
A Real-Time Raster Scan Display for 3-D Graphics

D.Jacket

TV Berlin, Institut fUr Technische Informatik

Franklinstrasse 28-29, 0-1000 Berlin 10

and

H. Gunther, B. Herwig, H. Riisseler

GMO-FIRST an der TV Berlin

Hardenbergplatz 2,0-1000 Berlin 12, FRG

Abstract

This paper describes the architecture of a raster scan display for real-time visualisation of
shaded polygons. A performance of 15-106 Phong shaded pixels per second is a primary goal
of a pipelined rendering processor. The performance of the geometry processor, which is
responsible for the geometrical transformations, the 3-d clipping and the perspective
projection, will exceed 100,000 triangle shaped polygons.

Following a survey of the entire 3-d real-time system, we will describe architectural details of
the rendering processor. Finally, the main features enabled by the architecture are highlighted.

1. Introduction

The hardware of conventional raster scan displays supports only the generation of 2-d
graphical primitives (e.g. points, vectors, circles, etc.) and their mapping from object-space to
screen-space. The 3-d visualisation processes, which are extremly time consuming, are
executed by the general purpose processor(s) of a host-system.

To fulfill the requirements for 3-d real-time visualisation, high performance graphic
architectures have changed significantly. The characteristic of such architectures is the
hardware supported viewing pipeline, for which a variety of architectural solutions have been
introduced in the past decade.

In order to classify these architectures, we have to divide the visualisation process sequence
into its geometry processes and into its rendering processes. All vertex oriented processes
(e.g. geometrical transformations, 3-d clipping and perspective projection of a vertex) belong
to the class of geometry processes. All pixel oriented processes (e.g. determination of
coordinates and rgb-values of a pixel) belong to the class of rendering processes. These
classifications help us to differen~ate four basic architectural structures:

http://www.eg.org
http://diglib.eg.org

214

• 	 Both the geometry processes and the rendering processes are supported by
pipeline architectures. The architectural concept of the Silicon Oraphics IRIS­
Systems [1] as well as the Hewlett Packard SRX graphics engines [2] are
representative for this type of graphics system.

• 	 The geometry processes are supported by a pipeline architecture and the rendering
processes are supported by a parallel architecture. An example of this are the Pixel
Machines of AT & T described by Potmesil and Hoffert [3].

• 	 The geometry processes are supported by a parallel architecture and the rendering
processes are supported by pipeline structured architecture. The TITAN of
ARDENT and the STELLAR of STELLAR-Systems described by Diede et al [4]
and [5] are representative for this type of architectural structure.

• 	 The support for the geometry processes, and the rendering processes are supplied
by a parallel structured architecture, which can be found in the PIXAR-System
described by Levinthal and Porter [6].

Our system introduced in the following belongs to the third group. The objectives for the
capability and performance of the system are:

More than 100,000 triangular polygons should be processed per second. The geometry
processes include: rotation, translation, scaling, backfacing, 3-d clipping and perspective
projection.

15-106 pixels should be rendered per second. The rendering process includes: calculating
pixel coordinates, computation of the pixel normals, Phong-shading, HSL to ROB-conversion
and hidden surface removal.

At fIrst, a survey of the graphic system and its basic function will be presented, and some
implementation details of the rendering processor will be discussed. This is followed by a
description of the display file structure and the synchronisation of the geometry processors.
Finally, we will summerize the main features and present the state of implementation,
including the planned extension and improvements of our system.

215

2. System Survey and Implementation

The main subsystems of the real-time display, as shown in Figure 1, are:

a geometry subsystem

a rendering subsystem

a frame-buffer subsystem

a 2d-subsystem.

In the following, we will describe the tasks, the basic principles, and the architecture of these
subsystems.

WE-Bus

GEOMETRY
PROCESSOR

o

GEOMETRY
PROCESSOR

1

SEGMENT MEMORY
SE-FILE. SEGMENT-KNOT FILE

VERTEX FILES

GEOMETRY
PROCESSOR

:3

WE-Bus

GEOMETRY
PROCESSOR

2

DATA. CONTROL

DATA" ~lROt.

2D­
SUBSYSTEM

RENDERING
PROCESSOR

.,
" III
I

~

R
G
B

Figure 1: Architecture of the Real-Time Raster Scan Display

2.1 Geometry Subsystem

The main objective of the geometry processing unit is the efficient handling of geometrical
rotation, translation and scaling of 3-d objects. Moreover, this subsystem executes the
backfacing, 3-d clipping and the perspective-projection processes. The pipeline of the
geometry processes terminates after computing the parameter set needed for the initialization

216

of the rendering processor. All geometry processes mentioned above are executed in real
time for more than 10,000 triangular polygons every 0.1 second by using four processing
units working in paralleL

For the initialization of the rendering processor, two methods are applied to generate the
parameter set mentioned above.

