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Today's workstation users demand high computational performance combined 
with powerful graphics and a comfortable window system. Existing and forthcoming 
standards like OKS-3D, PHIOS/PHIGS+, X Window System, and PEX have to be 
supported optimally. 

This paper presents the architecture of a graphics engine designed to meet the 
above requirements. Utilizing a distributed frame buffer pixel access with a high 
bandwidth is achieved. Several functions of a window management system like 
clipping at arbitrarily shaped window boundaries, fast copying of windows and 
performing Bit-Block-Transfer operations (BitBIT) are performed by hardware. 
Finally, a homogeneous and load-adaptive multiprocessor configuration for geometry 
and rendering calculation is described. 
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1. Introduction and Background 

Computer Graphics is an area of research and industrial exploitation with a large and 
still increasing number of applications. The human visual perception is the most 
effective method to perceive a large amount of information. Therefore graphics 
methods for displaying data including efficient man-machine interfaces enhance the 
user's productivity. The photorealistic rendering of complex scenes and fast 
computations for the visualization of technical, physical, chemical, or medical data 
requires innovative workstation architectures. Speed improvements will be achieved 
by the design of specialized hardware to meet the requirements for the display of large 
amounts of scientific data within time constraints. Moreover the user asks for an 
environment that allows the simultaneous display of computational results of different 
applications. This has to be performed in parallel to the access and manipulation of 
data by several user processes. This task is best performed by the use of workstations. 
They provide a window environment as an interface to the user. To meet the 
requirements for concurrency and image quality with high interactivity, a substantial 
hardware support for window-oriented workstations is mandatory. 

The low price of raster scan monitors and the rapid decrease in cost of 
semiconductor memories introduced the raster displays as the only important 
technique in the mass market of workstations. In the workstation area the raster scan 
displays are assisted by a frame buffer - often associated with the term 'image 
memory'. The frame buffer contains the image to be displayed on a pixel-by-pixel 
basis and refreshes the raster scan display continuously. This implies a memory 
architecture with two functional ports. One port is used by the rasterization process 
which computes all the pixels from a geometric description. The other port is 
controlled by a circuit which routes the color values of the stored pixels to the CRT 
display [14,17]. The advantage of a frame buffer is based on the fact that the screen 
refresh process is independent of the image generation and rasterization process, i.e. 
the refresh frequency for the monitor can be chosen independently of the frame buffer 
update rate achieved by the rasterization process. Therefore the frame buffer manages 
to display an arbitrary image with no limits to the complexity and the number of 
graphics objects. 

On the other hand, a lot of pixels have to be updated in order to obtain major 
image modifications. As a consequence of today's very high resolution monitors (up to 
2k x 2k pixel), frame buffers are usually implemented using slow memory chips with 
a very high density. Before Video RAM (VRAM) chips were introduced, only single 
ported dynamic RAM chips could be used to realize a frame buffer. Therefore the 
screen refresh consumed a significant fraction of the frame buffer access bandwidth, it 
became a bottleneck for the pixel update. 

In general, modern applications are constructed of VRAM chips that provide an 
additional serial port [14,17]. Using this port for image refresh to the monitor, the 
random access port is nearly all of the time available for the pixel update (only a small 
amount of time is required for RAM refresh). So the rasterization process can be 
accelerated by simply using VRAM chips instead of DRAM chips. 

Nevertheless, Computer Graphics users have an ever-increasing desire for higher 
performance, more functionality and better picture quality. This is constantly driven 
by rapid improvements in semiconductor technology and more sophisticated 
rasterization techniques [71. Therefore the principal frame buffer functionality of 
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storing pixels and refreshing the screen must be extended. Additional issues and their 
impacts on the overall performance have to be considered. 

- Bringing parallelism to the frame buffer is an effective method to speed up image 
generation. On the pixel level the components of the pixel representation (e. g. 
color-, Z-value, window identifier) and on the primitive level several picture 
elements referring to the same graphics primitive (e. g. several spans of a triangle) 
can be computed and accessed in parallel. Additionally, the manipulation of 
geometric data may be performed by a parallel multiprocessor approach. 

