
1

An Efficient Parallel Ray Tracing Scheme for Highly
Parallel Architectures

Didier Badouel and Thierry Priol

ABSTRACT The production of realistic image generated by computer requires a huge
amount of computation and a large memory capacity. The use of highly parallel com­
puters allows this process to be performed faster. Distributed memory parallel computers
(DMPCs), such as hypercubes or transputer-based machines, offer an attractive perfor­
mance/cost ratio when the load balancing has been balance and the partition of the
data domain has been performed. This paper presents a parallel ray tracing algorithm for
DMPC using a Shared Virtual Memory (SVM) which solves these two classical problems.
This algorithm has been implemented on a hypercube iPSC/2 and results are given.

Introduction

The ray tracing technique is well known both for its ability to provide high quality images
and its requirement in memory and computation power. Despite recent research for im­
proving ray tracing algorithms, they are still too slow. The use of highly parallel computers
is one way to decrease synthesis time. These machines offer memory and computing re­
sources which can be scaled. Intel and DARPA have announced the Touchstone project for
the development of a highly parallel computer (2000 processors) with a peak performance
of 150 Gflops. IBM has a similar research project with the VULCAN parallel computer
that will deliver a peak performance of 1.2 Teraflops in the 90s. Inmos (8GS-Thomson)
in Europe is also involved in research to develop a high performance RISC processor (HI)
that will replace the Transputer for building parallel computers. These new architectures
will outperform supercomputers like CRAY or FUJITSU. However, the lack of tools and
environments for these new architectures discourage potential users.

This paper advocates the use of a new portable environment based on a shared virtual
memory for DMPCs. This environment provides an easy way to efficiently parallelize the
ray tracing algorithm. The shared virtual memory is used for accessing data manipulated
by the ray tracing algorithm. The paper is organized as follows: Section 2 gives a brief
background on ray tracing, highly parallel computers and how they can be programmed.
Section 3 describes our algorithm and shows why emulating a SVM is not so paradoxical.
A real implementation on an iPSC/2 hypercube allows us to present several encouraging
results. Section 4 describes two approaches to efficiently implement a SVM on DMPCs.

http://www.eg.org
http://diglib.eg.org

94

Light source

*

Observer

Fig. 1. The ray tracing principle

2 Backgrounds

2.1 The Ray Tracing Principle

The ray tracing algorithm is used in computer graphics for rendering high quality images.
It is based on simple optical laws which take effects such as shading, reflection and re­
fraction into account. It acts as a light probe, following light rays in the reverse direction
(Figure 1). The basic operation consists in tracing a ray from an origin point towards a
direction in order to evaluate a light contribution. The closest intersection (impact point)
between the ray and the scene determines the object, if one exists, which contributes
to this evaluation. The computation of each pixel of a simulated screen plane consists
in shooting a ray from an observer through this pixel (primary rays). When an impact
point is found, the contribution of various light sources to the intensity of the pixel are
computed by shooting rays (light rays) from this point to each light source to determine
if the relevant point is shadowed. According to the photometric properties of the inter­
sected object, new rays are shot from the impact point, in order to take into account the
contribution of the neighboring objects [12,21,35]. If the object is transparent (reflective)
a ray is shot in the refracted (reflected) direction (secondary rays).

Geometric computations are used to find the closest intersection point between a ray
and the objects in the scene. Their number increases with the photometric complexity
of the scene (i.e., with the number of rays) and with the geometric complexity of the
scene (i.e., with the number and the shape of the objects). Computing realistic images
requires several million of rays and several hundred thousand objects. It is this large
number of ray/object intersections which makes ray tracing a very expensive method.
Several attempts have been proposed to minimize the number of ray/object intersections.
These solutions are based on what we call an object access structure which allows a fast
search for objects along a ray path. These structures are based on a tree of bounding

95

Shared Memory Parallel Computer Distributed Memory Parallel Computer
(SMPC) (DPMC)

Fig. 2. MIMD architectures

boxes [24,33J or on space subdivision [2,8,14,15,23J. A parallelization of the ray tracing
algorithm must address the problem of using a object access structure.

2.2 Highly Parallel Computers

Large improvements in computing speed can be obtained by highly parallel computers
which are made up of many microprocessors (more than a hundred). They can be either
Single Instruction Multiple Data (SIMD) architectures like the well known COIJnection
Machine or Multiple Instruction Multiple Data (MIMD) machines such as arrays of trans­
puters or hypercube computers. As this paper focuses on the use of MIMD architectures,
we describe them briefly. Highly parallel MIMD computers may be split in two categories
depending on how the processors are connected to the memory units (Figure 2).

