
The Graphics Unit of the INTEL 180860

Ulrich Kursawe

KONTRON ELEKTRONIK GmbH

Research & Development Department

Breslauer Str. 2, 0·8057 Eching, FRG

The Intel 180860 is a very powerful RISe processor, designed for applications that
require a large amount of floating point and integer calculations. Additionally it
supports graphics applications with a Graphics hardware unit. The aim of this
article is to investigate, for which application this unit is useful and whether the
results obtained by the help of this unit are better as with standard e or assembly
implementations of the same algorithm.

1. General Aspects

Although the Intel 180860 is mainly designed as a fast floating point number
cruncher, it also features a graphics unit. This Graphics Unit (GU) is useful at the
low end of special algorithms for pixel manipUlation. Geometric transformations
and other manipulations are very well covered by the high-speed floating point
and integer unit, which can be accessed simultaneOUSly. Additionally the floating
point adder and multiplier can operate in parallel, although this requires hand­
optimised assembly routines. This goes as well for routines which want to use the
graphics unit effectively. See figure 1.

All compilers use the GU only to transfer data from floating point registers to
integer registers and vice versa. So the usage of the GU in shading algorithms
requires always that at least part of the program code is assembly code.

The I80860 supports pipelining with special instructions and may therefore be
considered as a vector processor. Again the compilers do not use pipelining (with
the exception of the PSR vectoriser) and the user who wants to use pipelined
operations has to manage the different pipelines and keep track of their actual
status himself. This is not trivial because the 180860 has 5 different pipelines with
different numbers of stages:

http://www.eg.org
http://diglib.eg.org

230

a) Single and Double precision FP-Adder Pipeline with 3 stages

b) Single precision FP-Multiplier Pipeline with 3 stages

c) Double precision FP-Multiplier Pipeline with 2 stages

d) Graphics Unit Pipeline with 1 stage

e) FP-Loader Pipeline with 3 stages.

CORE
Unit

FLOATING

POINT

Unit

Load-Store­
Control­
Integer­
Instructions

Adder

Unit

Multiplier

Unit

Parallel
Operations
possible

Color & Z-depth
Interpolation
Z-Buffer-Check
Pixel-Update

Parallel
Operations
possible
(Dual ­
Instruction
Mode or
Overlapping)

CORE-Unit source operands

32/ FLOATING POINT-Unit source
operands

12 KByte ON-CHIP CACHE Single-Cycle-Loads
(4 KByte Instructions Write-Back-Stores

& 8 KByte Data)

Figure 1: Hardware Layout of the INTEL 180860

231

Operating the 180860 in dual instruction mode, where a core unit instruction
(integer arithmetic or load-store instructions) can be executed parallel to a floating
point instruction (FP-Add or FP-Multiply or GU-instruction) is not supported by
the standard compilers. This is not always a big disadvantage because the 180860
handles overlapping instructions itself, e.g. a floating point instruction which takes
3 cycles for completion maybe followed by 2 core instructions without additional
time penalties, i.e. all three instructions will have been executed after the 3 clocks.
For the assembly programmer it is nevertheless save and easy to use the dual
instruction mode if he desires, especially if the pipelined versions of the floating
point instructions are used. These are effectively single clock instructions and no
overlap-effect can occur. The only way to achieve parallelism between core and
floating point instructions is then the dual instruction mode.

When used as a vector processor, the 180860 needs (as all vector processors)
special preparation of data, like gathering a large amount of input data before
processing them in a program using pipelined instructions, or scattering these data
after the processing etc .. With its comparatively small data cache (8KByte) and its
medium sized register set (32 integer and 30 single or 15 double precision floating
point registers) the 180860 is by design not a load-store machine. The investigations
were performed on a KONTRON SCB860 AT-Add-On board. When this
investigations were made, the on-board memory could not be operated at full speed
for several reasons (only A2-steppings of the processor were available, no NENE
NExtNEar signal was generated, not the fastest RAMs were available etc.). So the
data preparation turned out to be quite costly (in terms of execution speed) in some
cases and the time used for this data preparation was included in the following
execution speed investigations. One should keep that in mind before discarding
vectorised algorithms which may not be as satisfactorily as expected (or hoped).
Additionally it is not guaranteed that the presented algorithms are the fastest
possibilities, especially if they involve a lot of different memory accesses.
Sometimes regrouping of memory accesses is of major impact on the execution time
and "programming by the book" (e.g. the "Programmer's Reference Manual/[1]) is
less important than minimisation of page faults etc .. Nevertheless I have not always
bothered to try every combination as long as the performance was not too
unsatisfactorily.

