
Presentation of the Cubi9000:

A Graphics System based on Inmos T800 Transputers

France Glemot

Caption1, Rennes, France

L Introduction

The Cubi9000 family includes a range of products from the 3D graphics
terminal up to the 3D graphics workstation. The Cubi9000 when configured as
a 3D graphics terminal connects to a host computer via a parallel interface
from Digital Equipment Corporation. The Cubi9000 configured as workstation
includes a UNIX2 based mini-computer with a 32 bit microprocessor, mass
memory, device handlers (mouse, tablets, encoders) and communication
drivers to external systems.

2. General hardware overview

I Parallel Interface

SupBlVisor bus 2Mb/s

I
Process Filling Display
Module Module Module

video OUlput

I Local bus
16Mb/s I

Pixel bus 1OOMbls

The basic hardware comprises three modules communicating via three
different buses.

1The company Caption is a subsidiary of the company Telmat which manufactures
telecommunication systems and minicomputers. Caption specialises in 3D image
synthesis, it develops, builds and sells 3D graphics systems.
2Unix is a trademark of ATT Bell Laboratories

http://www.eg.org
http://diglib.eg.org

180

2.1 Display module

The Display module includes a frame buffer and a video interface:

The frame buffer comprises 401024*1024 bit-planes with a 16 bit hardwired
Z-buffer providing 16 million simultaneous colours and uses a conditional
writing-by-depth test for hidden part removal. The image formats may be
dynamically programmable from 512*512 to 1024*1024 pixels.

The video interface provides an interlaced or non-interlaced video output, and
an external synchronisation (genlock) is available for the video formats. It is
possible to mix two plane images in depth at the video pixel rate, before the
input to the digital to analog converters. Furthermore one of these planes can
receive video images via a digitizer entry with blue box capabilities. So real and
synthetic images can be mixed in real time.

2. 2 Filling module

The filling module comprises one or two polygon generators performing
polygon shading (Gouraud shading at 20 Mpixelsls per generator). Each
polygon generator consists of 2 boards, the first one computes the interpolation
of colour and depth along the edges and the second computes the interpolation
of colour and depth of the horizontal lines filling the polygons. These two
boards are completely hardwired and offer 120 Mips.

2.3 Process Module

The process module comprises one or two Display Processor Units (DPU). The
DPU is a parallel work flow board with several INMOS transputers, the
number of on-board processors depends upon the processing power required.
This module contains the display list and handles the image generation
algorithms.

------ ---

------ ------------ ----------------------------

181

S. Architecture ofthe Display Processor Unit
DPUSupervisor bus

TO 	 4-8-12 Mbytes memory

4 serial lines
 I

r------------------------,
I

I

I 	 I
Programmable I

I T1 1 Mbytes memory

I I

I

link I 6 optional

I

I piggy boards
I

switch I

I

I 	

I
I I T6 1 Mbytes memory

I
 I

I

I

--..I
~----------------------

T7 4 Mbytes memory I

Local

bus

Polygon generator

Pixel bus

Display module I

Block diagram of the Display Processor Unit associated with the Polygon
Generator and the Display Module

182

3.1 Descriptionof the transputer TO

The transputer TO is non-optional, its hardware resources are the following:

- 4, 8 or 12 Mbytes dynamic RAM memory accessible by ihe Host via the
Supervisor bus. This bus is shared between the Host and TO

- access to all other boards, via the Supervisor bus, in order to configure
the Cubi9000

- four RS232 serial lines for connecting graphics peripherals

- two synchronization signals: an interrupt signal to the host and a video
top-of-frame signal from the video board of the display module

- four links: one dedicated to the host (for program loading and urgent
messages), the other three being connected to the programmable link
switch (for communication with the other transputers).

The main tasks of TO are: decoding of the received messages from the host,
execution of the corresponding function, management of the graphics
peripherals, sending back information to the host, processing geometric
transformations (for Gouraud shading) and, if the DPU has only 2 transputers
TO and 1"7, it is responsible for high quality rendering effects (Phong shading,
texture mapping, solid textures ...)

3.2 Description ofthe tmnsputerT7

The transputer T7 is non-optional, its hardware resources are the following:

- 4 Mbytes dynamic RAM memory (not shared and not accessible from
the Supervisor bus, the Local bus or the Pixel bus)

- access to the Local bus in order to send data to the polygon generators

- access to the Pixel bus in order to write/read pixels directly in/from the
frame buffer of the display module

- four links connected to the programmable link switch, for

communication with the other transputers.

