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The Intel 180860 is a very powerful RISe processor, designed for applications that 
require a large amount of floating point and integer calculations. Additionally it 
supports graphics applications with a Graphics hardware unit. The aim of this 
article is to investigate, for which application this unit is useful and whether the 
results obtained by the help of this unit are better as with standard e or assembly 
implementations of the same algorithm. 

1. General Aspects 

Although the Intel 180860 is mainly designed as a fast floating point number 
cruncher, it also features a graphics unit. This Graphics Unit (GU) is useful at the 
low end of special algorithms for pixel manipUlation. Geometric transformations 
and other manipulations are very well covered by the high-speed floating point 
and integer unit, which can be accessed simultaneOUSly. Additionally the floating 
point adder and multiplier can operate in parallel, although this requires hand­
optimised assembly routines. This goes as well for routines which want to use the 
graphics unit effectively. See figure 1. 

All compilers use the GU only to transfer data from floating point registers to 
integer registers and vice versa. So the usage of the GU in shading algorithms 
requires always that at least part of the program code is assembly code. 

The I80860 supports pipelining with special instructions and may therefore be 
considered as a vector processor. Again the compilers do not use pipelining (with 
the exception of the PSR vectoriser) and the user who wants to use pipelined 
operations has to manage the different pipelines and keep track of their actual 
status himself. This is not trivial because the 180860 has 5 different pipelines with 
different numbers of stages: 

http://www.eg.org
http://diglib.eg.org
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a) Single and Double precision FP-Adder Pipeline with 3 stages 

b) Single precision FP-Multiplier Pipeline with 3 stages 

c) Double precision FP-Multiplier Pipeline with 2 stages 

d) Graphics Unit Pipeline with 1 stage 

e) FP-Loader Pipeline with 3 stages. 
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Figure 1: Hardware Layout of the INTEL 180860 
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Operating the 180860 in dual instruction mode, where a core unit instruction 
(integer arithmetic or load-store instructions) can be executed parallel to a floating 
point instruction (FP-Add or FP-Multiply or GU-instruction) is not supported by 
the standard compilers. This is not always a big disadvantage because the 180860 
handles overlapping instructions itself, e.g. a floating point instruction which takes 
3 cycles for completion maybe followed by 2 core instructions without additional 
time penalties, i.e. all three instructions will have been executed after the 3 clocks. 
For the assembly programmer it is nevertheless save and easy to use the dual 
instruction mode if he desires, especially if the pipelined versions of the floating 
point instructions are used. These are effectively single clock instructions and no 
overlap-effect can occur. The only way to achieve parallelism between core and 
floating point instructions is then the dual instruction mode. 

When used as a vector processor, the 180860 needs (as all vector processors) 
special preparation of data, like gathering a large amount of input data before 
processing them in a program using pipelined instructions, or scattering these data 
after the processing etc .. With its comparatively small data cache (8KByte) and its 
medium sized register set ( 32 integer and 30 single or 15 double precision floating 
point registers) the 180860 is by design not a load-store machine. The investigations 
were performed on a KONTRON SCB860 AT-Add-On board. When this 
investigations were made, the on-board memory could not be operated at full speed 
for several reasons ( only A2-steppings of the processor were available, no NENE 
NExtNEar signal was generated, not the fastest RAMs were available etc.). So the 
data preparation turned out to be quite costly (in terms of execution speed) in some 
cases and the time used for this data preparation was included in the following 
execution speed investigations. One should keep that in mind before discarding 
vectorised algorithms which may not be as satisfactorily as expected (or hoped). 
Additionally it is not guaranteed that the presented algorithms are the fastest 
possibilities, especially if they involve a lot of different memory accesses. 
Sometimes regrouping of memory accesses is of major impact on the execution time 
and "programming by the book" (e.g. the "Programmer's Reference Manual/[1]) is 
less important than minimisation of page faults etc .. Nevertheless I have not always 
bothered to try every combination as long as the performance was not too 
unsatisfactorily. 