2. Description of the Basic Algorithm

From the nature of the GU instructions as described below, it becomes clear that the
supported algorithms are scanline-based algorithms for generating smooth-shaded
(Gouraud-shaded) polygons. When confronted with such a powerful floating point
machine one might wish to use more sophisticated rendering algorithms, like ray­
tracing, radiosity algorithms etc .. It should not be excluded, that the GU may be
useful for such algorithms as well, but this is far from obvious. The aim of this

232

article is to investigate the capabilities of the GU and I will therefore restrict myself
to the algorithm for which the GU instructions are obviously tailor-made.

The examinations only consider the basic interpolation, Z-Buffer and pixel­
update mechanism which is typical for pixel oriented shading algorithms (e.g.
scanline-algorithms). For a certain amount of pixels, the color and z-depth values
are calculated by linear interpolation. After that the z-depth value for each pixel is
compared with the corresponding Z-Buffer value and if necessary, the color and Z­
Buffer values for this pixel are updated. The algorithm will be referred to as
painting or rendering algorithm.

3. GU Instructions and Their Data Formats

The GU of the 180860 supports several different data formats. In general the
color and z-depth values are "floating-point" like in the sense that they consist of
an integer and a fractional part "iiii.ffW (fixed-point formal). Depending on the
size one or more of the values are stored in a 64-Bit word. After the interpolation
they are truncated to their integer part and packed into a special "MERGE" register
from where they can be transferred to an ordinary FP-register and then stored or
compared to similar values (Z-Buffer check). The supported formats are:

("fsl", "fs2/1 and "fregit stand· for any double precision FP-register and It(p)1t
indicates the modified instruction for the pipelined version, if available)

3.1 8-Bit Pixel

The interpolation values are 16-Bit deep with an 8-Bit integer part and an 8-Bit
fractional part. The interpolation instructions are:

"(p)faddp fsl,fs2,freg H
•

3.2 16-Bit Pixel

The interpolation values are 16-Bit deep with a 6-Bit integer and a IO-Bit
fractional part. A 16-Bit pixel is understood to be a RGB-value with a 6-Bit R­
part, a 6-Bit G-part and a 4-Bit B-part packed into a 16-Bit word. The
instructions are the same as for the 8-Bit pixel, but will behave differently during
the merging process. (The instructions consult a bit field in one of the control
registers, where the pixel size has to be specified.)

233

3.3 32-Bit Pixel

Again the pixel value is an RGB-value, where each part covers 8 bit and the most
significant byte is void. The interpolation value for each color is 32-Bit deep with a
8-Bit integer portion and a 24-Bit fractional part. Again the instruction is the same
and the merging will be performed appropriately.

3.4 16-Bit Z-Buffer

The instruction

"(p)faddz fsi,fs2,freg"

performs a 32-Bit z-depth interpolation, where the results are truncated to their 16­
Bit integer part. The

H(p)fzcks fsi,fs2,freg"

instruction performs the corresponding Z-Buffer check. This instruction stores a

64-Bit word which contains the four smaller z-values. Additionally it sets a Pixej­

mask bit field in a control register which tells a consecutive pixel store instruction

"pst.d fsl,target-address"

which pixels should be updated and which not.

3.5 32-Bit Z-Buffer

If 32-Bit interpolation is required, the usual integer adds can be used. For 64-Bit
interpolation (32-Bit integer and 32-Bit fraction) the

H (p)fiadd.dd fsl,f s2,f reg"

instruction is available. The corresponding Z-Buffer check instruction is

H(p)fzckl fsl,fs2,freg".

3.6 Possible Combinations

The following combinations are possible (in principle, but not all are reasonable);

I) 8-Bit PIXEL &, 16-Bit Z-BUFFER.

II) 8-Bit PIXEL &, 32-Bit Z-BUFFER (32-Bit interpolation)

III) 8-Bit PIXEL &, 32-Bit Z-BUFFER (64-Bit interpolation)

IV) 16-Bit PIXEL It. 16-Bit Z-BUFFER.