The tasks of T7 are mainly to collect data processed by the other transputers in
order to send them to the polygon generator (for Gouraud shading) or to the
frame buffer (for Phong shading). It performs anti-aliasing post-processing,
using a choice of two techniques: oversampling and sub-precision for pixels
belonging to the edges. It computes the features of polygons projected on the
screen space (for Gouraud shading) and, if the DPU has only two transputers
(TO and T7), it produces high quality rendering effects (Phong shading, texture
mapping, solid textures...)

183

3.3 Descriptionofthe transputers Tl·'I6

The transputers Tl to T6 are optional. They are equipped with 1 Mbytes
dynamic RAM memory which is not shared and cannot be accessed by other
processors. They have 4 links connected to the programmable link switch for
communication with the other transputers.

The tasks of Tl to T6 are mainly: processing geometric transformations,
computing the features of polygons projected on the screen space, processing
high quality rendering effects (Phong shading, texture mapping, solid
textures...).

The six optional piggy boards allow the processing power to be increased from
20 Mipsl3 Mflops to 80 Mipsl12 Mflops per DPU.

The reset, analyse and error signals of each transputer in the network are
linked together by a daisy chain mechanism.

3.4 Descriptionofthe programmable1inkswitch

This programmable link switch allows any link from one transputer to be
connected to any link of any other one (linkO from TO is not avail~ble for this
purpose). The 8 transputers are linked together via this programmable link
switch, allowing an optimum configuration to be provided for each application.
Thus the Cubi9000 is actually a multi-mode device. able to support efficiently
several image synthesis computing techniques (from Z-buffer to ray tracing
and from polygon to octree modeling).

The graphics library is written in the C language, but the calling level may
support other languages such as Fortran. Pascal, ADA.

The graphics library comprises four independent parts: initialisation and
configuration of the Cubi9000, management of the display list, management of
the graphics peripherals and 2D functions.

4.1 Initi.a1isation and configuration ofthe CubiOOOO

The functionalities are the following: open/close a session without modification
to the configuration or with default values, load colour look-up tables, select the
video format, parameters of the display monitor, colour and depth of the
background, erase/display a plan of the frame buffer, select the visualization
mode (real time or not, mixing of 2 planes of the frame buffer or not), digitise a
static image (colour slide, photography ...) or dynamic images (camera,
magnetoscope ...) for the whole of an image or just those parts of it detected by a
blue box.

184

4.2 Management of the display list

The display list comprises of 5 components: the computing features of the
scene, the camer~s, the objects, the light sources, the data tables (reflectance,
texture...).

An entire component of the display list may be: added, deleted, duplicated, or
substituted. A field of a component may be set or get.

4.3 Computing features ofthe scene

These computing features are the following:

- computing mode (normal, designation, picking)
- aliasing mode (none, oversampling, sub-precision)

- geometric description level (bounding box, object)
- rendering level (wire frame, Lambert, Gouraud or Phong shading,
specific effects).

Cameras

The cameras are defined by:

- projection (orthogonal, conic_z, conic_liz, conic_a+b/z)

- position of the observer

- features of the viewport (window on the screen)

- features of the window of projection

- features of the mask on the window of projection.

Objects

The objects are defined by:

- global attributes:
- drawing flag (define whether or not the object must be taken into
account)
- bounding box features
- position and coefficient of reduction/expansion
- colour flags and colour coefficients
- smoothing flags and smoothing coefficients (colour, geometric
and arbitrary smoothing)
- aspect flags and aspect coefficients (coefficient for Phong
shading: - diffuse, specular, brilliance, transparency: min, max,
thickness, and reflectance)
- flags for the geometric description and rendering levels
- flags for the processing of backfaced polygons (normal, interior,
or sections which give different views of an object modified by a
front clipping plane, according to a normal inside-outside
description or outside only description

- polygon description table

- vertices table

185

- polygon colour table
- aspect table.

Light sources

An ambient light source will always exist. The light sources are defined by type
(sun, point-source, spot), the intensity, the position (suns are located at
infinity), the direction (not relevant for the point-source), the colour, and the
cone angle (relevant for spot only),

Data tables

Two tables may be used: the reflectance table and the texture table.

4.3 Management of the graphics periphera1s

Four RS232 lines on the DPU allow it to be connected to: an alphanumeric
terminal, a 2D tablet, an 8 encoders board, a magnetoscope (format BVU,
BETACAM, 1 inch), and to any other peripheral programmable via an RS232
line.

The reading modes are compatible with those of Phigs: Sample, Request, Event.
The data issued from a graphics peripheral (other than a magnetoscope) may
be sent directly to the host, processed on the DPU and sent to the host, or
processed and used in order to modify a field of a component of the display list
between two image computations. This is done by the DPU, the host has just to
send the command for image computations.

