
1

Building a Full Scale VLSI-Based Volume
Visualization System

Reuven Bakalash, Arie Kaufman and Zhong Xu

ABSTRACT The hardware realization of an advanced prototype of the Cube volume
visualization system, Cube-3, is presented. The primary hardware component of Cube
is a viewing and rendering multiprocessor with distributed 3D voxel memory. Cube-3
design is based on our experience with two earlier prototypes: Cube-1 realized in hard­
ware using printed circuit board technology and Cube-2 our first custom-designed VLSI
implementation. Both prototypes are of reduced-size resolution (163) and can generate
only orthographic views. Cube-3 is the next generation prototype of a full-scale resolution
of 2563 voxels. It has been functionally extended to generate non-orthographic projec­
tions, 3D real-time transformations, and shading. The ability to project and manipulate
volumetric images in real-time is attributed to a unique skewed memory organization, a
generalized skewed mapping, a special ray projection bus, a congradient shading tech­
nique, and a new barrel-shifting mechanism. This paper specifically describes the latter
mechanism.

Background

The Cube architecture [11] is a voxel-based architecture for 3D volumetric graphics. A
volumetric object is typically represented as a large 3D grid of volume elements, or as they
are called in short, voxds. The voxels may be deri ved from discrete samples of the physical
phenomenon, from a scientific or engineering simulation, or they may be synthesized by
the computer from a geometric model.

The voxel representation is very effective for the traditional applications employing
sampled 3D voxel imagery, such as medical imaging (e.g., CT, MRI, and ultrasonogra­
phy) [2,4,5, 7], geology (e.g., seismic data) [18], biology (e.g., confocal microscopy) [8,
9], and molecular systems (e.g., electron density maps [6]). Cube also caters to the tra­
ditional 3D graphics synthesis applications, such as computer aided design (e.g., solid
modeling) [10], 3D simulation and animation (e.g., instrumentation simulation, flight
simulation), and scientific volume visualization (e.g., fluid dynamics [16, 17]). The Cube
approach is further effective when sampled data are intermixed with geometric data [13].

The Cube architecture is organized around a large 3D cubic frame buffer (CFB) of
voxels and is comprised of three processors. These processors access the CFB to input
sampled and synthetic data [14], manipulate [12], project [15], and render [3] the CFB
images. In order to manage the huge quantity of voxels, the Cube architecture is equipped
with several special features, such as parallel processing, incremental algorithms, a mod­
ular memory for parallel access, and a modular multiple-write bus for speeding up the
viewing process. The viewing bus, called the Voxel Multiple-Write Bus (VMWB), selects

http://www.eg.org
http://diglib.eg.org

110

the opaque voxel closest to the observer [11]. The selection time is proportional to the
length in bits of the depth index, that is, log n, where n is the resolution. It is implemented
as a multiprocessor of n processing units.

A reduced-resolution hardware prototype, Cube-I, of 163 resolution was realized first.
It is a printed-circuit 16-board hardware assembly driven by an interface board which
is hooked-up directly to an IBM-AT bus. The prototype has been operating successfully
in true real-time, generating 20,000 orthographic projections per second and over 3,000
arbitrary 3D rotations per second [11].

2 Cube-2-The First VLSI Implementation

The modular nature of the Cube architecture is well suited for VLSI implementation. Such
an implementation enhances the operating speeds, minimizes the physical dimensions, and
lowers the hardware cost. The Cube-I circuit design was used as the basis for the VLSI chip
design of the Cube-2 VLSI prototype. Each Cube-l board (i.e., module) was converted into
a single Cube-2 chip. Each chip consists of a memory module with 163 bytes, an addressing
system with mapping and de-mapping mechanisms, a projection processing unit, a VMWB
unit, translucency control, and depth sectioning. The circuit was redesigned to meet the
special requirements of the VLSL

Two major concerns that were met in the redesign of the Cube for VLSI are pin count
and testability. In order to limit the pin count to 40, the I/O lines of the module were
reduced by moving several functions from the interface board to the chip. It was done
at the cost of replicating some of the interface logic circuits in all the modules. Testing
the chip requires access to its internal functions: the memory, the addressing logic, the
control status, etc., in addition to all the l/Os of the chip. This is in conflict with the pin
count reduction. Therefore, nine test points were multiplexed with some input pins, with
additional pin selecting test or input mode. Unlike the printed-circuit version of Cube-I,
where the ID number of each module board has been set by proper wiring, in Cube-2 a
special ID register has been added on the chip, which is initialized by a boot sequence.