2. Description of the Basic Algorithm 

From the nature of the GU instructions as described below, it becomes clear that the 
supported algorithms are scanline-based algorithms for generating smooth-shaded 
(Gouraud-shaded) polygons. When confronted with such a powerful floating point 
machine one might wish to use more sophisticated rendering algorithms, like ray­
tracing, radiosity algorithms etc .. It should not be excluded, that the GU may be 
useful for such algorithms as well, but this is far from obvious. The aim of this 
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article is to investigate the capabilities of the GU and I will therefore restrict myself 
to the algorithm for which the GU instructions are obviously tailor-made. 

The examinations only consider the basic interpolation, Z-Buffer and pixel­
update mechanism which is typical for pixel oriented shading algorithms (e.g. 
scanline-algorithms). For a certain amount of pixels, the color and z-depth values 
are calculated by linear interpolation. After that the z-depth value for each pixel is 
compared with the corresponding Z-Buffer value and if necessary, the color and Z­
Buffer values for this pixel are updated. The algorithm will be referred to as 
painting or rendering algorithm. 

3. GU Instructions and Their Data Formats 

The GU of the 180860 supports several different data formats. In general the 
color and z-depth values are "floating-point" like in the sense that they consist of 
an integer and a fractional part "iiii.ffW (fixed-point formal). Depending on the 
size one or more of the values are stored in a 64-Bit word. After the interpolation 
they are truncated to their integer part and packed into a special "MERGE" register 
from where they can be transferred to an ordinary FP-register and then stored or 
compared to similar values (Z-Buffer check). The supported formats are: 

("fsl", "fs2/1 and "fregit stand· for any double precision FP-register and It(p)1t 
indicates the modified instruction for the pipelined version, if available) 

3.1 8-Bit Pixel 

The interpolation values are 16-Bit deep with an 8-Bit integer part and an 8-Bit 
fractional part. The interpolation instructions are: 

"(p)faddp fsl,fs2,freg H 
• 

3.2 16-Bit Pixel 

The interpolation values are 16-Bit deep with a 6-Bit integer and a IO-Bit 
fractional part. A 16-Bit pixel is understood to be a RGB-value with a 6-Bit R­
part, a 6-Bit G-part and a 4-Bit B-part packed into a 16-Bit word. The 
instructions are the same as for the 8-Bit pixel, but will behave differently during 
the merging process. (The instructions consult a bit field in one of the control 
registers, where the pixel size has to be specified.) 
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3.3 32-Bit Pixel 

Again the pixel value is an RGB-value, where each part covers 8 bit and the most 
significant byte is void. The interpolation value for each color is 32-Bit deep with a 
8-Bit integer portion and a 24-Bit fractional part. Again the instruction is the same 
and the merging will be performed appropriately. 

3.4 16-Bit Z-Buffer 

The instruction 


"(p)faddz fsi,fs2,freg" 


performs a 32-Bit z-depth interpolation, where the results are truncated to their 16­
Bit integer part. The 


H(p)fzcks fsi,fs2,freg" 


instruction performs the corresponding Z-Buffer check. This instruction stores a 

64-Bit word which contains the four smaller z-values. Additionally it sets a Pixej­

mask bit field in a control register which tells a consecutive pixel store instruction 


"pst.d fsl,target-address" 


which pixels should be updated and which not. 


3.5 32-Bit Z-Buffer 

If 32-Bit interpolation is required, the usual integer adds can be used. For 64-Bit 
interpolation (32-Bit integer and 32-Bit fraction) the 

H (p)fiadd.dd fsl,f s2,f reg" 

instruction is available. The corresponding Z-Buffer check instruction is 

H(p)fzckl fsl,fs2,freg". 

3.6 Possible Combinations 

The following combinations are possible (in principle, but not all are reasonable); 

I) 8-Bit PIXEL &, 16-Bit Z-BUFFER. 