Shared Memory Parallel Computers (SMPCs) constitute the first category. Processors
which share a single address space are connected to local memories through an intercon­
nection network. Each processor can physically access any local memory. The network
can be either a bus (e.g., SEQUENT and ENCORE computers) or a multistage network
(e.g., BBN and IBM RP3 computers). Since the bandwidth of a bus is limited, the mul­
tistage network is the only way to make highly parallel shared memory computers. The
cost of such a network is prohibitive for large numbers of processors. Moreover, caches for
speeding up remote memory accesses and for avoiding hot spots in the multistage network
cannot be implemented easily.

Machines in the second category avoid these problems. The design of Distributed
Memory Parallel Computers (DMPCs) is very simple. Furthermore, they are scalable.
Processors are connected together by the interconnection network, which allows the ex­
change of messages between processors. A large number of DPMCs are available com­
mercially. They are differentiated by their interconnection network. Hypercube topologies
are used in the Intel iPSe and the NCUBE2. Transputer-based machines like the Telmat
T-Node and the Parsys SNlOOO are based on a reconfigurable interconnection network in
order to simulate a large number of topologies.

However, there is another side of the picture: programming a DPMC is more difficult
than programming a SMPC because programmers must take data management into ac­
count. They must partition data used by the algorithm and add message-based primitives
for remote data access. The next section describes some programming methodologies for
DMPCs.

96

~:"!:""«'" . ::-'.

'; '~ .. 'J ,;,
Objed'.::.j;'light

primary
rays

Light
,1f> source

'-:, ~

rays

Screen

Observer

Fig. 3. Ray coherence property

2.3 Parallel Programming Methodologies for DMPCs

The programming of DMPCs consists of subdividing the problem to be solved into a
set of communicating tasks. The lack of general purpose automatic parallelization tools
makes this work difficult. However, several programming methodologies exist and can be
applied to the ray tracing algorithm. The first approach focuses on the parallelization of
loops. Loops are analyzed in order to discover dependencies. A set of tasks are created
that represents a subset of iterations. Communication primitives are added when a task
needs remote data. This approach is called control oriented parallelization. The second
approach consists in partitioning the data domain of the algorithm. Each sub-domain is
associated with a processor. Computations are assigned to processors which own the data
used by these computations. They are sent to processors by mean of messages. In fact,
this is the dual approach of the first one, and is called data oriented parallelization.

Parallel ray tracing algorithms published in the literature can be grouped according
to these two approaches. Algorithms based on processing without dataflow [9,28,30,34] or
with object dataflow [3,17,18,19,31] have been parallelized with the first technique whereas
those based on processing with ray dataflow [10,11,13,16,22,25,29,32] have been parallelized
with the second technique. A survey of these methods is given in [4].

3 A Paradoxical Approach

Ray tracing is intrinsically parallel since the evaluation of one pixel is independent from
others. The difficulty in exploiting this parallelism is to simultaneously ensure that the
load be balanced and that the database be distributed evenly across the memory of the
processors. The parallelization of such an algorithm raises a classical problem when using
distributed parallel computers: how to ensure both a data distribution and a balanced
load when no obvious relation between computation and data can be found? This problem
can be illustrated by the following schematic ray tracing algorithm:

for i == 1, xpix do

for j == 1, ypix do

pixel[i, j] :::::: E(contrib(... , space[f..'(' ..), fy(. ..), fA . ..)], ...))

done

done

-"'"

97

I

I

I

I

I
!
!
I

I
!

,
!

I
I

1

2 3

o

3

Fig. 4. Pixel map distribution and dynamic load balancing

The computation of one pixel pixel[i, jJ is a sum of various light contributions contribO
according to the photometric modeL Indeed, the recursive nature of the photometric model
induces a dependency between the computation for the various contributions to one pixeL
Searching all the data space[a, b, c] used for the evaluation of one pixel is equivalent to
the ray tracing itself.

We cannot afford to duplicate the database in every node as it will involves a severe
limitation on the size of the database we can render. When choosing parallel architectures,
the goals are both to speed up the execution and to be able to use larger databases.