In order to achieve this parallelism, various methods and techniques have been 
investigated [7]. As an example, the image memory can be organized into 
subsequent scan lines or square areas, and the memory chips can be arranged in an 
interleaved mode to reduce the influence of the memory cycle time. Furthermore, 
some frame buffer designs are based on custom designed VLSI chips which 
combine memory and processor capability on a single chip. The most prominent 
representatives are the Scan Line Access Memory (SLAM) [5], the Super Buffer [81 
and Pixel-Planes [61. They all are capable to cause a high speed-up for special 
rasterization algorithms. But problems of data distribution, flexibility, 
programmability, and mass production arise when systems with a very high pixel 
resolution have to be implemented, as it is required for modem workstations. 
Moreover, such graphics systems are mostly restricted to a fixed rasterization 
algorithm with the consequence that they cannot be adjusted to new and possibly 
more sophisticated techniques. As a result, the Distributed Frame Buffer is targeted 
as a state-of-the-art architecture [1,2,9,10]. It provides a high bandwidth between 
rendering processors and the frame buffer. This is achieved by enabling the pixel 
accesses of multiple rasterization units in parallel. Even in applications with a very 
high pixel resolution, an efficient design can be done by using off-the-shelf and 
hence cheap VRAM chips. A major part of this paper will focus on the distributed 
frame buffer concept as a basis for a high performance graphics system. 

- In currently available workstations, a window management system is essential. 
Therefore, the appropriate frame buffer architecture should not only be optimized 
for fast primitive rendering within the whole screen area, but also within a screen 
portion - the window. This means that the throughput of processed graphics 
primitives should not decrease if the image generation is limited to the boundaries 
of a window. It should be kept in mind, that modem workstations even have to 
provide arbitrarily shaped windows [1,2]. 

In summary the frame buffer architecture has to support efficiently fast window 
updates and movements, creating and deleting pop-up menus and handling 
arbitrarily shaped windows. In a multi-tasking environment these requirements have 
to be managed in conjunction with a fast context switch, because different window 
contents are usually processed by different tasks [11]. 

- The integration of video input sources into a graphics system by the use of a frame 
grabber hardware extension is a very reasonable feature for animation and image 
synthesis applications. The video input can then be manipulated by image 
processing algorithms and displayed like computer generated images. Nowadays, 
designers of electronic publishing systems investigate on the integration of moving 
images into electronic documents. Therefore a frame buffer has to provide a frame 
grabber mechanism. The windows containing video sequences should be controlled 
and manipulated in the same manner as a text or graphics window. 
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Keeping in mind, that the frame buffer must be tightly coupled to the rasterization 
processors, the strong influence of the frame buffer architecture on the hardware and 
software design of the overall system is becoming apparent. On the other hand, image 
generation, manipulation, and rasterization comprises many different tasks and 
complex computations. The stages of the image generation output pipeline can be 
qualified by a simple scheme as shown in figure 1. It is the basis for most of the 
graphics system architectures [2,3,9,16]. 

Figure 1: Image generation scheme 

The geometry section comprises modelling and viewing transformations, the 
perspective projection and the clipping of the graphics primitives. The rendering 
section consists of the evaluation of an illumination model, of the rasterization 
process, shading and hidden surface removal. At the end of the rendering process the 
pixels are stored into the frame buffer and are displayed on the monitor. 

A system architecture is needed where many processors perform all these tasks in 
order to achieve fast image generation and manipulation. With a parallel architecture 
the designer splits up the computational burden. Partitioning of the complete graphics 
process is state-of-the-art, and as a consequence there are a lot of proposals to design a 
graphics system with several processors working in parallel and executing different 
tasks. 

One characteristic implementation is shown in [4] by developing hardware to 
speed up graphical algorithms of the geometry computation. It is the realization of a 
pipeline structure with all inherent disadvantages. It is almost impossible to balance 
the workload of the pipeline stages. Additionally the hardware pipeline is fixed for a 
given algorithm even if the requirements are changing. 