II) 8-Bit PIXEL &, 32-Bit Z-BUFFER (32-Bit interpolation) 

III) 8-Bit PIXEL &, 32-Bit Z-BUFFER (64-Bit interpolation) 

IV) 16-Bit PIXEL It. 16-Bit Z-BUFFER. 

V) 16-Bit PIXEL &, 32-Bit Z-BUFFER (32-Bit interpolation) 

VI) 16-Bit PIXEL &, 32-Bit Z-BUFFER (64-Bit interpolation) 

VII) 32-Bit PIXEL &, 16-Bit Z-BUFFER. 

http:fiadd.dd
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VIII) 32-Bit PIXEL & 32-Bit Z-BUFFER (32-Bit interpolation) 

IX) 32-Bit PIXEL & 3Z-Bit Z-BUFFER (64-Bit interpolation) 

4. Realisations of the Basic Algorithms 

Three different types of programs will be analysed and examined in the following 
context: 

a) Pure C-Versions (PCV) 

b) C-Frames with hand-optimised Core-routines (OCV) 

c) C-Frames with hand-optimised Graphics-Unit-routines (OGV) 

Before the presentation of the results, some general remarks on the level of 
optimisation and the complexity of the programs are necessary. 

The accuracy of the a) and b) versions is much higher, because all 
interpolations are done in double precision floating point format. It is questionable 
whether this is really an advantage or only an assurance, but it is mentioned for the 
sake of honesty. 

4.1 pev 

The C-routines are in general very simple and leave not much space for 
optimisation or variation. The only decision one has to make is whether to do the 
color interpolation always or only if the Z-buffer check yields a positive result. 

E.g. USE: 

for(i=Oii<noii++) { 
z += z deltai 
col +=-col delta; 

/* Color Interpolation */ 
if( (zs - (short)z) < zbuf ) { 

zbuf[i] - zSi 
pixel[i] (char) coli 

} 
} 

OR USE: 

for(i=Oii<noii++) { 
Z +- z delta; 
if( (zs = (short)z) < zbuf ) { 

m (double) ii 
zbuf[i] = zSi 
pixel[i] (char) (col_start + m*col_delta); 

} 
} 

The first version will always do one floating-point add, whereas the second 
version will do instead only an occasional integer-Io-double conversion in 
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connection with an floating-point add and multiply. For the 8-Bit-per-Pixei cases 
both versions are equally fast. If more than one color value has to be interpolated, 
as for the RGB-cases (16- and 32-Bit-per-Pixel), the second version becomes more 
effective and was used in the comparisons. 

4.20CV 

In this versions the C-frame program is the same as for the PCVs, only the core­
program, e.g. the "forH-loop described above, is substituted by a hand-optimised 
assembly routine. These routines are not too complex and any programmer with a 
bit of experience will not encounter greater difficulties. Again the routine for the 
RGB-cases is more complicated, because in this cases it pays to use pipelined 
floating point instructions and consequently dual instruction mode as well. 

4.3 OGV 

In order to use the graphics unit effectively, a lot of more or less complicated 
preparations are necessary. For all cases the pixels have to be treated in 8-Pixel 
packages to ensure that the Z-buffer check instructions and the pixel stores are 
synchronous. 

4.3.1 Preparation of the Starting Values 

All starting values have to be prepared and converted into the data formats 
described above. This is trivial and 'not time critical because it applies only for the 
starting and delta values. 

