
to -1 ensures that products with a single primitives will be scan-converted twice, thus 
giving a chance for the trickle algorithm to produce a tentative point in buffer 2 during 
the first scan-conversion, and then to classify it as out during the second scan-conversion. 

3.2 Need for Tolerance 

Rotations used to position primitives introduce round-off errors in the coefficient of their 
bounding planes or vertices. Consequently, if for example primitives are rotated to align 
some of their faces, the surfaces containing faces that should overlap will usually not 
coincide, even though theoretically should. Furthermore, scan-conversion round-off errors 
may result in unpredictable depth-ordering of any two theoretically coincident faces at 
any pixeL Since the ordering based on pure depth comparisons would not be consistent 
across the entire overlap region of both faces, algorithm cannot rely on the result of depth 
tests for the covered pixels. 

Therefore, in all computations that address the problem of coincident faces, we use a 
small tolerance value, called 'cps' in our algorithm. This value will ensure that two depth 
values that were intended to be equal, will be considered equal. 

Of course, choosing eps too large may result in treating as equal two values which 
were not intended to be equal. In such cases, the algorithm will produce a picture, that 
corresponds to a regularization 'modulo cps' of the solid, i.e., will remove shallow parts 
of the model and will display the correct faces everywhere else. 

Treatment of on/on cases involves neighborhood evaluation [2]. Since we are testing 
faces front-to-back, only the neighborhood behind the face is relevant. (The neighborhood 
indicates whether there is material, with respect to the product, behind the face. If there 
were material in front of the face, the trickle algorithm would have stopped sooner at 
that pixel and would never have reached that face. Therefore, if there is material of the 
product behind the face, the face point is on the product and is the most-front point 
visible through the corresponding pixel.) We can thus use a technique proposed in [9] and 
test a point positioned behind the scan-converted surface by a small distance, cps. So, we 
subtract eps from the depth of the scan-converted point before comparing it to the tested 
point, whose depth is stored in Z2 (line 22). 
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The distance cps is chosen so as to exceed the combined effect of the depth-buffer 
limited resolution and of the round-off errors of the depth calculation during surface scan­
conversion. When too large an cps value is used, details, such as shallow features, could 
disappear because their front-facing and back-facing faces would be considered coincident. 
To keep eps small and still correctly process the coincident face on/on cases, the staring 
depth along each scan-line must be accurate as elaborated in the next subsection. 

3.3 Scan-conversion Consistent with the Supporting Surface 

Scan-conversion procedures, which compute surface points for all the pixels covered by a 
face, produce approximate (truncated) depth values, because the z-buffer contains integer 
values. Consequently, the depth of a point that lies on the overlapping portion of two 
coplanar faces differs depending on which face is used (i.e., scan-converted) to produce the 
point. Therefore, to ensure that intended coincidences are correctly treated, we consider 
that two points that project onto the same pixel are identical if their depths differ by less 
than a small eps value computed from the size of the scene and the z-buffer resolution. 

If a face is at a steep angle relative to the z axis, the sampled depth value may vary 
widely over the width of the pixel. To handle coincident faces correctly, it is important 
that every face be sampled at exactly the same point within the pixel (e.g., at the center of 
the pixel). If two faces are coincident, the sampling of depth values for the pixels covered 
by both faces must yield the same depth for both faces at any pixel. 

We have obtained excellent results by computing the depth for the starting pixel of 
each horizontal span, not using a z-increment along the leading edge (as it is the case 
in most scanning algorithms), but precisely as the exact depth of the surface point that 
projects onto the center of the pixel. Consequently, within the numerical accuracy of the 
computation of the z-increment and its use along a scanline, the depth for all covered 
pixels will be correct with respect to the scanned surface, and will thus be the same for 
all faces lying in that surface. 

3.4 Parity-based Point/Primitive Classification 

In the original version of the Trickle algorithm [15], face trimming (i.e. testing face points) 
against a primitive Q in a product was done by checking whether the first face of Q 
encountered behind the tested point is front-facing or back-facing. Near the edges of Q, 
or if Q is flat within the depth buffer resolution, both front-facing and back-facing faces 
may have the same depth (due to truncated depth calculations). To solve the problem, 
we use the parity of the number of faces behind the tested point (line 25), as suggested 
in [14]. (An even number of faces of Q behind a point implies that the point is outside 
of Q.) 