Avoiding these problems Torborg, [15] presented a parallel architecture for the 
geometric section. The computational task is distributed to a configurable number of 
MIMD geometry processors. But even this solution presents a two stage pipeline 
consisting of the geometry and rendering section with possible difficulties of work­
load balancing. 

Therefore it is reasonable to apply Torborg's approach to the geometry and the 
rendering section. This leads to a well balanced system of several processors working 
in parallel, which takes advantage of the distributed frame buffer concept. It is 
realized in the 3DGRP - the 3D Geometry and Rendering Pipeline [13] which is also 
presented in this paper. 
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2. The 3DGRP Frame Buffer Architecture 

The basic idea of the 3DGRP frame buffer architecture is to support a multiprocessor 
approach to speed up rendering algorithms in general. Although several rendering 
processors have to access the frame buffer in parallel to achieve the desired speed up a 
bottleneck must be avoided at the interface between the rendering processors and the 
memory chips of the frame buffer. This leads to the concept of the distributed frame 
buffer which is state of the art in modem workstations. For instance the raster 
subsystem of the Silicon Graphics' Superworkstation [1,2] is organized into five 
memory banks that are attached to one span processor respectively. The frame buffer 
in the AT&T Pixelmachine [9,10] is divided into an array of pixel nodes. Each pixel 
node contains a fraction of the whole memory tightly coupled to a MIMD processor. 

For the 3DGRP frame buffer design three conditions for a resouable partition of 
the entire storage have to be taken into account: 

- the required display resolution of 1280 x 1024 pixel 
- the organization of modem VRAM-chips (256k x 4 bit) 
- the number of necessary VRAM-chips, which should be minimal. 

This leads to a distributed frame buffer consisting of five equally sized memory 
banks. Every bank contains 1280 : 5 256 columns of the whole screen. The 
arrangement of these columns is shown in figure 2. 

1280 
345 
345 

1 2 345 2 
1 2 345 2 

1 2 345 
1 2 3 4 5 

Figure 2: Frame buffer interleaving 

Every memory bank can be accessed exclusively by a tightly coupled rendering 
processor, i.e. one processor need not to compete with others for memory access. 

The global frame buffer architecture is represented by figure 3. The on-screen 
memory contains all the pixels visible on the screen. The resolution is 1280x1024 
pixels. Each pixel ,consists of 24 bit color data twice (double buffer), 24 bit depth 
value (Z-buffer), 8 bit transparency, 8 bit window identifier, and up to 15 bit cursor 
overlay planes. The color representation can individually be chosen between true color 
and indexed color for every pixel. In case of true color the 24 bit color value will be 
splitted into the R-, G- and B-channel with 8 bit each. In the indexed color mode only 
8 bits of the 24 bit color value are used as the input of the color look up table. 
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Figure 3: Frame buffer architecture 

The off-screen-memory provides additional memory space for pixel data. It can be 
used by a window manager for the implementation of a backing store or as a font 
cache. The off-screen memory contains nearly two million pixels. The use of the 
display memory is described later on. All of these memories can be accessed by the 
rendering processors. 

The display memory is used as temporary storage for all pixels within one or more 
window boundaries. It is needed for the hardware supported window copying 
mechanism described later on. All memory sections can be read and written by the 
rendering processors using the random-access ports of the memory chips, but the 
display memory cannot be seen by the user of the 3DGRP. 

In order to realize BitBIT operations within the distributed frame buffer every 
processor needs to access all the frame buffer banks. Therefore a crossbar switch (X­
switch) connects all memory banks with the rendering processors. 

Every pixel has a 8 bit window identifier (window-ID) which is used to index a 
window look up table (WLUT). The window-ID controls write accesses of the 
rendering processors to the frame buffer as well as it presents basic information for 
the video controller. Figure 4 illustrates the video controller's evaluation mechanism 
of the window-ID. 
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Figure 4: Window-ID evaluation 

Controlling the rendering processors' write accesses allows to handle arbitrarily 
shaped windows. Due to this for every write operation the rendering processors 
have to compare the window-ID of the new pixel with the stored one. In case of 
difference the write operation is cancelled. This mechanism is also used for off­
screen memory access. 