The VLSI was designed on SUN workstations using Magic for the layout and sim­
ulation. The chips were fabricated by MOSIS in 2.0 micron double metal CMOS/Bulk
technology, using a 40 DIP package. Each chip is comprised of a logic part, which oc­
cupies 40% of its space, and a 256 X 8 static memory on 60% of it. In total, there are
about 14,000 transistors on the chip, with an overall area of 3.4 x 4.62mm. Figure 1 is a
photo of the Cube-2 chip.

A special test bench has been constructed to test the basic functionalities of the chip.
After correcting the first version and refabricating, we found that nine chips out of twelve
were mostly functional. The final version of the VLSI chip is currently being fabricated.
The whole Cube integrated circuit assembly occupies a single board, while the interface
unit occupies another board. The Cube-2 system, located entirely on these two boards,
will reside in an IBM-AT computer, which will be used as its host. The interface unit
intermediates between the host and the Cube logic. It interprets commands given by
the user and forwards them to the Cube logic board as control signals, initializes the
identification numbers of the modules, creates scan sequences, and acquires the projection
data from the CFB and moves it to the host. An operating environment, including software
drivers and user interface, is being written on the IBM-AT, which uses its VGA graphics
system to run the VLSI assembly as a satellite of an IBM-AT computer.

111

3

Fig. 1. Custom-designed VLSI chip of Cube-2

Cube-3-A Full-Scale Real-Time System

The next Cube generation is a VLSI-based prototype of a medium resolution of 2563
,

called Cube-3. Each chip of this prototype will be of medium size (6.9 x 6.8)2mm with 84
pins, and will include two processing units. Consequently, the prototype will require a
total of 128 identical chips that will work in parallel.

The hardware of Cuhe-3 will run all our software systems and applications developed
within the Cube research framework in real-time. The Cube-3 prototype will allow us to
complete the development cycle of the system. Its purpose is threefold:

• 	 to examine the feasibility of implementing in VLSI a volume visualization system
with a working resolution of 2563 , and to test it in real applications such as biomed­
ical imaging, CAD, simulation, and scientif.c visualization;

• 	 to measure the speeds attainable with such a resolution and to evaluate the system
for interactive use;

• 	 to test the hardware implementation of several new mechanisms developed recently
for the Cube architecture.

The new mechanism includes: viewing from a non-orthographic direction using a general­
ized skewed mapping and parallel organization of the memory (see [15] for more details);
transforming (e.g., rotating) 3D rooms (subcubes) by employing a barrel shifter; and
discrete shading that employs a gradient-based table-driven technique [3].

112

barrel-shifter

memories

logic
units1 _~_.J -"

control

voxel depth VMWB
DMA

B
voxel value

interface

Fig. 2. The functional components of Cube-3

Cube-3 is a functionally extended version of Cube-2, which will include five basic
components: interface, 256 logic modules, 256 memory modules, a barrel shifter, and
a shading unit. The functional elements of the system are depicted in Figure 2. The
interface, in addition to its basic intermediating function as in the previous versions, will
control the barrel shifter and its data path, will manage a DMA communication with the
host computer to speed up the transformation of the projected and shaded data, and will
supervise the shading process.

Unlike Cube-2, the modular logic and the memory will be separated to minimize
the cost, pin count, and chip area, and to increase reliability. The VLSI logic chips, two
processing units on each, will include the addressing logic, the transparency and clipping
controls, and the VMWB competition unit. The memory will be implemented using off­
the-shelf standard 2563 byte chips.