3.5 Scan-conversion Consistent with Primitive Boundary 

The trickle algorithm requires that every pixel covered by the projection of a primitive be 
covered by a number of front faces that equals the number of back faces of that primitive. 
This requirement obviously indicates that primitives' boundaries should be valid two­
cycles (no interior or dangling faces), which is the case theoretically in the definition 
of eSG. However, scan-conversion procedures dealing with two adjacent faces of the same 
primitive do not automatically ensure such parity. For example, the Bresenham or anti­
aliasing algorithms do not. 
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A simple interpolation of the depth value over a span (horizontal row of pixels covered 
by the face projection) may lead to a wrong calculation of the depth at the end of the 
span if the end only partially covers the pixels. (The depth would be extrapolated using 
the slope of the plane containing the face, even though the actual pixel's center is not 
covered by the face.) 

Consider a pixel whose rectangular region is traversed by the projection of an edge 
between a front and a back face, but whose center is not covered by these faces. If the scan­
conversion algorithm visits that pixel for these two faces, a depth value will be computed 
for the center of the pixel. No matter how big the depth resolution or the eps tolerance 
value, one can choose the slope of the two faces such that the depth at the pixel's center 
computed for the front face exceeds the computed depth of the back face. This overshoot 
can lead to incorrect pictures near silhouette edges of primitives. The solution we have 
implemented simply processes, during scan-conversion, only those pixels whose centers 
are covered by the face. 

Shadows are handled by IIsing an auxiliary 'shadow' z-buffer that selects the surface 
portions visible from the light source. It is constructed by running the above trickle 
algorithm (without computing any intensity information) in the coordinate system that 
positions the eye at the light source. Then the standard trickle algorithm is run again 
from the eye orientation, except that, while computing the intensity reflected by visible 
points, their distance to the light is compared to the distance stored in the shadow buffer 
to establish if the surface point is visible from the light source, i.e., is lighted or is in the 
shadow of some other surface closer to the light source. 

The above approach requires that during the final scan-conversion (after the shadow 
buffer has been computed) the coordinates of surface points be expressed in both coor­
dinate systems (the coordinate system aligned with the viewer and the one aligned with 
the light source). To ensure that all pixels covered by the scan-converted surface are cor­
rectly processed, the scan-conversion uses increments in the viewer's coordinate system. 
These increments may be mapped into increments in the light coordinate system through 
a constant matrix so as to speed the scan-conversion process up. 

The aliasing effect in the shadow buffer can be significantly accentuated if the surface 
upon which the shadow is projected is orthogonal to the viewing direction and nearly 
parallel to the light direction. Some techniques for dealing with such visual artifacts are 
discussed in [I1J. 

An example, presented in the appendix, shows the result of this two pass algorithm. 

4 Constructive Examples 

Let us illustrate how the new trickle algorithm works by considering several examples. In 
these examples we will only concentrate on the computation of the visible front faces of 
simple products, because the sum (or union) of products is performed by the standard 
z-huffering hidden surface removal approach. 

4.1 Intersection of Two Simple Primitives 

Consider two convex primitives, A and B, of Figure 2. OUf algorithm proceeds as follows. 
Before we start scan-converting primitives, we initialize the pixels' buffers memory. Z2 is 
initialized (line 6) to 0 (for simplicity, we assume that the world lies on the positive side 
of the Z=O plane), and 12 to the background color (line 7), which we call 'black'. The 
count k of redundant passes is initialized to -1. 
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Primitive A appears first in the circular list of the primitives in our product, so we 
scan-convert it first. Since A is positive (and thus bounded), the parity bit flag 'ff' for 
each pixel is initialized to 1, so that points stored at pixels not covered by the projection 
of A will be properly treated as being exterior to A. Z3 is initialized to 'infinity' (a number 
representing the maximum depth of the z-buffer) and 13 is set to black (lines 15-17). 

During the scanning of the faces of A, we find that, at least for the pixels we consider 
here, we have the following relation: Z2 < Fl < F4 < Z3. The test (line 22) succeeds, 
for small enough eps, and thus the depth of Fl is stored in Z3 and the color of Fl is 
stored in 13. In short: we are storing the front face of A in buffer 3. Both Fl and F4 are 
behind Z2, and thus the parity flag ff is toggled twice during the scan-conversion of A 
and remains 1 (the tested point in Z2 is outside of A and should be replaced by points 
further back). 

During the update steps (lines 26-30), the contents of Z3 and 13 which corresponds 
to face Fl are copied into Z2 and 12. The count k of redundant passes is reset to 0, since 
we have updated some pixels. Note that pixels outside the projection of A now contain 
in buffer 2 the background depth and color. 