- The video controller utilizes the output of the WLUT to select for every window 
individually the source of pixel data which are to be displayed on the monitor 
Therefore double buffering is individually selected for every window. 

- The window-ID manages to select one out of five colour look up tables (CLUT) for 
every window individually. 

- The video controller can fill a window of any size and shape with a constant colour 
during one frame cycle by evaluating the WLUT output. 

- Finally, advantage can be taken of the window-ID to support very efficiently the 
moving of multiple windows across the screen. Therefore the video controller is 
able to copy these windows without intervention of the processors. Before starting 
the copy function the window manager has to provide a shift vector, the identifiers 
of the windows to move and all identifiers of those windows which are allowed to 
cover the ones to move. While the copying is done by the video controller the 
rendering processors can already start to restore the formerly overlapped screen 
areas. The hardware copy function handles the visible part of the double buffer 
(color data), the window-IDs and optionally the cursor data. 
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The serial input/output ports of the VRAM chips of the on-screen and the display 
memory and the input ports of the RAMDACs are linked via the second crossbar 
switch. Normally the SAM ports of the on-screen memory are switched directly to the 
RAMDACs for a conventional screen refresh and to the SAM ports of the display 
memory to store all the pixel information of the present frame. This is a necessary 
precondition (figure Sa) before starting the hardware supported window copying 
described by the following example. 

On-Screen Memory 

~ 

Display Memory 

~ H X-Switch I 

~ 
Monitor 

Figure Sa 

A screen image including three windows WI, W2, W3 which is displayed on the 
monitor is stored in the on-screen and display memory. The joint windows WI, W2 
are to be moved from the upper left corner (see figure 5b) in direction to the lower 
right corner. For this example the window W3 can occlude the windows WI and W2 
and the window W2 covers WI. The mechanism of the hardware supported window 
copying is illustrated by figure 5b to Se. 

The windows to be moved (WI, W2) are copied selectively into the display 
memory within One frame cycle. Simultaneously the contents of the on-screen 
memory is displayed on the monitor (figure 5b). Therefore the on-screen memory is 
read as in normal video refresh mode. The serial input stream to the display memory 
is controlled by two parameters: The window identifier related to every pixel 
determines (via the WLUT) if a pixel is to be overwritten in the display memory. The 
second parameter is a starting address of the display memory, which is calculated of a 
shift vector given by the window manager. 
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In the following step all windows which may cover the ones to be moved (window 
W3 for this example) are copied into the display memory without regarding the shift 
vector(figure 5c). That means, the start addresses of the on-screen and display 
memory are the same. The selective copying is done as described in the previous step 
and again it lasts the time of one frame. The monitor input is still generated by the 
contents of the on-screen memory. 

In the next frame, the video refresh is done by the display memory output. 
Simultaneously all pixels of the display memory are transferred via the serial links to 
the same location in the on-screen memory (figure 5d). 

As a result of the copying procedure described above, there may be regions 
visible, which have to be regenerated by the rendering processors (e.g. background 
formerly covered by Wl,W2). The rendering processors are free to perform this 
regeneration during all steps of the copying procedure which are illustrated by figure 
5b to 5d. The final result is shown in figure 5e. 

3. The 3DGRP Multiprocessor System 

Realizing the disadvantages of existing architectures mentioned in the introduction, 
the goals for the 3DGRP are as follows: 

Highly parallel 
To achieve the required system performance. 

- Homogeneous 
Only one type of processor shall be installed, in order to minimize the efforts for 
hardware and software development. 

Algorithm-independent 
Changing of algorithms must not require changes in the architecture. 

- Application-independent 
Every application shall be performed with full system performance. 

- Automatic load balancing 
No processor will enter a period of being idle, thus achieving the highest possible 
effectiveness. 

- Easy to extend 
If a performance upgrade is needed, the hardware can be extended with minimal 
effort. 

Figure 6 presents the global structure of the 3DGRP. There is a number of identical 
processor moduls GRi working in parallel and accessing the frame buffer. Each modul 
contains a processor, its memory and an interface to the geometry and rendering bus 
and to the frame buffer. 