Example: 

/* a-Bit-Pixel color starting value */ 

/* assuming all 8 pixel use the same delta 

increment */ 

/* "shift" double value by 8 Bit and truncate 

to short */ 

col = (short) (col_start * 256.0); 

cold (short) (col_delta * 256.0); 
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/* Accumulate 8 pixels in two doubles */ 
double col_array[2]i 
cpt = (short *) col_arraYi 
/* first the even pixels */ 
cpt[O] col 8*coldi 
cpt[l) = col - 6*cold; 
cpt[2] col - 4*coldi 
cpt[3] = col - 2*cold; 
/* then the odd pixels */ 
cpt[4] col 7*coldi 
cpt[5] col - 5*coldi 
cpt[6] = col - 4*coldi 
cpt[7] = col - l*coldi 
/* Accumulate the corresponding delta values */ 

double cold_array; 

cdpt = (short *)&cold_arraYi 

/* Even and odd pixels use the same delta */ 

cdpt[O] 8*cold; 

cdpt[l] 8*coldi 

cdpt[2] = 8*cold; 

cdpt(3] = 8*coldi 


Similar preparations have to be done for the z-depth interpolation or in cases 
with different pixel depths. 

4.3.2 Preparation of the Delta Switches 

Under realistic assumptions it is not likely that the interpolation uses a constant 
delta value for more than to pixels (typically the distance from one edge to the 
next). The optimised routines are only efficient if much more pixels can be treated 
successively, at least a few 8-pixel blocks are required. Interpolating the pixels 
across a whole object surface would meet this requirement more likely, but to 
guarantee the correct interpolation it must be possible to switch from one delta 
value to the next. During my investigations this problem turned out to be very 
crucial because without a very efficient solution to this problem, the most efficient 
OGV routine might be completely worthless and even slower than the pev. The 
next chapter will give a more detailed description of this problem and offer some 
solutions as well. 

In general the data preparation and the algorithm depend on the chosen model 
(cases 1) - IX) ) but the overall structure is always the same: 

1st Step: 

Do all interpolations for color and z-depth pipelined if possible and do all required 
loads and stores in parallel. The special interpolation instructions merge the results 
as described in [I], For 8-Bit pixels one has to interpolate alternating between even 
and odd pixel-numbers, always 4 Pixels per instruction. For 16-Bit and 32-Bit 
pixels, one interpolates 4 successive pixels per instruction, but alternating between 
R-, G- and B-interpolation. 
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2nd Step: 

Do the required Z-Buffer checks for all 8 Pixels to prepare the Pixel-Mask for 
the subsequent stores. 

3rd Step: 

Do the pixel stores which interpret and reset the Pixel-Mask. This step may be 
executed parallel to Step 1, for overlapping loops. In this case the stores would 
complete the calculations of the PREVIOUS iteration and must be performed 
before the new Z-Buffer checks affect the Pixel-Mask setting. For steps 2 and 3 see 
figure 2. 
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Figure 2: Z.Buffer-Cheek and Pixel-Store 

5. The Delta-Switch Algorithm 

The basic assumption for all the following considerations is that the calling 
program supplies all different delta values which occur along the intersection of the 
scanline with the object surface. This is a reasonable assumption and means no 
additional effort compared to the simple C-program versions, even if the data 
preparation is a bit more complex. 
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With every iteration. the OGV-Program will now load a certain delta value, 
use it for interpolation and then load the next value. This may be the same as the 
first one or a different new delta value, if at this point a delta switch is required. To 
avoid duplication 'of data, one could realise this behaviour by gathering the data 
into a delta structure (this should happen during the preparational period) and 
supplying a pointer array to the OGV-routine. 

In this array a pointer to a certain delta structure appears as often as this 
structure is needed for interpolation. A delta switch is then nothing else than 
changing from one pointer to the next. In reality this procedure is not easily 
implemented for the following reason: All delta-values have to be gathered in 
double (64-Bit) words, because all pixel manipulation instructions operate on 
double words. 

In detail this means: 

Four 16-Bit Z-depth or color values, or two 32-Bit Z-depth or color values, or 
eight 8-Bit color values must be accumulated in a double word. Depending on the 
combination of Z-Buffer and color values, such a delta structure would contain up 
to 8 different delta values. Taken into account that one delta value might be used 
only for about 10 Pixels, it becomes clear, that in this case the preparation of the 
delta structures does not lead to data multiplication. Consequently, for each 
different model one has to find. the best suited solution, which in general is a 
mixture of using extended delta-value arrays and delta-structure-pointer arrays. 
(The extended delta-value array maybe a structure array as well, so the emphasis is 
put on the term "pointer" in the second expression.) 