Using the first method, the processing pipeline will be started via function calls. Therefore, a
set of graphical routines are implemented.

The second method for generating the parameter set implements a display me, referred to in
this paper as object-descriptive data structure (ODDS). Although this method is not as
flexible as the first one, it is more efficient. It will be used mainly if a model of a 3-d scene
has only fixed vertex coordinates. The ODDS-architecture and how this display file is

processed by the geometry processor array are discussed later.

2.2 Rendering Subsystem

The execution of the scan converting process, which includes shading and z-bufjering, is the
main task of the rendering processor. The components of the rendering subsystem are shown
in Figure 2.

RENDERING FRAME
PROCESSOR BUFFER

Ul
::>
a:l
I J\

w

~

LOCAL

MEMORY

a::
,~
w(/)

~~t::
lJ..a::z
ffir-::J
r-<
ZI­-<

0

k

~~

;::- I~

~

I

VECTOR!
INTERP. !

SHADER

I
I

tl
CONTR.

MAINT.­
PROCESSOR
SEQUENCER

(.)11 CONTR.

I

SCANLlNE: PIXEL­
INITIAL. ! COORD.

: CALCUL.
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

CONTR:

I
I
I
I
I
I
I
I
I
I
I,,
,,
I
I
I

I

::Ii
~

fI\
~::>

'" fI\
0 I '"L;: ::Ii ::>

cD ~
If)

I
cS ~ 0

ri III n
a:: w
w ~ cr: I (.) u...
u... ::E~O-
::> Iu... we.:>
a:l ::> 00
I ~a:l 5..J

N C

zodr

xodr,yodr

til
::>
III
I

::Ii
~
\(!
If)

a:l
c5
cr:­

Figure 2: Block Diagram of the Rendering Subsystem

217

At the core of the rendering subsystem are two pipelines. The task of the fIrst pipeline,
consisting of a vector interpolator and a shading unit, is to calculate the .rgb-values of the
pixels using the Phong illumination model. The second pipeline, with the functional units
scanline initialiser and pixel coordinate calculator, is responsible for the determination of the
z-coordinate values as a function of the xy-coordinates.

In addition to the pipeline units. a local memory. a maintenance processor, a VME-bus
interface, and a data-transfer unit make up the rendering subsystem. The tasks of these units
are discussed in short at the end of section 2.2.

2.2.1 Rendering Pipelines

parameter set. As mentioned in section 2.1. the geometry subsystem generates parameter
sets for the initialization of the rendering pipelines. Each parameter set describes a triangle­
shaped polygon, which decomposes into a unifIed form as shown in Figure 3.

y
y

~ I/D

x
~ I/D

Vertex

x x

Figure 3: Decomposition ofthe Triangles into Unified Forms

The decomposition process is necessary to achieve a simple parametrical description of the
polygons. By this measure, we obtain a more effIcient hardware solution for the rendering
pipelines.

Figure 4 shows the organisation of the parameter sets for smooth-shaded and constant-shaded
polygons.

0

218

I/O G/P E/O I/O G/p E/O
~

10 ~~
Iy HS
xs ys

zs
dzx
dzy
dxl
dxr

xns yns
zns dxnx

dynx dznx

~ dxny
dyny dzny

~
10 ~~

Iy HS

xs ys
zs

dzx
dzy
dxl
dxr

xns yns
zns 0
0 0

~ 0
0 0

31 o31 o

smooth shading constan t shading

Figure 4: Parameter Sets/or Initialising the Rendering Pipelines

The functions of the parameters are discussed in the following:

ID: The ID is a concatenation of the segment identifier SID and the surface element identifier

SEID and is used for man-machine-interactions.

lID: The lID-bit indicates a decrementation (lID = 1) or an incrementation (lID 0) of the y­

coordinate by the scanIine generation process.

GIP: The GIP-bit initializes the shading pipeline for executing either the Gouraud or the

Phong shading process. For GIP 0 the shader is switched into the Gouraud shading mode.

Otherwise (GIP =1), the Phong shading mode will be selected.

EIO: The E/O-bit controls the dual image buffer. E/O = 1 selects the odd and E/O = 0 selects

the even image buffer unit.

ly,' ly is the y-address of the last scanline which is rendered by the pipeline units (see Fig. 5a).

xS,ys,zs,' {xs ys zs] is the vertex position from which the rendering process starts (see Fig. Sa).