As in Torborg's approach, the objects are distributed to the processor moduls GRi 
via the geometry bus, which is implemented as multiprocessor bus as well as a 
broadcast bus. If a GR processor fetches a new geometric primitive to be processed, 
the geometry bus acts as a normal multiprocessor bus. Enabling the geometry bus in 
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the broadcast mode it is a means to speed up the initialization phase and to shorten the 
overall transfer time. This is useful while updating context data within the memory of 
the GR modules. 

Each processor performs the geometry processing for one object completely. The 
outcoming data are fed to the processors of the system via the rendering bus, which is 
similar to the geometry bus a broadcast bus as well as a normal multiprocessor bus. 
Then the processors render the objects for all those pixels being situated in the 
attached frame buffer bank. That means, the geometry processing of one object is 
done by only one processor. However, the rendering task of this object is done by all 
the processors but with reduced pixel amount. 

r-___....._.a..G.;.,E.;.,OMETRY BUS 

RENDERING BUS 

Figure 6: Global structure of the 3DGRP 

The logical interface between the geometry and rendering calculations transfers 
pixels, vectors, triangles and trapeziums with edges parallel to the y-axis as rendering 
primitives to the GR modules. Due to their being preprocessed e. g. triangle data are 
calculated really fast. The start values for a span are computed in less than 500 ns and 
a pixel within a span is delivered every 1 us. Note that these values are valid for true 
color, z-buffered Gouraud shading, and all the calculations are done with full floating 
point precision, thus reducing computational inaccuracy to a minimum. 

The effort of computation for processing the incoming data is dependent on the 
size and position of the geometric primitives. Small triangles or short vectors in 
parallel to the x- or y-axis require only a small number of rendering operations. The 
greater burden of computation relative to the resulting number of pixels of that 
primitive is in the geometry section. If there are very big triangles, much more 
processing power for rendering calculations is needed than for geometric calculations. 

The peak performance of this architecture is limited by the number of processors 
involved and is delivered when nearly all processing power is exploited for rendering 
computations. The above mentioned data dependencies cause shifts of processing 
power requirements between the geometry and the rendering section. This architecture 
will overcome this difficulty within its area of performance. 
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Since any processor may run idle after rendering an object, if there is no rendering 
data in his input buffer, it will request new unprocessed objects and continue 
geometry calculations. In this wayan automatic load-balancing is achieved across all 

c 
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the processors. When several GR moduls are doing geometric calculation, the overall 
rendering performance is reduced in favour of geometry processing power, but no 
computational power is going to be wasted by a GR processor starting out to run an 
idle state. 

For this switching mechanism an algorithm is required, that changes quickly the 
context of computation. The internal structure of the processors (single cycle 
instructions, internal memory) provide a fast task switching within 2 us or less thus 
supporting sustained processor performance and avoiding the advances of automatic 
load balancing to be eaten up by switching time. 

In figure 7 a realization example of 3DRP is given, utilizing five GR-modules. As 
processor the digital signal processor (DSP) Texas TMS 320C30, the fastest 
microprocessor available at present, has been chosen. This processor provides two 
memory ports, so it can be connected easily to the geometry and rendering bus. 

For graphics applications where the computation burden within the geometry 
section is much higher than within the rendering section the basic structure shown in 
figure 6 can be augmented with several geometry moduls (G modul). In figure 7 there 
are three G moduls presented. The processor of a G modul performs only the 
geometry tasks of the graphics application. Therefore the G modul is a copy of the GR 
modul, but a FIFO and a frame buffer interface are not needed. 

The master DSP within the master modul (fig. 7) communicates with the host via 
a dual-ported memory. The host transfers the graphics data of the application into the 
dual-ported memory. The master DSP interprets and preprocesses the data and moves 
them via the extension port into the master FIFO. A11 processors (of the G and GR 
moduls) can read the geometric data from the master FIFO. The arbiter in the 
background is scheduling the geometry bus, so that only one processor at a time can 
access the geometry bus. 

The performance of this realization of a 3DGRP architecture is estimated as nearly 
400,000 Gouraud-shaded 10 pixel vectors per second and nearly 50,000 Gouraud­
shaded 100 pixel triangles per second. 
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