Timing these models may be difficult, because it is not always obvious, which 
preparations are really additional efforts and must be included in the execution 
time measurements. So for the three examples which are considered below, the 
algorithm which is used is explained in detail. Further clarification is given which 
parts of the algorithm are included in the execution time measurements. It is 
common to all applications using "vectorised" special purpose routines, that the 
data preparations shOUld be subject to careful considerations, because otherwise 
they might cost more than the optimised routines gain. 

5.1 Examples 

With 16-Bit pixels and 16-Bit z-Buffer the smallest complete delta structure would 
consist of: 

2 double words, each containing two z-deltas 

3 double words, 1 for each color with 4 deltas per double word 

10 words per structure. 
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If the average pixel chain length is 200 pixels with a delta switch every 10th 
pixel, this would require a total of 30 different delta structures. For two successive 
sets of pixels one would need two "pure" structures which will be used twice and 
one "transition" structure containing the delta switch, i.e. a total of 20 pure 
structures and 10 transition structures. Compared to the original set of different 
delta values ( 20 x 2.5 words) the new set requires 6 times the memory space and the 
corresponding load-store operations. 

The pointer-array method would need this set of different structures and 
additionally a pointer array, where each pure structure is referenced twice and each 
transition structure only once. This would mean another 50 words of memory space 
and the corresponding store operations. An asynchronous treatment of z-delta and 
color-delta values would be another possibility one could think of, but for the 
model with 32-bit z-interpolation this is disadvantageous: 

30 different color-delta structures, 6 words each 180 words 

50 color-deIta-pointers , 1 word each 50 words 

20 different z-delta values, 2 words each 40 words 

100 z-delta-pointers t 1 word each 100 words 

TOTAL = 370 words 

compared to 350 words for the simple pointer array. 

For the extended delta-value array method the pure structures would have to be 
duplicated to yield the complete set of 50 delta structures. The additional effort 
would amount to 200 words memory space accompanied by the corresponding 
load-store operations. In this example the pointer method should prove to be 
superior, as it is probably for all cases, where the pixel size is larger than 8 Bit. 
Only if the pixel subsets along which a delta value remains constant become very 
small (e.g. 4 pixels or less) the delta-value array method will be advantageous. In 
this case the set of different delta structures will already be the extended delta­
value array. 

5.2 Summary 

To enable efficient usage of optimised pipelined pixel operations it is necessary to 
maintain a continuous input flow of delta values for the interpolations. If the usage 
of extended delta-value arrays does not involve to many preparationalload-store 
operations it is a problem independent solution which is easy to include in the 
execution time measurement. 

The usage of pointer-arrays will involve some additional load-store operations 
as well, but this effort is difficult to estimate. If the number of delta switches is 
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large the method is not very efficient, especially if the values for more than 2 pixels 
must be packed into double words. 

6. Results 

Three of the 9 different cases mentioned above (cf. 3.6) have been investigated for 
the following reasons: 

a) Case I: 


This case is the classical example for using the delta-value method of implementing 

the delta-switch algorithm. 


b) Case IX: 


This case is quite the opposite to Case 1) and is best suited for the pointer-array 

approach. The time measurements are based on the simplified model described in 

chapter 5.1 (Example). 


c) Case V: 


Because of the simple z-interpolation this case yields the fastest OCV programs and 

offers therefore the biggest challenge for the Graphics Unit. 