219

[xs ys zs]

y

Iy -

x z

[xs ys zs]

[xs ys

(0)

-z

y
J(~)

(xn\ (dxnYJ~.~I:J!~yn) _ dyny t:~L
zn dzn \y. - \-1~
.

[xns yns zns]

(xnl (dXnx).yn + dyn
\zn dzn:

'1
\

(b)

x

z

Figure 5a ,.b' Function of the
ex, dznex, dxny, dyJ' xs' ys, zs, dzx, dru dxlyns, zns, dxnx. dynParameter: (a) I 'I'

d
zny ~J" dxr (b) xns,

220

dzx,dzy: dzx and dzy represent the z-slope increment of the SE-plane. dzx is a function of an x­
incremental step; dzy is a function of an y-incremental step (see Figure 5a).

dxl,dxr: dxl and dxr represent slope increments of the left and right SE-edges respectively.
Both are functions of an y-incremental step (see Figure 5a).

xns,yns,zns: [xns,yns,znsl is the vertex vector from which the rendering process starts (see
Figure 5b).

dxnx,dynx,dznx: The vector [dxnx dynx dznxl is added to the pixel normal vector [xn yn zn]
after executing an x-incremental step. For constant shading all elements of this vector are set
to zero (see Figure 5b).

dxny,dyny,dzny: The vector [dxny dyny dznyl is added to the pixel normal vector [xn yn zn]
after executing an y-incremental step. For constant shading all elements of this vector are set
to zero (see Figure 5b).

rendering algorithm. Before going into the details of the rendering hardware, the
algorithmic structure of the process, which is supported by the pipelines, will be outlined.

At the beginning of the process, the initializing register of the rendering pipelines are loaded
with the parameter set. Because the first scanline consists of only one pixel, no pixel
interpolation is necessary. The steps b), c) and d) of the inner loop are executed directly.

From the second to n-th scanline the rendering hardware functions as follows:

First, all values needed for initializing the rendering process of one scanline, are computed.
The outer loop of Algorithm 1 is responsible for the execution of this initializing process.
Within this iteration the x-coordinate components XI and Xr on both scanline vertices are
determined. Additionally, the z-value zi and the components pixel normal vector [xnl ynl znl1

must be calculated only on the left scanline vertex.

xl and xr are given by:

xl := xl' + dxl ; xr := xr' + dxr . (1)

xl' and xr' are the coordinate components of the left and right vertices of the preceding
scanline, respectively.

The z-value zl and the components of the pixel normal vector are given by:

zl := zm + (xl - xs) • dzx (2)
xnl := xnm + (xl - xs) • dxnx (3a)

ynl := ynrn + (xl - xs) • dynx (3b)

znl := znrn + (xl- xs) • dznx (3c)

221

zm, xnm, ynm and znm which are initalized by

zrn := zs; xnm := xns; ynm := yns; znrn := zns

are incrementally decreased or increased by each y-step:

zm := zm + dzy; xnm := xnm + dxny

ynm := ynm + dyny; znm := znm + dzny

Initializing the rendering processor by means of the precalculated parameter set:

if lID = 0 then yinc := -1 else yinc := 1

Renderthe pixel at start vertex lxs ys zs] by the execution ofsteps b), c) and d) within
the inner loop:

for y := ys + yinc to ly step yinc

Computation of the x-coordinate values XI and Xr at the left and right

vertex of the scanline:

Computation of the pixel normallxnl ynl znl] at the left vertex:

of the scanline

for x Xl to Xr step 1

a) computation of the z-value
b) computation of the pixel vector Ixn yn zn]

c) computation of the pixel/ightness 'l'
d) Z-bujfer operation and data transfer ofrgb-values
to the image buffer

next X

next y

Algorithm I: Structure of the Hardware Supported Rendering Process

222

a and b) The scanline rendering is executed within the inner loop. For each x, within the
interval [xl xrJ, the z-component and the pixel normal vector [xn yn znJ is calculated (y
=const.).

After allocating the initializing values of the scanline

z zl, xn := xnl, yn := ynl and zn znl

all further z-values and normal vector components are given by:

z ;=z' +dzx (4)
xn:= xn' + dxnx (5a)

yn := yn' + dynx (5b)

zn := zn' + dznx (5c)

z' and the vector [xn' yn' zn' J are preceding values.

c) This is followed by the shading process. In order to execute this process, three main steps
are necessary.

First, the result of dividing the [xn yn znJ-vector by the value zn is the unified form [xnlzn

ynlzn IJ.