B 

t<m.<mxm.<m.<m.<~ 

Z-direction 
==}>

FI F2 F4 

Eye• • 

F3 

A 

Fig. 2. Intersection of two convex primitives: The product is the intersection of two convex primitives, A 
and B. A has a front face FI and a back face F4. B has a front face F2 and a back face F3. The other faces 
of A and B do not project onto the pixels of interest in this example and will thus not be considered. The 
eye is on the left and thus the z-axis direction is horizontal and left-ta-right. We consider a particular 
pixel symbolized by a horizontal line through the eye. The face of the product that is visible through the 
pixel is the front face F2 of B. 

Now we scan primitive B. We increase k to 1. The parity flag is also set to 1 and Z3 
is initialized to 'infinity'. We find that: Z2 < F2 < F3 < Z3, so the depth and intensity 
of F2 are copied into Z3 and 13. Once more Z2 is less than F2 and F3, so, the parity flag 
is toggled twice. (The tested point is out of B.) The content of Z2 and 12 are overwritten 
with data from face F2 and the counter k is reset to 0 again. The algorithm has moved 
forward and F2 is stored in buffer 2. 

The next primitive must be considered, but first we increase k to 1 and set the parity 
flag at each pixel to 1. Going through the circular list of the primitives in the product, 
we are back to primitive A. Scan-converting A again, we find that: Fl < Z2 < F4 < 
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Z3. Face Fl is not considered, because it does not lie behind Z2. The depth of F4 is 
stored in Z3, but, since F4 is back-facing, the color of F4 is not copied into 131 Only 
one face of A, F4, is behind Z2, so the parity flag is toggled only once and is set to O. 
Consequently, Z2 is not changed and the counter k is not reset and is still 1. 

The next primitive is B. K is incremented to 2. The parity flag is set to 1. Z2 contains 
the depth of F2 and scan-converting B we find that: Z2 < F3 < Z3. The depth of F3 is 
copied into Z3, but the color is not copied into 13 because F3 is back-facing. Only F3 is 
behind Z2 so the parity flag is toggled to 0 at each pixel covered by the projection of F3. 
Z2 is not changed and k remains at 2. Buffer 2 still contains the front face, F2, of B. 

Since k equals the number of primitives in the product, we stop the loop (line 10). 
The product's visible front face is in buffer 2. The contents of Z2 and 12 are copied into 
the display buffers Zl and 11, wherever Z2 is less than Zl, so as to merge this product 
with other products of the disjunctive form. 

4.2 Coincident Face and One Non-convex Primitive 

Now consider the intersection of a non-convex primitive A with a convex primitive B, as 
shown Figure 3. A has faces FI, F3, F4, and F5 and B has faces F2 and F6. The front 
face Fl and F2 are coincident. 

As before, we first initialize buffer 2. 
We start by scanning A. As in the previous example, the parity flag is set because A 

is positive. Because Z2 < FI < F3 < F4 < F5, FI is stored in buffer 3. Since there are 4 
faces behind Z2, ff is set to 1 and Fl is copied into Z2 and 12 (lines 26-30). 

Now, when we scan B, the face F2 is coincident with Fl, and we have F2 < Z2+eps < 
F6. With only 1 face of B that is behind Z2, the parity flag is toggled to 0 and Z2 remains 
unchanged. The counter k is incremented to 1. 

F2 

Fl 
A 

B 

F6 

Z-direction 
===»F5 

Fig. 3. A non-convex primitive: A has two front faces, Fl and F4, and two back faces, F3 and F5. B has 
a front face F2 and a back face of F6. The product is defined as the intersection of A and B. 
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When we scan A again, and find that Z2 < F3 < F4 < Fa. The depth of F3 is stored 
in Z3, but 13 is not changed because F3 is back-facing. With an odd number of faces of A 
behind Z2, the parity flag is toggled to 0 and Z2 remains unchanged. The counter K is 
incremented to 2, which equal to the number of primitives in the product, and thus the 
loop stops. Buffer 2 contains F1, which is the front of the product, and can be merged 
into buffer 1. 

4.3 Coincident Face and an Unbounded Primitive 

Consider, the difference of one convex primitive, A, with another convex primitive, B, 
of Figure 4. The product is the intersection of A with the complement of B, which is a 
negative unbounded primitive. The front/back orientation of the faces of B are inverted 
because it is complemented. 