For the OCV and the PCV programs the execution time depends on the size of 
the screen and the number of substitutions due to positive Z-Buffer compares. The 
latter is also a function of the screen size, if the screen size is smail, the Z -Buffer 
becomes loaded with small values quite soon and the number of substitutions 
decreases. The screen size for PCV and OCV programs was 768 x 1024 pixels. The 
execution time of the OGV is independent of the number of substitutions, because 
the store instructions will always be extlcuted, but realised only where the Pixel­
Mask-Bits are set. 

The execution time measurements presented below, are given for various pixel 
chain lengths, from 10 to 1000. Only for the OGV programs pixel chain lengths 
larger than 10 may model real situations. For OCV and PCV programs the 
corresponding figures are given only for the sake of completeness. 

Each run computes 100,000 different pixel chains of the given length, with the 
Z-depth values randomly distributed. To enable a correct comparison it must be 
noted that e.g., 100,000 repetions of pixel chain length 200 for the OGV are 
equivalent to 2,000,000 repetitions of pixel chain length 10 for the PCV and OCV. 

The EQUIVALENCE COMPARISON after each table gives the corresponding 
figures. The number of substitutions for the OCV and PCV programs is app. 
2,200,000 in this case. 
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6.1 Case I) 

No of repetitions: 100,000 

Table 1 

All timings are given in Milli-seconds. 

EQUIVALENCE COMPARISON: 

OGV : 100,000 x 200 in 6540 msec 

is equivalent to 

OCV : 2,000,000 x 10 in 15680 msec 

PCV : 2,000,000 x 10 in 25350 msec 

with 2,200,000 substitutions. 

In terms of Gouraud-shaded polygons, the latter results may be translated into: 
OGV: 30,500 

OCV: 12,750 

PCV: 7,900 

lOO-Pixel GOURAUD-SHADED POLYGONS per SECOND. 

6.1.1 Remarks 

The delta-switch algorithm is based solely on delta-value arrays, because in this 
case each delta-structure would contain the delta values for 8 successive pixels 
gathered in a total of 4 double words. 

Optimised copy routines are used to distribute and repeat the delta values 
appropriately. The time needed for this copies is INCLUDED in the execution time 
measurements. Not included is the preparation of the index array, which contains 
the number of pixels for which each delta value is valid. This array is used by the 
optimised copy routines. (The array contains nothing else than the number of pixels 
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between an edge pair and is therefore assumed to be supplied by the calling 
program, which will store these data anyway.) 

The original values are assumed to be supplied in two different arrays, one 
containing the 32"'-Bit z-delta values (format: 16-Bit integer and 16-Bit fractional 
part) the other containing the 16-Bit color values (format: 8-Bit integer and 8-Bit 
fractional part). Two different copy routines are required to generate the extended 
arrays. 

The OCV program uses only simple optimisation, because of the small amount 
of floating point calculations. Pipelining and dual instruction mode are no 
improvement in this case and the optimisation is achieved by ordering and 
minimising the number of instructions. 

6.2 Case IX) 

No of repetitions: 100,000 

Table 2 

All timings are given in Milli-seconds. 

EQUIVALENCE COMPARISON: 

OGV : 100,000 x 200 in 8070 msec 

is equivalent to 

OCV : 2,000,000 x 10 in 15640 msec 

PCV : 2,000,000 x 10 in 25260 msec 

with 2,200,000 substitutions. 

In terms of Gouraud-shaded polygons, the latter results may be translated into: 

OGV: 24,800 

OCV: 12,750 

PCV: 7,900 

IOO-Pixel GOURAUD-SHADED POLYGONS per SECOND. 
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6.2.1 Remarks 

In this case all delta values are gathered into one large delta structure of the type: 
"struct delta {double zi-delta, z2-delta, R -delta, G-delta, B-delta }~" 

This delta-structure array is twice as large as the original, because two color 
values have to be accumulated in one double word. It is clear that this method 
simplifies addressing, because all delta values are close together and some time will 
be saved, due to cached loads in the OGV-Program. 

The execution time measurement INCLUDES the time needed to produce the 
delta structures from the original data. 