Second, the xn/zn- and yn/zn-components may be regarded as address pointers of a table
memory. This memory contains the precalculated values of a light reflectance map (see [7]).
Under these conditions, it is allowed to consider the light reflectance value I of a pixel only as
a function of both parts of the address pointer 1== f(xnlzn, ynlzn).

In the third step of the shading process, the value I is concatenated with the hue h and colour
saturation values s allocated to the surface element. For each of the 217 hsll-combinations the
corresponding rgb-values can be allocated by a look-up table.

d) The final step of the rendering process is the hidden surface removal via z-buffering.
Because this method is easily and efficiently supported by simple hardware, z-buffering is
commonly used in contemporary real-time raster scan displays.

2.2.2 Hardware Organisation of the Rendering Pipelines

When initialising the rendering processor, all different SE-parameters are distributed to their
own FIFO-memories. The FIFO's are useful in achieving a sufficient load balance between
the rendering and the geometry processor. Moreover, the access processes of both subsystems
do not have to be synchronized.

As the SE-parameters are distributed to private FIFO's, the rendering pipelines can be
initialized by one load cycle. In the following the hardware organisation of both rendering
piplines will be discussed.

223

znl

dzn x

ynl

dynx

xnl

dxn x

hs

r

b

vector interpolation unit. The task of the vector interpolation Unit IS to detennine the
barycentrical-oriented pixel normal (xnl ynl znl] at the left vertex of the scanline with respect
to the equations 3a-c. This process will be executed with four pipeline stages mainly
consisting of six adders and three multipliers.

Figure 6: Blockdiagram a/the Vector Interpolator

All values of the pixel normals are written into a second FIFO-bank. This functional unit
operates as an interface serving as an asynchronous link to the shading unit and the vector
interpolator, and ensures a sufficient load balance.

shader. The determination of the lightness values of the pixels within a scanline, is the task of
the shader.

hs =::r========:==========~=n1/z-Exp.

Figure 7: Block-Diagram a/the Shader

xns
dxny

yns
dyny

zns
dzny

dxn x

dynx
dzn x

Ul
O.l

::J

O.l
a
I

0
LL..
c::

dxn x

dynx

xnl

ynl

znl

dxn x

xnl

(f)

O.l
::J
Q)

a
I

0
LL..
c::

dynx
dzn x dzn x

224

In the first stage, the shading unit manages the interpolation of the pixel normals,
corresponding to the equations 5a-c. The interpolation process is applied by using three

incremental adders.

The next three stages are necessary to transform the pixel normal vectors [xn yn znJ into the

form [xnlzn ynlzn IJ. To avoid the time consuming division by zn, a lIzn-table is used. The
zn-to-lIzn table conversion is followed by a multplication stage. Both products xn'(1/zn) and
yn·(l/zn) must be normalized. This is done in the fourth stage by barrel-shifting units.

In the sixth and seventh stage the determination of the [-values is easily accomplished by
using a precalculated reflection map. Mainly under the restriction of fixed-positioned virtual

light sources, the determination of a I-value only requires one access operation to the

reflection map formed by a look-ahead-table memory. For precalculation of the 32,400
reflection-map values the Phong Light-Model Equation is applied.

The task of the last shader stage is the execution of the HSLIRGB-conversion. This is also

accomplished by using three look-up tables (HSL/R, HSL/G and HSL/B) which have each a

size of 128K x 8 bit.

scanline initializing. Scan-conversion is the task of the second pipeline, which is divided into

a scanline initializing unit and a pixel coordinate calculator.

dzx

~~dzy

dzx
-«

xs

zu""oc""o 6===#.====:::::1
zs

~ I zl
""0dzx «

til
Q)

::l
Q)

til o(l)
I::l

(l) o
I.J...o xl
G:xs I

o
I.J...dxl G: xr

dxr

ys
y

y

Iy

Figure 8: Block-Diagram o/the Scan line Initializing and the Pixel Coordinate Calculator

x

225

In the fIrst stage of the scanline initializing process two incremental adders are used to
determine the xl and xr coordinate components according to the equations 1a and lb. A third
adder-unit is required to increment or to decrement the constant dzy-value to the old z­
coordinate. The second stage is responsible for the determination of the difference (xl-xs). The
task of the third and fourth stages of the scanline initializing process is the determination of
the zl-value according to the equation 2.

Moreover, the scanline initializing unit contains a binary y-counter. A comparator unit is used
for the determination of the y-coordinate value and for indicating the last scanline by
generating the YEND signal.

Analogous to the vector interpolator unit, all output values of the scanline initializing unit are
written into the second FIFO-memory bank.

pixel coordinate calculator. The pixel coordinate calculator computes all z-values within a
scanline (equ. 4), which are used for hidden pixel removal by means of z-buffering. The x­
coordinate component is determined by a binary counter starting at the xl-value and stopping
at thex,-value.