The study of models of parallelism which can be implemented on DMPCs [3,32J leads
us to advocate the use of a Shared Virtual Memory (SVM) for the parallelization of the
ray tracing algorithm. In fact, this paradoxical approach for DMPCs can ensure a efficient
distribution of the data while allowing all the nodes to access the entire database. Then, as
described in the next section, the load can be balanced dynamically during the execution
phase. This approach is classified as a control oriented parallelization. In the Section 3.2,
we describe how the data is distributed and the management accesses to the SVM which
contains the database.

3.1 Distributing Computations

In this section we consider the distribution of computation. This distribution must en­
sure that each processor does roughly the same amount of work. This can be done by
distributing pixels among processors. Two approach can be used. The first (called static
scheduling) consists in subdividing the screen in as many parts as processors. Each pro­
cessor is responsible for computing all pixels belonging to its part of the screen. This
approach is not satisfying because the computation time for every pixel is not the same
and consequently the amount of work associated with each processor is not identicaL The
other approach (called dynamic scheduling) consists in assigning pixels to idle proces­
sors. As soon as a processor has finished computing a pixel, it asks a server for a new

98

Virtual
Memory

Physical location in the PE's local memory

Code

Data

Cache

Fig. 5. Distribution of a virtual memory

pixel. This solution ensures a balanced load however it does not take into account the
ray coherence property which can be used to improve remote data accesses described in
the next section. The ray coherence property is showed in Figure 3: two rays shot from
the observer through two adjacent pixels have a high probability of intersecting the same
objects. This property is also true for all the rays spawned from the two primary ray. The
dynamic scheduling technique does not ensure that the same processor treats neighboring
pixels. Consequently we advocate the use of a mixture of the two techniques. The static
scheduling technique improves the remote data accesses whereas the dynamic scheduling
technique solves the load balancing problem.

As shown in Figure 4, each node owns a part of the pixel map. For example, if we use
4 nodes to compute an image with a 512 X 512 resolution, each node manages a 256 x 256
sub-pixmap. We use a square (or nearly square) sub-pixmap in order to exploit as much
as possible the ray coherence property. When a node completes the computation of its
sub-pixmap, it sends a request to get a work item (i.e. a set of pixels) from a node still
working on its own sub-pixmap. This request moves along a ring topology. If this request
goes back without satisfaction, the node knows that the image computation is achieved.
This local termination detection is sufficient for our application.

In order to insure a balanced load, the only parameter to be determined is the size of
this work item. If its size is minimal (i.e. work item = one pixel), then we have the best
load balance we can obtain, assuming that the computation of one pixel is indivisible over
the set of nodes. However the communication cost is high. In balancing the load, we must
not generate more work in communication activity than in computation. Experimental
results show that a work item about 3 x 3 pixels is a good compromise.

3.2 Distributing Data

The use of a Shared Virtual Memory for a DMPC was first investigate by K. Li [27]. The
large number of nodes allows the use of the combined local memories to store a SVM.
In this distributed context, we observe two levels of data access: for each node, the set
of node memories represents a larger address space than its own local memory but with
slower access. As a remote data access is quite expensive with respect to a local access a
cache mechanism must be used in order to increase the ratio of local data accesses.

99

d=2
n=4

Fig. 6, The hypercube topology

In the ray tracing algorithm, the shared database contains the photometric and geo­
metric parameters of the objects of the scene, together with the object access structure.
The mechanism we use to manage the virtual shared memory is called Object Paging
where an object (a polygon, a voxel of the grid ... etc) is an item of a page. A page is
the unit for the data exchange between local memories. The paging mechanism allows
uniform virtual memory management independent of the type of objects shared in this
memory. An object belongs to one and only one page, and thus its memory location is
contiguous.

In our algorithm, the database is first evenly distributed over the set of nodes without
any particular strategy. Therefore each node's memory almost contains the same number
of pages. Each local memory is divided in three parts: the process code, a part of the
database, and the cache memory. The two last parts are divided into pages to allow
memory management (Figure 5).

During the synthesis task, the application can potentially access the entire database
through a memory management routine. For each node, when a cache miss is detected
(i.e., the page is neither in its local database nor in the cache memory) then a request is
sent to the node responsible for this page. When the node receive the page, it stores it in
its cache memory according to a LRU (Least Recently Used) policy. This search is done
during the communication of the new page, and thus causes no extra cost.