The example of chapter 5.1 is of course only a very crude model for reality. One 
of its artificial properties is that it needs no transition delta structures, but even in 
real situations there should be not too many of these structures. Provided the 
program permits an easy way to insert such transition structures ( e.g., by adding a 
pointer "struct delta *next" to the "struct delta" so that the different structures are 
forming a chain rather than an array), this means not much additional effort. One 
could use the optimised routine to produce the pure delta structures by duplication 
and afterwards insert the transition deltas at the appropriate locations. 

Additional investigations have shown that an asynchronous treatment of the z­
delta and color-delta valueS is disadvantageous, it needs more memory space and is 
slower. 

The PCV program is slower as in case I) as one could expect because of the 
additional effort of interpolating three color values. In case of the EQUIVALENCE 
COMPARISON this difference becomes negiectable due to the large number of 
memory accesses. 

The OCV program is as fast as in case I), because the larger amount of floating 
point operations allows the efficient usage of pipelined instructions in connection 
with dual instruction mode. 

The OCV becomes than more or less independent of the number of substitutions, 
because the almost all calculation are finished anyway before the result of the Z­
Buffer check affects the color interpolation. ( The Z-Depth value has to pass 
through the Adder-Pipeline twice, before the Z-Buffer check can be performed.) 
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6.3 Case V) 

No of repetitions: 100,000 

Table 3 

No of Pixels OGV OCV PCV 

10 880 2580 

20 1810 1380 4230 

40 1490 2250 6420 

100 4120 4510 10880 

200 5990 7960 16360 

1000 .. L~~7~~ .. 1_34~70JL_52:2~ 1 

I 

All timings are given in Milli-seconds. 

EQUIVALENCE COMPARISON: 

OGV : 100,000 x 200 in 5990 msec 

is equivalent to 

OCV : 2,000,000 x 10 in 11860 msec 

PCV : 2,000,000 x 10 in 18200 msec 

with 2,200,000 substitutions. 

In terms of Gouraud-shaded polygons, the latter results may be translated into: 

OGV: 33,300 

OCV: 16,850 

PCV: 11,000 

100-Pixel GOURAUD-SHADED POLYGONS per SECOND. 

6.3.1 Remarks 

With 2 z-delta values or 4 color values per double word the complexity of this 
model lies between the previous cases. 

The 32-Bit Z-Buffer with 32-Bit interpolation means that simple integer adds 
can be used for the z-depth interpolation. This has its effect mainly on the OCV­
program, were z'-interpolation can now be performed parallel to the color 
interpolation and no float-to-integer conversion for the z-values is required. This 
explains the extraordinarily good OCV performance. More or less the same goes for 
the PCV program. 



245 

The OGV program behaves a bit irregular. The drops in execution time for pixel 
chain length 40 and 200 are due to the fact that these numbers are multiples of 8. 
This means that all pixels are updated with the optimised algorithm. If the pixel 
chain length is less than 16 and no multiple of 8, all or at least the modulo-8-rest 
pixels are treated as in the PCV program. The amount of optimisation for the OGV 
program must be very large to achieve a better performance as the OCV. Again the 
method of the delta-structure-pointer array proved to be most efficient. 

I have tried several other possibilities as well, e.g. separate z-depth 
interpolation, delta-value arrays etc., but the pointer array method gave the best 
result, if a high level of optimisation is provided. Not only the pixel update routine 
has to be optimised, but the data preparation routines as well. 

The execution time measurement INCLUDES the complete preparation of the 
delta structures, which in this case means transition structures as well, and the 
generation of the pointer array. The underlying model is exactly the model 
described in chapter 5.1, which means that it is still a simplification. For a real 
model the optimisation of the data preparation routines becomes a bit more 
complex, but the strategy may be the same: 

1. step: 

Generate all pure delta structures. This is simple and easy to optimise. The delta 
structures should be connected via pointers and may include the number of 
occurrences (i.e. how often this structure is to be u~ed for interpolation). 