The barrel shifter is a network interconnection between 256 pairs of processors and
memories. A simultaneous shifting of 8 bits of data in any arbitrary distance among
the 256 modules would normally require 256 buses or a large crossbar matrix of 256 x 256
paths, 8 bit each. Since both alternatives are not realistic because of their complexity, a
special interprocessor communication network was developed [1]. A significant reduction
in communication area was achieved by implementing bidirectional moves. In such a case,
rotation to the right by k units, when k > 256/2, can be performed with leftward rotation
of (256 k) units. Another reduction was gained by dividing long rotations into smaller
simultaneous rotational steps (but without the need for an intermediate reloading of the
data). Thus, a rotation requires k/s steps (clocks), where s is the size of the step. The
longest rotation is performed in 128/ s clocks. Establishing such steps results in a desirable
division of the entire communication network into small and modular building-blocks,
implementable in VLSL

The barrel shifter, shown in Figure 3, implements the divided modular mechanism
based on a special flow-through network that interconnects among the modules. Its basic
component is a modular barrel-switch unit (BSU) that is serving s pairs of clients (proces­
sors and memories), receiving from each a single bit of data (s bits in total) and shifting
it on. A general width of w bits of data requires w duplicates of the BSUs at each group of

113

to the
1st unit

proce­
ssors
memo­
ries barrel

swHch
n

barrel
sw~ch

2

barrel
switch

1

tathe
n-th unit

Fig. 3. The barrel-shift interconnection network

clients. This layout provides modularity and flexibility of the entire network. The network
is extendible in its overall length, by serially connecting arbitrary numbers of BSUs, and
in data width, by stacking up any number of BS units, one layer per data bit. The BSUs
are organized in a simple and repetitive pattern of junction elements and connection
paths, which is well suited for VLSI implementation. Each BSU will be implemented as a
custom-designed VLSI chip. The barrel shift array counts about 2500 transistors. Adding
the decoder, control circuits, and I/O pads to it totals 4000 transistors and 64 pins per
chip.

Arbitrary data moves along the network have a unique meaning of real-time 3D graph­
ics transformations. Typically, geometrical transformations in 3D systems are accom­
plished by a time-consuming matrix multiplication. In contrast, Cube employs the barrel
shifter, a beam-based transformation in which intermodular data shifts along the beam
result in a spatial transformation. For example, a 3D rotation about a primary axis is
performed as a 2D rotation of beams parallel to the axis, where a beam is retrieved from
the CFB, barrel shifted to reflect the rotation modulo 256 pertaining to the new location
of the beam, and then pushed back into the CFB modules.

The real-time congradient shading [3], developed as part of the Cube project, will be
implemented on the interface board. The hardware structure of the congradient shading

114

4

includes a triple shift register, which holds the depth and color values of the voxel being
processed and a whole scan-line before and a whole scan-line after it, so that the voxel's
two horizontal and vertical neighbors are readily available for computing the gradient.
The shift registers are implemented by memory and additional addressing logic. Congra­
dient shading is a table-driven, depth-gradient, volumetric shading technique, which uses
a predefined set of surface gradients stored in a look-up table. Congradient shading is
suitable for real-time hardware implementation, operating as a pipeline with the viewing
process.

Summary

We described the complete sequence of the Cube hardware realizations. The first implemen­
tation-Cube-1-163 resolution using printed circuit technology, verified the basic con­
cepts of the unique skewed memory, the parallel access, and the parallel processing of an
orthographic beam. Since the modular nature of the Cube architecture is well suited for
VLSI implementation, the next natural step was a 163 resolution custom-designed VLSI
implementation. The experience accumulated with the two first prototypes has been ap­
plied to the design of the full-scale 2563 system, Cube-3, which is currently under develop­
ment. Cube-3 will be able to run in real-time the interactive Cube software environment,
the 3D user interface, and the applications (e.g., biological [9] and medical [2]), developed
as part of the Cube project.

Acknowledgements

This project has been supported by the National Science Foundation under grants MIP-8805130
and MIP-9049094 and grants from Hewlett Packard. We would like to thank David R. Smith
for his invaluable advice concerning the VLSI design and testing.