The use of these classical mechanisms, data paging and cache memory, has two main
advantages: first, they dynamically exploit the data access locality of an algorithm such as
ray tracing where data accesses can not be statically determined. This is an improvement
parallelization factor. Second, they provide a portable environment which simplifies the
parallel code and which can be used as a basis for parallelizing other algorithms.

3.3 Experimental Protocol

Results described in Section 3.4 were obtained on an Intel iPSCj2. Processors are linked
together according to a hypercube topology (Figure 6). This kind of topology is charac­
terized by a dimension d which is related to the number of processors N by the formula
N = 2d. Figure 6 shows how the processors are connected for different values of d.

Architecture of the iPSC/2

The iPSCj2 system consists of two main components: the cube and the system resource
manager (Figure 7).

The cube houses all the nodes which are connected by the hypercube network. It
consists of several cabinets (up to 4). Each of them houses up to 32 computational nodes.
Each node consists of one Intel 80386 microprocessor augmented by an 80387 floating
point co-processor and 4 Mbytes of local memory. It is equipped with the Direct Connect
Module (DCM) for high speed routing message between nodes. These communication

100

I I
Cube

SRM X workstation

Fig. 7. The hypercube iPSC/2

processors allow programmers to view the network as a complete communication graph.
Each processor can send a message directly to any other processors. This is very useful for
implementing our shared virtual memory because the communication graph is not known
in advance.

Software development tools are available on the System Resource Manager (SRM),
which is connected via a special link to node O. The SRM performs compilation, program
loading and I/O operations for the cube. A process running on the SRM can act as an X­
windows client which allows the display of images on an X-windows server on the ethernet
network.

The NX/2 Operating System

The operating system of the iPSC/2 is made up of two parts. The first part runs on the
SRM and consists of several UNIX processes. Several users can run their programs simul­
taneously. The operating system splits the cube into sub-cubes. Each of them is assigned
to a user. Several commands have been added to allow the management of sub-cubes
or parallel processes. The second part is a small kernel called NX/2 which runs on each
processor of the cube. This kernel implements an asynchronous communication paradigm.
Communication libraries have been added to C and FORTRAN to allow the exchange of
messages between nodes and the management of parallel processes. Communication can
be blocking, non-blocking or interrupt driven. This latter method is used in our parallel
ray tracing algorithm for implementing the virtual shared memory. When a processor
receives a request for a page, an interrupt is sent to the user process and a user handler
is executed. This handler satisfies the request by sending the page to the processor which
requested it.

Experimenting on Other DMPCs

Implementing our parallel ray tracing on other D1-1PCs requires that messages can be sent
from a processor to all other processors. This can be done by a communication processor
like the iPSC/2 or by the operating system using a store and forward message passing
mechanism. The virtual shared memory can be implemented either by a communication
interrupt driven like tbe iPSC/2 or by Jightweight processes. In the latter case, two such
processes are needed, one for computing pixels and one for receiving and satisfying page
requests. These requirements can be found in a majority of DMPCs and show that our
approach is well suited for DMPCs.

101

I Database # polygons # rays Shared memory size average pages/pixel
Teapot 3754 1397473 793 Kbytes 58.19 !

Mountain 9920 1 722415 2031 Kbytes 61.94
Rings4 18002 1872991 I 4632 Kbytes 125.91 i

I

Tetra 9 262144 303239 36189 Kbytes 17.451
l'etral0 1048576 300962 138 851 Kbytes 33.00

Table 1. Databases characteristics and the rendering result

1 2 4 8 16 32 I 64 I
3h12mn2. Ih39mn57. 5lmn32. 26mn05. 13mn06. 6mn35. 3mn20. Teapot i.

4h45mn3. 2h30mn38. lh17mn06. 39mnlO. 19mn45. lOmnOO. 5mn07. i Mount.
4h58mn46. 2h33mn24. lh17mn35. 38mn56. 19mn4l. lOmn04. Rings4

4mn55. 2mn26. i Imn18. Tetra9

I 3mn46. Tetral0

Table 2. Synthesis times for an image resolution of 512 x 512 pixels

3.4 Results

Our experiments have been performed using a set of scenes called Standard Procedural
Databases (SPD) provided by Eric Haines [20] and the famous Teapotfrom the university
of Utah. These databases are presented in Table 1. Because of their geometric and the
photometric diversity, they constitute a representative test set.