2. step: 

Insert all transition structures. For the simple model this is schematic as well 
and therefore easy to optimise. For real situations it may become tedious, but 
nonetheless the number of transition structures should remain small. Therefore it 
consumes not to much execution time, even if it is programmed in C-code. 

3. step: 

Generate the pointer array to be used by the pixel update routine. This can be 
optimised using different strategies, each based on the occurrency information 
contained in the delta structures. 

The OCV and PCV routines profit from the very simple Z-Buffer interpolation. 
Especially for the OCV routine which is in principle the same as for case IX) the 
benefit is large. The z-depth interpolation is now a Core operation and can be 
performed paraliel to a floating point operation. The Z-Buffer check can therefore 
be performed much earlier and consequently for negative compares aborts the color 
interpolation much earlier. 
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7. Miscellaneous 

The rendering algorithm is only one example, where the Graphics Unit instructions 
are usefuL One may think of other examples, where the interpolation features are 
useful as well, e.g. in line drawing algorithms. 

But one should keep always in mind, that the conversion of the input data 
(which may be in "float" or "double") to the special format needed for the 
interpolation instructions requires additional effort. It is therefore only efficient if 
the subsequent calculations make extensive use of the converted data. 

In general preparation of a single data item requires 

I floating point load of the input values and 

I floating point multiply, 

in order to "shift" the input values and save the fractional part after 

1 truncation to an integer format 

and 1 integer store is performed. 

(Almost always some additional manipUlations are necessary, because the 
interpolation instructions of the GU do more than one interpolation with each 
instruction. This means one has use larger increments, more than one starting 
value, etc ..) 

Example: 

16 Bit Z-Buffer value: 

double input; 

long output; 

/* Shift by 16 Bit be'fore conversion */ 

output = (long) (input * 65536.0); 


In optimised code the conversion takes between 4 and 7 clock cycles, depending 
whether the load and store hit the data cache or not. For the application this 
means, that any program not using the GU may take 4 to 7 clock cycles more time. 
If one uses highly optimised assembly code this could be equivalent to 4 to 7 
operations in dual instruction mode. For a simple line drawing algorithm, i.e. the 
interpolation between a starting point and an end point on the screen, a optimised 
routine using the GU is not necessarily faster than an optimised routine not using 
the GU, but the latter requires less programming effort. 

In this case the scale could tip towards the GU program, if the lines to be drawn 
are quite long (e.g. in the range of 100 Pixels) or if additional use of the data would 
involve compares and corresponding pixel updates, etc .. One might think of a clever 
way to implement line styles this way or something like that. 

This issue will not be pursued any farther in this paper, it is just an example for 
the general rule: 
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The usage of the Graphics Unit's interpolation and merging instructions is only 
reasonable, if the calculation effort justifies the data conversion. 

8. Conclusions 

With a considerable amount of optimisation effort it is always possible to 
accelerate the painting algorithm using the GU instructions in a special assembly 
routine. 

In general this goes hand in hand with optimised data preparation routines and 
results in complex algorithms. The acceleration factors lie between 2 and 3 for OCV 
and between 3 and 4 for PCV routines. 

The execution time does not depend much on the complexity of the underlying 
models, for the examined cases it was more or less in the same range. E. g. the 
choice between 8-Bit pixels and 16-Bit or 32-Bit pixels affects the complexity but 
not the performance of the resulting program. 

The OCV method offers an efficient and comparatively simple possibility for 
optimisation, if the problem is not too time critical or if development time is more 
critical than performance. Especially for the simple Z-Buffer interpolation it is a 
good alternative. 

When operated as a graphics engine, the GU of the Intel 180860 is only of 
limited use, ie. for 2D- and 3D-Output primitives of the kind described above. But 
it may playa decisive role if the principle "Simple Things should be Fast" is to be 
fulfilled, even so it requires a lot of optimisation. 
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