References

[1] 	 Bakalash, R. and Xu, Z.: Barrel Shift Microsystem for Parallel Processing, Proc. Micro 23, 23rd
Symposium and Workshop on Microprogramming and Microarchitecture, Orlando, Florida, November
1990.

[2] 	 Bakalash, R. and Kaufman, A,: MediCube: a 3D Medical Imaging Architecture, Computers f3 Graph­
ics, 13,2 (1989), 151-157.

[3] 	 Cohen, D., Kaufman, A., Bakalash, R. and Bergman, S.: Real-Time Discrete Shading, The Visual
Computer, 6, 1 (February 1990), 16-27.

[41 	 Farrell, E. J., Yang, W. C. and Zappulla, R. A.: Animated 3D CT Imaging, IEEE Computer Graphics
and Applications, 5, 12 (December 1985),26-32.

[5] 	 Goldwasser, S. M., Reynolds, R. A., Bapty, T., Baraff, D., Summers, J., Talton, D. A. and Walsh, E.:
Physician's Workstation with Real-Time Performance, IEEE Computer Graphics f3 Applications, 5,
12 (December 1985),44-57.

[6] 	 Goodsell, D. 5., Mian, S. and Olson, A. J.: Rendering of Volumetric Data in Molecular Systems,
Journal of Molecular Graphics, 7, (March 1989),41-47.

[7] 	 Hoehne, K. H., Bomans, M., Tiede, U. and Riemer, M.: Display of Multiple 3D-Objects using the
Generalized Voxel-Model, Proceedings of SPIE, Medical Imaging II, 914, (1988), 850-854.

[8] 	 Jense, G. J. and Huijsmans, D. P.: Interactive Voxel-Based Graphics for 3D Reconstruction of Bio­
logical Structures, Computers f3 Graphics, 13,2 (1989), 145-150.

115

[9] 	 Kaufman, A., Yagel, R., Bakalash, R. and Spector, I.: Volume Visualization in Cell Biology, Proceedings
Visualization '90, San Francisco, CA, October 1990, 160-167.

[10] 	 Kaufman, A.: Voxel-Based Solid Modeling, Proc. International Conference on CAD/CAM and AMT,
Jerusalem, Israel, December 1989, 1.1.3-1-3.

[11] 	 Kaufman, A. and Bakalash, R.: Memory and Processing Architecture for 3-D Voxel-Based Imagery,
IEEE Computer Graphics fJ Applications, 8, 6 (November 1988), 10-23.

[12] 	 Kaufman, A.: The voxblt Engine: A Voxel Frame Buffer Processor, in Advances in Graphics Hardware
III, A. A. M. Kuijk and W. Strasser, (eds.), Springer-Verlag, Berlin, 1989.

[13] 	 Kaufman, A., Yagel, R. and Cohen, D.: Intermixing Surface and Volume Rendering, in 3D Imaging in
Medicine: Algorithms, Systems, Applications, K. H. Hoehne, H. Fuchs and S. M. Pizer, (eds.), June
1990,217-227.

[14] 	 Kaufman, A. and Shimony, E.: 3D Scan-Conversion Algorithms for Voxel-Hased Graphics, Proceedings
ACM Workshop on Interactil)e 3D Graphics, Chapel Hill, NC, October 1986,45-76.

[15] 	 Kaufman, A., Bakalash, R. and Cohen, D.: Viewing and Rendering Processor for a Volume Visu­
alization System, in Advances in Graphics Hardware IV, R. L. Grimsdale and W. Strasser, (eds.),
Springer-Verlag, 1991, 171-178.

[16] 	 Shirley, P. and Neeman, H.: Volume Visualization at the Center for Supercomputing Research and
Development, Proceedings of the Chapel Hill Workshop on Volume Visualization, Chapel Hill, NC,
May 1989, 17-20.

[17] 	 Upson, C. and Keeler, M.: V-HUFFER: Visible Volume Rendering, Computer Graphics, 22, 4 (August
1988), 59-64.

[18J 	 Wolfe, R. H. and Liu, C. N.: Interactive Visualization of 3D Seismic Data: A Volumetric Method,
IEEE Computer Graphics fj Applications, 8, 7 (July 1988), 24-30.