Synthesis times are shown in Table 2. A first result is that the distribution of the
database enables the rendering of scenes like TetralO which lies far beyond the memory
capacity of one node. However as a result it is difficult to analyze the behavior of the
algorithm for such large databases which cannot be executed with a small number of
node. For small databases, the measurement of the parallel efficiency is straightforward
while for the large databases it requires the use of a profile analysis to estimate the parallel
overhead. For the test set, using up to 64 nodes, we always obtain an efficiency better
than 78%. This work is presented in [3].

Following up on this encouraging result, in this paper, we will focus on an experiment
which has given some interesting information concerning the behavior of our algorithm:
We present some measurements of algorithm behavior as a function of cache size (the size
of a page is lKbytes). These results are given in Figure 8. They illustrate the efficiency, the
miss ratio and the page communication for various sizes for the cache memory. On these
graphs, we represent 50% as a threshold below which the efficiency can be (arbitrarily)
considered insufficient. Using a cache memory, when the number of pages becomes very

102

small, it results a large cache fault ratio (or miss ratio) which entails a large number of
page communications (Figure 8).

Between the different tested databases, Rings4 and Tetra9 represents the two extremes
behavior: Tetra9 uses a small average number of pages per pixel (17.45) and thus can be
efficiently rendered with a small size for the cache, while Rings4 which uses the greatest
average number of pages per pixel (125.91) requires a larger cache memory to keep above
the efficiency threshold (50%).

Concerning the evolution of the miss ratio, we notice that when using all the node
memory capacity (about 3.2 Mbytes/node for the shared virtual memory management),
we are far from the miss ratio corresponding to the critical threshold, and thus far from
the network saturation. This saturation has been obtained with the Rings4 database
when using only 204 pages for the cache (Figure 8.3). Bomans [7] have shown that the
peak communication rate on the iPSC/2 is 0.9 Mbytes/sec when using message size of 1
Kbytes (our page size), while the absolute peak communication rate is 2.75 Mbytes/sec.
Thus we notice that the peak performance we have measured corresponds to about 70%
of the network for this message size (and around 23% with respect to the absolute peak
communication rate).

If we reduce the cache size once more, the communication performance decreases: this
phenomenon corresponds to a network congestion similar to the Hot Spot which appears
when using shared memory architectures [1].

4 Implementing a SVM on DMPCs

The SVM described in this paper is implemented inside the ray tracing algorithm, there­
fore it is easily portable on other DMPCs. However, the management of pages, the use
of high level communication primitives and satisfying page requests add substantial over­
heads. In order to minimize these overheads, SVM can be incorporated in the operating
system or can be implemented by designing special VLSI devices.

4.1 An Operating System Approach

Incorporating the SVM inside the operating system allows the use of fast, low-level com­
munication primitives and the Memory Management Unit (MMU) available in each node.
In a paper by K. Li and R. Schaefer [27], a SVM for an iPSC/2 is presented. They use
the MMU of the Intel 80386 to yield a large virtual address instead of physical addresses
for memory references. The virtual address space is a set of pages, each of which has a
size of 4096 bytes. A 128 nodes iPSC/2 with 16 Mbytes of local memory allows a virtual
shared address space up to 2 Gigabytes. Their results show that a kernel implementation
can provide at least 23% improvement. We are working on such an implementation. Our
approach differs in that it uses very low-level communication primitives which bypass the
NX/2 protocol.

Unfortunately, this approach cannot be implemented on transputer-based machines
due to the lack of a memory management unit.

4.2 A Hardware Approach

The implementation of a SVM requires that each processor is able to respond as soon as
possible to page requests coming from other processors. Therefore, user tasks are often
interrupted for replying to these requests. Special VLSI devices can be designed for doing
this task. This approach is similar to the one which consists of implementing the routing

103

100

300

200

The Rings4 database The Tetra9 database
100% ,..-___________-:=,1 Efficie,=n-"cy"--___________100%

~------------------~3~C~o~m~municart~io~n~ra~t~e~----------------_

600

pages/sec/node
(x lKbytes)

pages/sec/node
(x1 i{bytes) 500

400

o~----------~ o
0% 10% 20% 30% 40% 50% 60% 70% 0% 1% 2% 3% 4% 5% 6% 7%(8%)
(1) (3242) (1) 2895

Size of the cache relative to the database size
(Number of pages (xIKbytes) in the cache)

Fig. 8. Efficiency, cache miss, and page communication curves with respect to cache size