V) 16-Bit PIXEL &, 32-Bit Z-BUFFER (32-Bit interpolation)

VI) 16-Bit PIXEL &, 32-Bit Z-BUFFER (64-Bit interpolation)

VII) 32-Bit PIXEL &, 16-Bit Z-BUFFER.

http:fiadd.dd

234

VIII) 32-Bit PIXEL & 32-Bit Z-BUFFER (32-Bit interpolation)

IX) 32-Bit PIXEL & 3Z-Bit Z-BUFFER (64-Bit interpolation)

4. Realisations of the Basic Algorithms

Three different types of programs will be analysed and examined in the following
context:

a) Pure C-Versions (PCV)

b) C-Frames with hand-optimised Core-routines (OCV)

c) C-Frames with hand-optimised Graphics-Unit-routines (OGV)

Before the presentation of the results, some general remarks on the level of
optimisation and the complexity of the programs are necessary.

The accuracy of the a) and b) versions is much higher, because all
interpolations are done in double precision floating point format. It is questionable
whether this is really an advantage or only an assurance, but it is mentioned for the
sake of honesty.

4.1 pev

The C-routines are in general very simple and leave not much space for
optimisation or variation. The only decision one has to make is whether to do the
color interpolation always or only if the Z-buffer check yields a positive result.

E.g. USE:

for(i=Oii<noii++) {
z += z deltai
col +=-col delta;

/* Color Interpolation */
if((zs - (short)z) < zbuf) {

zbuf[i] - zSi
pixel[i] (char) coli

}
}

OR USE:

for(i=Oii<noii++) {
Z +- z delta;
if((zs = (short)z) < zbuf) {

m (double) ii
zbuf[i] = zSi
pixel[i] (char) (col_start + m*col_delta);

}
}

The first version will always do one floating-point add, whereas the second
version will do instead only an occasional integer-Io-double conversion in

235

connection with an floating-point add and multiply. For the 8-Bit-per-Pixei cases
both versions are equally fast. If more than one color value has to be interpolated,
as for the RGB-cases (16- and 32-Bit-per-Pixel), the second version becomes more
effective and was used in the comparisons.

4.20CV

In this versions the C-frame program is the same as for the PCVs, only the core­
program, e.g. the "forH-loop described above, is substituted by a hand-optimised
assembly routine. These routines are not too complex and any programmer with a
bit of experience will not encounter greater difficulties. Again the routine for the
RGB-cases is more complicated, because in this cases it pays to use pipelined
floating point instructions and consequently dual instruction mode as well.

4.3 OGV

In order to use the graphics unit effectively, a lot of more or less complicated
preparations are necessary. For all cases the pixels have to be treated in 8-Pixel
packages to ensure that the Z-buffer check instructions and the pixel stores are
synchronous.

4.3.1 Preparation of the Starting Values

All starting values have to be prepared and converted into the data formats
described above. This is trivial and 'not time critical because it applies only for the
starting and delta values.

Example:

/* a-Bit-Pixel color starting value */

/* assuming all 8 pixel use the same delta

increment */

/* "shift" double value by 8 Bit and truncate

to short */

col = (short) (col_start * 256.0);

cold (short) (col_delta * 256.0);

236

/* Accumulate 8 pixels in two doubles */
double col_array[2]i
cpt = (short *) col_arraYi
/* first the even pixels */
cpt[O] col 8*coldi
cpt[l) = col - 6*cold;
cpt[2] col - 4*coldi
cpt[3] = col - 2*cold;
/* then the odd pixels */
cpt[4] col 7*coldi
cpt[5] col - 5*coldi
cpt[6] = col - 4*coldi
cpt[7] = col - l*coldi
/* Accumulate the corresponding delta values */

double cold_array;

cdpt = (short *)&cold_arraYi

/* Even and odd pixels use the same delta */

cdpt[O] 8*cold;

cdpt[l] 8*coldi

cdpt[2] = 8*cold;

cdpt(3] = 8*coldi

Similar preparations have to be done for the z-depth interpolation or in cases
with different pixel depths.

4.3.2 Preparation of the Delta Switches

Under realistic assumptions it is not likely that the interpolation uses a constant
delta value for more than to pixels (typically the distance from one edge to the
next). The optimised routines are only efficient if much more pixels can be treated
successively, at least a few 8-pixel blocks are required. Interpolating the pixels
across a whole object surface would meet this requirement more likely, but to
guarantee the correct interpolation it must be possible to switch from one delta
value to the next. During my investigations this problem turned out to be very
crucial because without a very efficient solution to this problem, the most efficient
OGV routine might be completely worthless and even slower than the pev. The
next chapter will give a more detailed description of this problem and offer some
solutions as well.