The alphanumeric terminal may be initialized, activated/stopped, read and
written. The 2D tablet may be initialized, activated/stopped, configured
(operating mode, resolution, sample speed, origin, size ..) and read. The 8
encoders may be initialized, activated/stopped, configured (sample speed,
minimum threshold) and read. The magnetoscope may be initialized or
instructed (play, stop, forward, rewind, read/write/go_to a time code, record,
standby). An interface between the magnetoscope and the Cubi9000 based on
PC computer is necessary.

4.4 2D functions

All the components of a pixel R, G, B, and Z or only one of them may be read,
written or written conditionally upon its Z value, in a rectangular space of the
frame buffer. Cursors and reticles may be defined, selected, positioned, moved,
erased. Coloured vectors and polygons may be drawn in any plane of the frame
buffer. A character font may be defined, loaded, selected. By default a standard
font is defined, loaded and selected. A string may be written in any plane of the
frame buffer using the following features: colour, position, direction, thickness
and reduction/expansion for character height, width, spacing.

186

5. Software architecture

Host Application

Graphics Library
(calling level)

Graphics monitor
(encoding level)

messages,
signals

CUBI9000 Graphics monitor
(DPU) (decoding level)

Graphics library
(executive level)

The communication between the host and the Cubi9000 is based on messages
and synchronization signals. The application is located on the host for the
obvious reason of portability, but some parts ofit could be exported in order to
complement the library, even for non graphics processing. The calling level of
the graphics library must be located within the application, it performs some
coherence checking on the parameters. The executive level must be efficient,
and for this reason it is implemented in firmware.

The graphics monitor has to transfer the graphics commands from the host to
the DPU, to synchronize them and to transfer data from the DPU to the host.

The urgent messages are sent to the address of linkO of TO, they are scanned
automatically and processed by a concurrent process. The mechanism of
urgency is used when an error occurs or when the user wishes to terminate
immediately an animation sequence. The mechanism of urgency stops the
execution of the current command and re-initialize some variables which are
shared between the host and the DPU.

Another concurrent process manages the graphics peripherals. The tasks of
the encoding level of the graphics monitor are to collect commands and their
associated parameters from the library and packet them up in a format
understood by the DPU. It is required to wait ifthe command input fifo on the
DPU is full and otherwise send the packet to that fifo. If a reply is required, it
waits for the end of the execution and, in which case, gets data from an output
data buffer on the DPU, it unpackets them into a format understood by the host
and stores them in the place defined by parameters.

187

The tasks of the decoding level ofthe graphics monitor are to wait if the
command input fifo is empty, decode the packet, performing the corresponding
function or using the executive level of the graphics library to send it to the
underlying network. Finally, if a response is required, the data is put into the
output data buffer and then a synchronisation signal is sent to indicate to the
host that the execution of the command is finished.

The command input fifo and data output buffer are shared, at the graphics
monitor level, by both the host and the DPU (TO). Conflicting accesses are
resolved mainly by the rule that the variables shared may be read by both, but
must be written by only one. For instance, the host is not allowed to reset the
status of the DPU itself, and has to send a urgent message to the DPU.

When a command does not need a synchronization signal at end of its
execution, both the host and the Cubi9000 can work in parallel. Furthermore
the command input fifo serves to regulate the flow of commands between the
host and the Cubi9000.

6. Constructing load balanced systems

6. 1 Some general rules

To achieve good performance, a program may be split into several processes
implemented on a network of transputers. Communications within such a
network use the links as channels.

6.1.1 Simple architecture

Consider first a case in which there are two transputers running processes PI
and P2, if one process is (much) faster than the other, one of the processors will
be under utilised, but we will now assume the system is correctly load
balanced. The compute times and communication periods are denoted,
respectively, CPT and CMT.

Load balanced systems imply CPTl =CPT2 (to a close approximation) and
synchronized communication implies CMTI = CMT2.

CPT1 CMT1
.,~.... .,, ,
, ,, ,, ,, ,, ,CMT2

'....
CPT2 ...' ...

time
------------------------------~

The data processing rate, to an external observer, is CPTI + CMTl, for a
non-balanced system we have Max(CPTl, CPT2) + CMT1.

188

6.1.2 An improved architecture

We now consider the same problem, but with two additional processes: a
transmitter process T1 on the first transputer and a receiver process R2 on the
second transputer. T1 and P1 operate in parallel, communicating via two
buffers and using a flip-flop mechanism between the two buffers. A similar
situation exists for R2 and P2 on the second transputer. We may consider that
T1 and R2 introduce a small offset in the execution ofP1 and P2 because each of
them uses a DMA independent of the ALU, the offset is due to the fact that the
internal bus must be shared between the DMA and the ALU and the fact that a
time slicing is necessary between P1 and T1 (and between P2 and R2). The
effect of time slicing is, however, very small. We denote these offsets as 01 and
02, and assume that any difference between 01 and 02 is small.