80%

60%

80%

60%

50%

40% •40%

20% 20%

0% 1.-__________---' 0%
r-______________________~2~issrrat~i~o~--------------------_

14% /100 pages

12% i
10%

8%
6,7%

6%

4%

2%

33 pages
Eflicienc 50%

0%

300

200

14%

12%

10%

8%

6%
PrL-__________~E~ffi~o~·e~n~c~~~4,8%

4%

2714 page", 2%

~-------------' 0%

104

algorithm in VLSI router chip. In recent papers, R. Bisiani and M. Ravishankar present the
PLUS machine [5,6] which is a distributed memory architecture. Global memory mapping
and coherence management are performed by a hardware module implemented with PLD's
and PAL's. The topology of the PLUS machine is a mesh. Routing is performed by a mesh
router from Caltech. This architecture will offer the advantage of DMPC (simple design,
scalability) and SMPC (easy programming).

5 Conclusion

In this paper, we have described a parallel scheme which appears quite paradoxical for a
DMPC: the use of a Shared Virtual Memory to manage a distributed database. In fact,
this mechanism efficiently exploits all the distributed resources of these architectures:
computation, storage and communication resources.

Our current work concerns the implementation of the SVM in the kernel of the NX/2
operating system [26]. This implementation is based on the hardware MMU of the node
processor (Intel 80386) which supports a virtual address space. We hope to obtain bet­
ter absolute synthesis times by exploiting the fact that the virtual to physical address
translations which were made by software will be faster using the MMU.

Remarks

Concerning distribution, VM_pRAY (the ray tracing algorithm described in this paper) can be

obtained by anonymous FTP on irisa.irisa.fr (131.254.2.3) in the directory iPSC2/VM_pRAY.
Scenes in NFF format are available in iPSC2/NFF. A copy of VM_pRAY may also be obtained

by sending electronic mail to either: badoueHlirisa. fr or priolOirisa. fr for those who do
not have access to fnet.

References

[1] 	 G. Almasi and A. Gottlieb.: Highly Parallel Computing. ISBN 0-8053-0177-1. Benjamin Cummings,
1983.

[2] 	 B. Arnaldi, T. Priol, and K. Bouatouch.: A new space subdivision for ray tracing CSG modelled
scenes. The Visual Computer, 3(2):98-108, August 1987.

[3] 	 D. Badoue!.: Schemas d'execution pour les machines paralWes Ii memoire distribuee. Une etude de
cas; Ie lancer de rayon. PhD thesis, Universite de Rennes I - IFSIC, Rennes, October 1990.

[4] 	 D. Badouel, K. Bouatouch, and T. Prio!': Ray tracing on distributed memory parallel computers:
strategies for distributing computations and data. In S. Whitman, editor, Parallel Algorithms and
architectures for 3D Image Generation, pages 185--198. ACM Siggraph'90 Course 28, August 1990.

[5] 	 R. Bisiani and M. Ravishankar.: Plus: A distributed shared-memory system. In 17th International
Symposium on Computer Architecture, May 1990.

[6] 	 R. Bisiani and M. Ravishankar.: Programming the PLUS Distributed-Memory System. In Fifth Dis­
tributed Memory Computing Conference, 1990.

[7] 	 L. Bomans and D. Roose.: Communication Benchmarks for the iPSC/2. In F. Andre and J.P. Verjus,
editors, Hypercube and Distributed Computers, pages 93-103, Rennes, France, October 1989. INRIA.

[8] 	 K. Bouatouch, M. O. Madani, T. Priol, and B. Arnaldi.: A new algorithm of space tracing using a
CSG model. In Eurographics'87, August 1987.

(9J 	 C. Bouville, R. Brusq, J. L. Dubois, and I. Marchal.: Synthese d'images par lancer de rayons: alga­
rithmes et architecture. Acta Electronica, 26(3-4):249~259, 1984.

http:irisa.irisa.fr

105

[10] 	 E. Caspary and I. D. Scherson.: A self balanced parallel ray tracing algorithm. In Parallel Processing
for Computer Vision and Display, UK, January 1988. University of Leeds.

[11] 	 J. G. Cleary, B. Wyvill, G. Birtwistle, and R. Vatti.: Multiprocessor ray tracing. Research Report
83/128/17, University of Calgary, October 1983.

[12] 	 R. L. Cook and K. E. Torrance.: A reflectance model for computer graphics. ACM Transactions on
Graphics, 1(1):7-24, January 1982.