In general the data preparation and the algorithm depend on the chosen model
(cases 1) - IX)) but the overall structure is always the same:

1st Step:

Do all interpolations for color and z-depth pipelined if possible and do all required
loads and stores in parallel. The special interpolation instructions merge the results
as described in [I], For 8-Bit pixels one has to interpolate alternating between even
and odd pixel-numbers, always 4 Pixels per instruction. For 16-Bit and 32-Bit
pixels, one interpolates 4 successive pixels per instruction, but alternating between
R-, G- and B-interpolation.

237

2nd Step:

Do the required Z-Buffer checks for all 8 Pixels to prepare the Pixel-Mask for
the subsequent stores.

3rd Step:

Do the pixel stores which interpret and reset the Pixel-Mask. This step may be
executed parallel to Step 1, for overlapping loops. In this case the stores would
complete the calculations of the PREVIOUS iteration and must be performed
before the new Z-Buffer checks affect the Pixel-Mask setting. For steps 2 and 3 see
figure 2.

Pixel Mask Color Values
1st Z-Check

(>) (» «) «)

2nd Z-Check

«) (» (>) (»
=>

==1F=>

==jf=>

M

E

M

o

R

y

Pixel
Store

Figure 2: Z.Buffer-Cheek and Pixel-Store

5. The Delta-Switch Algorithm

The basic assumption for all the following considerations is that the calling
program supplies all different delta values which occur along the intersection of the
scanline with the object surface. This is a reasonable assumption and means no
additional effort compared to the simple C-program versions, even if the data
preparation is a bit more complex.

238

With every iteration. the OGV-Program will now load a certain delta value,
use it for interpolation and then load the next value. This may be the same as the
first one or a different new delta value, if at this point a delta switch is required. To
avoid duplication 'of data, one could realise this behaviour by gathering the data
into a delta structure (this should happen during the preparational period) and
supplying a pointer array to the OGV-routine.

In this array a pointer to a certain delta structure appears as often as this
structure is needed for interpolation. A delta switch is then nothing else than
changing from one pointer to the next. In reality this procedure is not easily
implemented for the following reason: All delta-values have to be gathered in
double (64-Bit) words, because all pixel manipulation instructions operate on
double words.

In detail this means:

Four 16-Bit Z-depth or color values, or two 32-Bit Z-depth or color values, or
eight 8-Bit color values must be accumulated in a double word. Depending on the
combination of Z-Buffer and color values, such a delta structure would contain up
to 8 different delta values. Taken into account that one delta value might be used
only for about 10 Pixels, it becomes clear, that in this case the preparation of the
delta structures does not lead to data multiplication. Consequently, for each
different model one has to find. the best suited solution, which in general is a
mixture of using extended delta-value arrays and delta-structure-pointer arrays.
(The extended delta-value array maybe a structure array as well, so the emphasis is
put on the term "pointer" in the second expression.)

Timing these models may be difficult, because it is not always obvious, which
preparations are really additional efforts and must be included in the execution
time measurements. So for the three examples which are considered below, the
algorithm which is used is explained in detail. Further clarification is given which
parts of the algorithm are included in the execution time measurements. It is
common to all applications using "vectorised" special purpose routines, that the
data preparations shOUld be subject to careful considerations, because otherwise
they might cost more than the optimised routines gain.

5.1 Examples

With 16-Bit pixels and 16-Bit z-Buffer the smallest complete delta structure would
consist of:

2 double words, each containing two z-deltas

3 double words, 1 for each color with 4 deltas per double word

10 words per structure.

239

If the average pixel chain length is 200 pixels with a delta switch every 10th
pixel, this would require a total of 30 different delta structures. For two successive
sets of pixels one would need two "pure" structures which will be used twice and
one "transition" structure containing the delta switch, i.e. a total of 20 pure
structures and 10 transition structures. Compared to the original set of different
delta values (20 x 2.5 words) the new set requires 6 times the memory space and the
corresponding load-store operations.

The pointer-array method would need this set of different structures and
additionally a pointer array, where each pure structure is referenced twice and each
transition structure only once. This would mean another 50 words of memory space
and the corresponding store operations. An asynchronous treatment of z-delta and
color-delta values would be another possibility one could think of, but for the
model with 32-bit z-interpolation this is disadvantageous:

30 different color-delta structures, 6 words each 180 words

50 color-deIta-pointers , 1 word each 50 words

20 different z-delta values, 2 words each 40 words

100 z-delta-pointers t 1 word each 100 words

TOTAL = 370 words

compared to 350 words for the simple pointer array.