2.3 Frame Buffer Subsystem

The frame buffer supports a screen resolution of 1024 x 1280 pixels. As shown in Figure 6,
the entire system consist of a 2 x 24-bit dual image buffer, a 24-bit z-buffer with an update
port, a 4-bit overlay-buffer, a bank address computation unit and a buffered lIO-multiplexer.

Tl;!e serial converter & multiplexer, which works in parallel to the I/O-multiplexer, can be
considered to be part of the dual image buffer. In the following we will describe these
functional units in more detail.

z-Buffer. In order to achieve update cycles of 75 ns, the z-buffer implements the complex

memory interleaving method. This ensures the rendering rate of 15-106 pixel per second, as
required.

The z-buffer is partitioned into 20 independent-addressable memory banks. The mapping of
the logical frame-buffer address to the physical bank-address is the task of the bank address

computation unit. Moreover, this unit is responsible for bank addressing fault detection.
Details of the complex memory interleaving method applied to frame-buffer systems can be
found in Russeler et al [8].

The presetting of the z-buffer is necessary after each frame-cycle. Using video-RAM's, the
preset time needs 240 ns for a group of four pixel rows, i.e. 0.7 ms for the entire z-buffer.

226

20 Subsystem

Z-Data

X,Y­ ImageAddress Data

((7 :> Video Logic

Figure 9: Frame Buffer System

dual image buffer. The dual image buffer, divided into an even and an odd unit, receives the
rgb-values determined by the shading unit. For real-colour display, each r, g and b­
component has a size of 8 bits. Analogous to the z-buffer, this functional unit is partitioned
into an equal number of memory banks using the same memory interleaving method. The
'lIO-Buffer & Multiplexer', controlled by ElO-bit, is responsible for the parallel-I/O of the
rgb-values to both image buffer units.

overlay buffer. The task of the overlay buffer is the display of alphanumeric information or
vectorized graphical primitives. Because the 2-d subsystem has the access right to this unit, it
can work in parallel to the image-buffer and z-buffer units.

2.4 The 2-D Subsystem

The main objective of the 2 -d subsystem is the generation of 2-d primitives, for example, dots,
2-d vectors, circles, arcs, ellipses and alpha-numeric characters. Moreover, it is planned to use
this unit for supporting the man-machine-interaction process based on the X Window System.

For the implementation of the 2-d subsystem an off-the-shelfgraphics processor is applied.

227

3. Summary

We have presented an architecture for a 3-d graphics system for real-time polygon rendering.
The main features of the system are summarized as follows:

100,000 triangle shaped polygons per second are processed by geometry transforms,
backfacing, 3-d clipping and perspective projection.

15-106 pixels per second are Phong-shaded and z-buffered by two rendering pipelines.

The size of the frame buffer is 1280 x 1024 pixels, with a total number of 76 bits per pixel.

Developmental status as of summer 1989: The pre-version of the geometry processor, the
segment memory and the 2-d display is being completed. The frame-buffer system is being
tested. The rendering processor is in the layout design state.

At the end of the year, we expect an operational prototype.

4. References

[1] 	 K. Akeley, T. Jeremoluk : High Perfomance Polygon Rendering; Computer Graphics,
Volume 22, No 4; pp. 239-246,1988.

[2] 	 D. Burgoon: Pipelined Graphics Engine Speeds 3-D Image Control; Electronic Design,
July; pp. 113-119, 1987.

[3] 	 M. Potmesil, E.M. Hoffert: The Pixel Machine: A Parallel Image Computer; Computer
Graphics, Volume 23, No 3; pp. 69·78,1989.

[4] 	 T. Diede et. al.: The Titan Graphics Supercomputer Architecture; Computer,
September; pp. 13-29, 1988.

[5]. 	 B. Apgar et al.: A Display System for the Stellar Graphics Supercomputer GSIOOO;

Computer Graphics, Volume 22, No 4; pp. 255-262, 1988.

[6] 	 A. Levinthal, T. Porter: Chap - A SIMD Graphics Processor, Computer Graphics,
Volume 18, No 3; pp. 77-82,1984.

[7] 	 B.K.P. Horn: Understanding Image Intensities; Artificial Intelligence Vol. 8, No.2; pp.
201-231,1977.

[8] 	 H. Russeler, H. Gunther, D. Jackel: Eine Bildspeicherarchitektur fur Raster-Displays

mit Echtzeiteigenschajten; ITG-Fachbericht 102; VDE-Verlag GmbH; 1988.