Initialization takes place as usual. 
We scan A, as in the previous examples, and 1"1 is stored in buffer 2. 
Now, we scan B. Because B is negative, the parity flag ff is initialized to O. We find 

that, F2 < Z2 + epa < F3 < Z3. Therefore, F3 is stored in buffer 3, including the 
intensity, because F3 is the front-facing (remember that B is negative). With 1 face of B 
behind Z2, the flag ff is toggled to 1 at the pixels visited by the scan-conversion: F2 is 
outside of B and we move forward. Buffer 3 is copied into buffer 2. 

B 

F4 Z-direction 
t> 

Fig. 4. Subtraction of simple primitives: In the product A·B, the front face, FI, of A coincides with the 
front face F2 of B. Note that, because B is negative in the product, F2 is treated as a back face, because 
we are intersecting A with the complement of B. The visible face of the product is F3, the original back 
face of the non-complemented primitive B. 

When we scan A again and set the parity flag to 1, only F4 is behind Z2, therefore, the 
parity flag is toggled once and set to O. Consequently, Z2 remains unchanged. The same 
happens as we scan B for the second time. Then the algorithm stops for this product, 
since k has reached 2. Buffer 2, containing F3, is merged into buffer 1. 

4.4 Primitives with Internal Cracks 

Finally, we look at the subtraction of one non-convex primitive, B, (which has an internal 
crack) from another non-convex primitive, A, (which also has an internal crack, which 
furthermore coincides with the crack in B) depicted in Figure 5. Such cracks are pro­
duced when, in the model-or because of the limited depth resolution-two faces of the 
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same primitive are coincident. These situations also appear close to silhouette edges, as 
discussed earlier. 

B 

F2 F7 

F5 F3 

Z-direction » 

PI 

Fig. 5. Coincident cracks: A has faces FI, F4, F5, F7. B has faces F2, F3, F6, F8, The non-regularized 
difference A-B, that projects onto the pixels considered here is the empty set. 

After scanning A, as in the previous examples, FI is stored in buffer 2. 
When we scan B, we set the parity flag to 0 since B is negative. F2 is coincident 

with FI, so F2 < Z2 + eps < F3 = F6 < F8 < Z3. The depth of either F3 or F6 is 
copied into Z3, depending on the order in which faces of B are scan-converted. However, 
the intensity of F3 is saved in 13, because F6 is backfacing. 

Since there are 3 faces of B behind Z2, the parity flag is toggled to I and buffer 3 is 
copied into buffer 2. 

We scan A again. The parity flag is set. F4 is coincident with F5 and with Z2. We 
have, FI < F4 F5 < Z2 + eps < F7 < Z3. F7 is written into Z3. Since only F7 is 
behind Z2, the parity bit is reset to 0 and Z2 remains unchanged. Buffer 2 still contains F3. 

Now scanning B again, F6 and F3 are coincident with Z2. We have: F2 < F3 = F6 < 
Z2 + eps < FS < Z3. FS is written into buffer 3. Since only one face (FS) is behind Z2, 
the parity flag is toggled once to I and F8 is copied into buffer 2. 

Scanning A again, the last face of A, F7 is coincident with F8. We have: FI < F4 = 
F5 < F7 < Z2 +eps < Z3. There is no face of A behind Z2. Therefore, nothing is copied 
into Z3 and the parity flag remains set. Thus the background color (black) and maximum 
depth (infinity), with which buffer 3 was initialized are copied into buffer 2. 

A further pass causes no change and the process stops when the count reaches 2. 

Conclusion 

To display regularized eSG solids using a multiple depth buffer algorithm, singular cases, 
where two faces have the same depth at some pixel, must be handled properly. These 
coincident-face situations do not only happen because the eSG primitives have been posi­
tioned with two-dimensional contacts along their boundaries. The situations also happen 
when surface points on constrictions or on sharp corners near silhouette edges project 
onto the same pixel and have depth-values that are sufficiently close to be rounded by the 
scan-conversion process to the same integer Z value. 

5 
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First, the authors have decided to use a small eps tolerance value to remove the 
effects of round-off errors during scan-conversion. For example, faces that were designed 
to coincide, will, even if the actual depth may differ at some pixels. To keep cps small, 
relative to the size of the model, we have improved scan-conversion, so that it produces 
actual surface depths for all the visited pixels. This way, if two faces that overlap in space 
are scan-converted independently, the pairs of values generated for all the pixels covered 
by both faces will be equal, except for a very small round-off error that may occur during 
the depth increment cumulation. 