For the extended delta-value array method the pure structures would have to be
duplicated to yield the complete set of 50 delta structures. The additional effort
would amount to 200 words memory space accompanied by the corresponding
load-store operations. In this example the pointer method should prove to be
superior, as it is probably for all cases, where the pixel size is larger than 8 Bit.
Only if the pixel subsets along which a delta value remains constant become very
small (e.g. 4 pixels or less) the delta-value array method will be advantageous. In
this case the set of different delta structures will already be the extended delta­
value array.

5.2 Summary

To enable efficient usage of optimised pipelined pixel operations it is necessary to
maintain a continuous input flow of delta values for the interpolations. If the usage
of extended delta-value arrays does not involve to many preparationalload-store
operations it is a problem independent solution which is easy to include in the
execution time measurement.

The usage of pointer-arrays will involve some additional load-store operations
as well, but this effort is difficult to estimate. If the number of delta switches is

240

large the method is not very efficient, especially if the values for more than 2 pixels
must be packed into double words.

6. Results

Three of the 9 different cases mentioned above (cf. 3.6) have been investigated for
the following reasons:

a) Case I:

This case is the classical example for using the delta-value method of implementing

the delta-switch algorithm.

b) Case IX:

This case is quite the opposite to Case 1) and is best suited for the pointer-array

approach. The time measurements are based on the simplified model described in

chapter 5.1 (Example).

c) Case V:

Because of the simple z-interpolation this case yields the fastest OCV programs and

offers therefore the biggest challenge for the Graphics Unit.

For the OCV and the PCV programs the execution time depends on the size of
the screen and the number of substitutions due to positive Z-Buffer compares. The
latter is also a function of the screen size, if the screen size is smail, the Z -Buffer
becomes loaded with small values quite soon and the number of substitutions
decreases. The screen size for PCV and OCV programs was 768 x 1024 pixels. The
execution time of the OGV is independent of the number of substitutions, because
the store instructions will always be extlcuted, but realised only where the Pixel­
Mask-Bits are set.

The execution time measurements presented below, are given for various pixel
chain lengths, from 10 to 1000. Only for the OGV programs pixel chain lengths
larger than 10 may model real situations. For OCV and PCV programs the
corresponding figures are given only for the sake of completeness.

Each run computes 100,000 different pixel chains of the given length, with the
Z-depth values randomly distributed. To enable a correct comparison it must be
noted that e.g., 100,000 repetions of pixel chain length 200 for the OGV are
equivalent to 2,000,000 repetitions of pixel chain length 10 for the PCV and OCV.

The EQUIVALENCE COMPARISON after each table gives the corresponding
figures. The number of substitutions for the OCV and PCV programs is app.
2,200,000 in this case.

241

6.1 Case I)

No of repetitions: 100,000

Table 1

All timings are given in Milli-seconds.

EQUIVALENCE COMPARISON:

OGV : 100,000 x 200 in 6540 msec

is equivalent to

OCV : 2,000,000 x 10 in 15680 msec

PCV : 2,000,000 x 10 in 25350 msec

with 2,200,000 substitutions.

In terms of Gouraud-shaded polygons, the latter results may be translated into:
OGV: 30,500

OCV: 12,750

PCV: 7,900

lOO-Pixel GOURAUD-SHADED POLYGONS per SECOND.

6.1.1 Remarks

The delta-switch algorithm is based solely on delta-value arrays, because in this
case each delta-structure would contain the delta values for 8 successive pixels
gathered in a total of 4 double words.

Optimised copy routines are used to distribute and repeat the delta values
appropriately. The time needed for this copies is INCLUDED in the execution time
measurements. Not included is the preparation of the index array, which contains
the number of pixels for which each delta value is valid. This array is used by the
optimised copy routines. (The array contains nothing else than the number of pixels

242

between an edge pair and is therefore assumed to be supplied by the calling
program, which will store these data anyway.)

The original values are assumed to be supplied in two different arrays, one
containing the 32"'-Bit z-delta values (format: 16-Bit integer and 16-Bit fractional
part) the other containing the 16-Bit color values (format: 8-Bit integer and 8-Bit
fractional part). Two different copy routines are required to generate the extended
arrays.