[13] 	 M. Dippe and J. Swensen.: An adaptative subdivision algorithm and parallel architecture for realistic
image synthesis. In SIGGRAPH'84, pages 149-157, New York, 1984.

[14] 	 A. Fujimoto, T. Tanaka, and K. Iwata.: ARTS: Accelerated ray_tracing system. IEEE Computer
Graphics and Applications, 6(4):16-26, April 1986.

[15] 	 A. S. Glassner.: Space subdivision for fast ray tracing. IEEE Computer Graphics and Applications,
4(10):15-22, October 1984.

[16] 	 J. Goldsmith and J. Salmon.: Automatic creation of object hierarchies for ray tracing. IEEE Computer
Graphics and Applications, pages 14-20, May 1987.

[17] 	 S. Green and D. Paddon.: Exploiting coherence for multiprocessor ray tracing. IEEE Computer Graph­
ics and Applications, 6:12-26, November 1989.

[18] 	 S. Green and D. Paddon.: A highly flexible multiprocessor solution for ray tracing. Visual Computer,
5(6):6273, March 1990.

[19] 	 S. Green, D. Paddon, and E. Lewis.: A parallel algorithm and tree-based computer architecture for
ray traced computer graphics. In Parallel Processing for Computer Vision and Display, UK, January
1988. University of Leeds.

[20] 	 E. Haines.: A proposal for standard graphics environments. IEEE Computer Graphics and Applica­
tions, 7(11):3-5, November 1987.

[21] 	 R. Hall and D. Greenberg.: A testbed for realistic image synthesis. IEEE Computer Graphics and
Applications, 3(8):1020, November 1983.

[22] 	 D. Jevans.: Optimistic multi-processor ray tracing. In em Computer Graphics 1989 (Proceedings of
CGI'89), pages 507-522, Leeds, 1989.

[23] 	 M. Kaplan.: Space-tracing, a constant time ray tracer. In SIGGRAPH'85 tutorial on the uses ofspatial
coherence in ray tracing, 1985.

[241 	 T. Kay and J. Kajiya.: Ray tracing complex scenes. ACM Computer Graphics, 20(4):269-278, August
1986.

[25] 	 H. Kobayashi, T. Nakamura, and Y. Shigei.: A strategy for mapping parallel ray-tracing into a hy­
percube multiprocessor system. In Computer Graphics International'BB, pages 160-169. Computer
Graphics Society, May 1988.

[26] 	 Z. Lahjomri.: Mise en reuvre d'une memoire virtueHe distribuee sur l'IPSC/2. Rapport de DEA.
Institut de Formation Superieure en Informatique et Communication (IFSIC). Rennes, September
1990.

[27] 	 K. Li and R. Schaefer.: A hypercube shared virtual memory system. In 1989 International Conference
on Parallel Processing, pages 125-132, 1989.

[28] 	 T. Naruse, M. Yoshida, T. Takahashi, and S. rialto.: Sight: A dedicated computer graphics machine.
Computer Graphics Forum, 6(4):327-334, 1987.

[29] 	 K. Nemoto and T. Omachi.: An adaptative subdivision by sliding boundary surfaces for fast ray
tracing. In Graphics Interface '86, pages 43-48, May 1986.

[30] 	 H. Nishimura, H. Ohno, T. Kawata, I. Shirakawa, and K. Omuira.: Lillks-l: A parallel pipelined
multi microcomputer system for image creation. In Proc. of the 10th Symp. on Computer Architecture,
pages 387-394, 1983.

[31] 	 M. Potmesil and E. Hoffert.: The pixel machine: A parallel image computer. In SIGGRAPH'B9,
Boston, 1989. ACM.

[32] 	 T. Prio!': Lancer de rayon sur des architectures paralleJes: etude el mise en reuvre. PhD thesis, Institnt
de Formation Superieure en Informatique et Communication, Rennes, June 1989.

106

[33] 	 S. Roth.: Ray casting for modeling solids. Computer Graphics and Image Processing, 18(2);109-144,
February 1982.

[34] 	 T. Takahashi, M. Yoshida, and T. Naruse.; Architecture and performance evaluation of the dedicated
graphics computer: SIGHT. In COMPINT'87, pages 153-160. IEEE, November 1987.

[35] 	 T. Whitted.; An improved illmination model for shaded display. Computer Graphics and Image Pro­
cessing, 23(6):343-349, June 1980.