To ensure that the scan-conversion may be used safely for point-in-primitive classifi­
cation, we have modified the scan-conversion to guarantee that only pixels whose centers 
are covered by a face are visited during that face's scan-conversion. 

To produce a picture that is correct with respect to the regularized interpretation 
of the eSG expression, toleranced depth tests are used within the trickle algorithm to 
remove dangling faces or edges that would otherwise appear. 

Shadows, which may exhibit a fair amount of aliasing, may be produced using a simple 
two-pass algorithm with an auxiliary shadow-buffer. 
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Appendix A: A Case Study 

The following sequence of pictures show how the regularized eSG expression (A - (B U 
C)) U (B n D) is processed by the new trickle algorithm to generate a correct shaded 
image. Primitive A is the large green block; B is a non-convex primitive composed of 
two rectangular brown blocks. Primitive e is a purple block and D is a light blue block. 
A and B share coincident faces at the front and back sides. Band e share coincident faces 
at the back end, and Band D shard coincident faces at the right end. The expression is 
first converted into sum of products form. We obtain two products: An BnC and B nD. 
Each picture shows a series of time steps in the running of the algorithm. For each time 
step, the contents of the 3 buffers (Z3,I3 and Z2,I2 and Zl ,11) that are used are shown 
in three windows called 'buffer3', 'buffer2', and 'bufferl'. Buffer3 shows the result of the 
current primitive's scan-conversion. Buffer2, shows the current result of merging the scan 
conversion previously obtained in Buffer3 with the previous state of Buffer2. Buffer 1 stores 
the resulting products of the eSG sum of product forms. 
We first scan A into buffer3. (Plate 6-a) Then buffer2 is updated with the contents of 
buffer3 and we see A's front faces in buffer2. Then we scan B into buffer3. Because the 
front flag is reversed and B's front face is coincident with A's front face, we see only the 
back faces of B in buffer3. (Plate 6-b). 
In Plate 6-c, Buffer3 with B's back faces is merged into Buffer2. We see the back-faces 
merged into the image of A in Buffer2 creating the two shelves. The updating is not a 
simple merge, only those pixels for which the front flag ff is set are copied. Note that 
there is the dangling back faces of B which are coincident with the back face of A. It 
will disappear later to produce the correct image of a regularized solid. e, which is also 
negative, is scanned into Buffer3. Only the parts of the back faces of e that are behind 
Buffer2 appear in Buffer3. 
In Plate 6-d, the faces of e are updated into Buffer2 creating the notch. Part of the back 
face of e is coincident with a back face of B; when this occurs the color of the visible 
face depends on the order in which the primitives are processed. The lightly colored area 
is from the coincident face of e that was behind Buffer2. Note the dangling backfaces of 
e are also present. We scan A again into Buffer3, and only the backfaces of A behind 
buffer2 are visible. 
In Plate 6-e, the updating of Buffer2 by Buffer3 have trimmed away the dangling back 
faces of B from the image in Buffer2. We scan B into Buffer3 and we see only a small part 
of B's backfaces appearing in Buffer3. 
In Plate 6-f, the updating of Buffer2 by Buffer3 has overwritten the dangling backface 
of e restoring the back faces of B. A dangling back face of B has been created. We scan e 
again. 
In Plate 6-g, the updating of Buffer2 by Buffer3 has caused no change in the image. We 
scan A again and see the backfaces of A in Buffer3. 
In Plate 6-h, the updating of Buffer2 by Buffer3 has trimmed the last dangling back face 
of B from the image in Buffer2. We scan B again. 
In Plate 6-i, a repeated scanning of e has not changed the contents of Buffer2. So we 
know that we have computed the correct visible front faces of the product in Buffer2 and 
we copy it into Bufferl. (Plate 6-j,k) 
In 6-k, we start processing the second product. B is scanned into Buffer3. Buffer3 is 
updated into Buffer2 in Plate 6-1. We scan D into Buffer3 and see the part of D that is 
behind the front faces of B. 
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In Plate 6-m, we see the result of the update of Buffer2. Note that one of the faces of the 

images belongs to B. Scanning B into Buffer3, we see the backface of B that is behind the 

image in Buffer2. 

In Plate 6-n, the image in Buffer2 is trimmed by the contents of Buffer3 to produce a 

block. We scan D into Buffer3. 

In Plate 6-o,p, because the passes over Band D have caused no change in Buffer2, we 

merge Buffer2 into buffer 1 to get the final image. 

In Plate 6-q, we apply the shadow algorithm to produce the shadows on the final image. 
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