The OCV program uses only simple optimisation, because of the small amount
of floating point calculations. Pipelining and dual instruction mode are no
improvement in this case and the optimisation is achieved by ordering and
minimising the number of instructions.

6.2 Case IX)

No of repetitions: 100,000

Table 2

All timings are given in Milli-seconds.

EQUIVALENCE COMPARISON:

OGV : 100,000 x 200 in 8070 msec

is equivalent to

OCV : 2,000,000 x 10 in 15640 msec

PCV : 2,000,000 x 10 in 25260 msec

with 2,200,000 substitutions.

In terms of Gouraud-shaded polygons, the latter results may be translated into:

OGV: 24,800

OCV: 12,750

PCV: 7,900

IOO-Pixel GOURAUD-SHADED POLYGONS per SECOND.

243

6.2.1 Remarks

In this case all delta values are gathered into one large delta structure of the type:
"struct delta {double zi-delta, z2-delta, R -delta, G-delta, B-delta }~"

This delta-structure array is twice as large as the original, because two color
values have to be accumulated in one double word. It is clear that this method
simplifies addressing, because all delta values are close together and some time will
be saved, due to cached loads in the OGV-Program.

The execution time measurement INCLUDES the time needed to produce the
delta structures from the original data.

The example of chapter 5.1 is of course only a very crude model for reality. One
of its artificial properties is that it needs no transition delta structures, but even in
real situations there should be not too many of these structures. Provided the
program permits an easy way to insert such transition structures (e.g., by adding a
pointer "struct delta *next" to the "struct delta" so that the different structures are
forming a chain rather than an array), this means not much additional effort. One
could use the optimised routine to produce the pure delta structures by duplication
and afterwards insert the transition deltas at the appropriate locations.

Additional investigations have shown that an asynchronous treatment of the z­
delta and color-delta valueS is disadvantageous, it needs more memory space and is
slower.

The PCV program is slower as in case I) as one could expect because of the
additional effort of interpolating three color values. In case of the EQUIVALENCE
COMPARISON this difference becomes negiectable due to the large number of
memory accesses.

The OCV program is as fast as in case I), because the larger amount of floating
point operations allows the efficient usage of pipelined instructions in connection
with dual instruction mode.

The OCV becomes than more or less independent of the number of substitutions,
because the almost all calculation are finished anyway before the result of the Z­
Buffer check affects the color interpolation. (The Z-Depth value has to pass
through the Adder-Pipeline twice, before the Z-Buffer check can be performed.)

244

6.3 Case V)

No of repetitions: 100,000

Table 3

No of Pixels OGV OCV PCV

10 880 2580

20 1810 1380 4230

40 1490 2250 6420

100 4120 4510 10880

200 5990 7960 16360

1000 .. L~~7~~ .. 1_34~70JL_52:2~ 1

I

All timings are given in Milli-seconds.

EQUIVALENCE COMPARISON:

OGV : 100,000 x 200 in 5990 msec

is equivalent to

OCV : 2,000,000 x 10 in 11860 msec

PCV : 2,000,000 x 10 in 18200 msec

with 2,200,000 substitutions.

In terms of Gouraud-shaded polygons, the latter results may be translated into:

OGV: 33,300

OCV: 16,850

PCV: 11,000

100-Pixel GOURAUD-SHADED POLYGONS per SECOND.

6.3.1 Remarks

With 2 z-delta values or 4 color values per double word the complexity of this
model lies between the previous cases.

The 32-Bit Z-Buffer with 32-Bit interpolation means that simple integer adds
can be used for the z-depth interpolation. This has its effect mainly on the OCV­
program, were z'-interpolation can now be performed parallel to the color
interpolation and no float-to-integer conversion for the z-values is required. This
explains the extraordinarily good OCV performance. More or less the same goes for
the PCV program.

245

The OGV program behaves a bit irregular. The drops in execution time for pixel
chain length 40 and 200 are due to the fact that these numbers are multiples of 8.
This means that all pixels are updated with the optimised algorithm. If the pixel
chain length is less than 16 and no multiple of 8, all or at least the modulo-8-rest
pixels are treated as in the PCV program. The amount of optimisation for the OGV
program must be very large to achieve a better performance as the OCV. Again the
method of the delta-structure-pointer array proved to be most efficient.

I have tried several other possibilities as well, e.g. separate z-depth
interpolation, delta-value arrays etc., but the pointer array method gave the best
result, if a high level of optimisation is provided. Not only the pixel update routine
has to be optimised, but the data preparation routines as well.

The execution time measurement INCLUDES the complete preparation of the
delta structures, which in this case means transition structures as well, and the
generation of the pointer array. The underlying model is exactly the model
described in chapter 5.1, which means that it is still a simplification. For a real
model the optimisation of the data preparation routines becomes a bit more
complex, but the strategy may be the same:

1. step:

Generate all pure delta structures. This is simple and easy to optimise. The delta
structures should be connected via pointers and may include the number of
occurrences (i.e. how often this structure is to be u~ed for interpolation).

2. step:

Insert all transition structures. For the simple model this is schematic as well
and therefore easy to optimise. For real situations it may become tedious, but
nonetheless the number of transition structures should remain small. Therefore it
consumes not to much execution time, even if it is programmed in C-code.

3. step:

Generate the pointer array to be used by the pixel update routine. This can be
optimised using different strategies, each based on the occurrency information
contained in the delta structures.

The OCV and PCV routines profit from the very simple Z-Buffer interpolation.
Especially for the OCV routine which is in principle the same as for case IX) the
benefit is large. The z-depth interpolation is now a Core operation and can be
performed paraliel to a floating point operation. The Z-Buffer check can therefore
be performed much earlier and consequently for negative compares aborts the color
interpolation much earlier.

246

7. Miscellaneous

The rendering algorithm is only one example, where the Graphics Unit instructions
are usefuL One may think of other examples, where the interpolation features are
useful as well, e.g. in line drawing algorithms.

But one should keep always in mind, that the conversion of the input data
(which may be in "float" or "double") to the special format needed for the
interpolation instructions requires additional effort. It is therefore only efficient if
the subsequent calculations make extensive use of the converted data.

In general preparation of a single data item requires

I floating point load of the input values and

I floating point multiply,

in order to "shift" the input values and save the fractional part after

1 truncation to an integer format

and 1 integer store is performed.

(Almost always some additional manipUlations are necessary, because the
interpolation instructions of the GU do more than one interpolation with each
instruction. This means one has use larger increments, more than one starting
value, etc ..)

Example:

16 Bit Z-Buffer value:

double input;

long output;

/* Shift by 16 Bit be'fore conversion */

output = (long) (input * 65536.0);

In optimised code the conversion takes between 4 and 7 clock cycles, depending
whether the load and store hit the data cache or not. For the application this
means, that any program not using the GU may take 4 to 7 clock cycles more time.
If one uses highly optimised assembly code this could be equivalent to 4 to 7
operations in dual instruction mode. For a simple line drawing algorithm, i.e. the
interpolation between a starting point and an end point on the screen, a optimised
routine using the GU is not necessarily faster than an optimised routine not using
the GU, but the latter requires less programming effort.

In this case the scale could tip towards the GU program, if the lines to be drawn
are quite long (e.g. in the range of 100 Pixels) or if additional use of the data would
involve compares and corresponding pixel updates, etc .. One might think of a clever
way to implement line styles this way or something like that.

This issue will not be pursued any farther in this paper, it is just an example for
the general rule:

247

The usage of the Graphics Unit's interpolation and merging instructions is only
reasonable, if the calculation effort justifies the data conversion.

8. Conclusions

With a considerable amount of optimisation effort it is always possible to
accelerate the painting algorithm using the GU instructions in a special assembly
routine.

In general this goes hand in hand with optimised data preparation routines and
results in complex algorithms. The acceleration factors lie between 2 and 3 for OCV
and between 3 and 4 for PCV routines.

The execution time does not depend much on the complexity of the underlying
models, for the examined cases it was more or less in the same range. E. g. the
choice between 8-Bit pixels and 16-Bit or 32-Bit pixels affects the complexity but
not the performance of the resulting program.

The OCV method offers an efficient and comparatively simple possibility for
optimisation, if the problem is not too time critical or if development time is more
critical than performance. Especially for the simple Z-Buffer interpolation it is a
good alternative.

When operated as a graphics engine, the GU of the Intel 180860 is only of
limited use, ie. for 2D- and 3D-Output primitives of the kind described above. But
it may playa decisive role if the principle "Simple Things should be Fast" is to be
fulfilled, even so it requires a lot of optimisation.

9. References

1. 	i860 64-Bit Microprocessor Programmer's Reference Manual. Intel Literature Sales, Santa Clara, CA

95052·8130,1989