CPT1 01 , ...,......,fl ,
CMT1 : 01 ,•, ,
L:J

•

,, •
CPT2 02'... ,'
, , I •fl CMT2 '02''......'l:J

!i~~____________________ __ _____

The perceived external data processing rate is CPT1 + 01, and for
a non-balanced system we have Max(CPT1+01, CPT2+02).

The results are better than those obtained above and for a longer pipeline we
can generalize in the following way:

On the first transputer, the processes are P1 and T1 (and maybe an R1 for
the external world); on the following transputers, the processes are Ri,
Pi and Ti; and on the last transputer, the processes Rn and Pn (and
maybe a Tn for the external world).

Ri and Ti are secondary processes which arise due to this manner of
implementation, and only the Pi processes perform useful work for the
application. This is the reason why the processes Pi need not wait for the
communication processes Ti and Ri.

We have CPTi;;;:: CMTi for Ti and the same for Ri.

189

6.1.3 Advantages of the pipeline architecture

Splitting the program into several processes results in each of them being
shorter and thus they may be held within the internal memory of the
transputer. Generally this also applies to the data. The internal memory
accesses are much faster than external memory accesses (by a factor of 2 or 3
times). The dispatching of commands and data and the collection of results are
simpler than within a parallel architecture.

6.1.4 Advantages of the parallel architecture

The parallel architecture does not suffer the time delays of a pipeline
architecture. incurred when the pipeline is being loaded and emptied. The
parallel architecture is more efficient than a pipeline architecture because it
uses fewer processes , implying less time slicing and fewer data transfers. If
splitting the code results a large amount of data to transfer then the rule that a
computing process must wait for communication may not be hold.

6.1.5 Advantages of the mixed (pipeline and parallel) architecture

In practice, transputer based systems may have a mixed architecture in order
to communicate easily with the external world and to achieve efficiency.
Nevertheless with the same number of transputers several architectures are
possible, as is shown below by considering three application examples.

6.2 Three examples ofapplications

6.2.1 Real time simulator

In this case the DPU performs the 3D to 2D transformations and determines
the edge slopes for each polygon; the polygon generator being responsible for
filling these polygons.

There are three steps in the basic algorithm: the visibility test (backface
removal) and pre-clipping, the 3D to 2D transformation with clipping and
illumination of each vertex, and the slope processing (in which the gradient
values of X.Y,Z,R,G,B are determined). The results are communicated to the
polygon generator.

The resulting transputer network architecture is organized in three pipelines
according to the following two rules: the work load for Tl to T6 must be similar,
and the work load for TO and T7 must be less than 33% of the work load of others
transputers.

190

Visibility test
pre-clipping

T1 T3 T5

3D to 2D
transformation,
illumination of each
vertex

slope processing

communication with
the polygon processor

This logical architecture is similar to the physical architecture, each
transputer having a receiver process R, a transmitter process T and one or
several computation process(es) P.

The Cubi9000 can process and display from 4000 to 40000 3D Gouraud shaded
polygons per second (with an average of 300 pixels/polygon).

6.2.2 High quality images

In this case the polygon generator cannot be used, and the DPU has to compute
each pixel value, so the program is larger than that for Gouraud shading.
Furthermore there are additional specific effects which require large data
tables (reflectance, texture ...), with the result that the internal memory of the
transputers is too small to hold the program and data.

The amount of computing power required to compute illumination and shading
at each pixel is much greater than the computing power needed for geometric
transformation, with the consequence that the process cannot be split at this
level. It is not possible to make a split between illumination and shading,
without having to transfer a large amount of data, and incurring large
communication overheads.

Furthermore in the architecture shown below, a single source program can be
used with 2, 4,6 and 8 transputers on the DPU.

The basic algorithm is decomposed in three steps: the visibility test and pre­
clipping, the 3D to 2D transformations with clipping, illumination and shading
of each pixel, and the communication with the display module.

Using the rules previously defined, the logical network architecture is:

191

Visibility test
TO pre-clipping

T5

30to 20
transformations,
illumination and
shading of each
pixel

communication
with the display
module

This diagram represents only a logical architecture, in practice TO will have
only 3 links connected to the programmable link switch. So there is a by-pass
mechanism on TI, T2 and T3 in order to dispatch data to the computing process
within the transputer or to the receiver process on the transputers T4, T5 and
T6. On T4, T5 and T6 another by-pass is used to transmit processed pixels
received from TI, T2 and T3 directly to T7 or to transmit the data to the
computing process within the transputer. Each transputer has a receiver
process R, a transmitter process T and one or several computation process(es)
P.

The physical architecture is the following:

data: polygons
to renderer

T1 T3 T5

data data data

pixels pixels pixels

pixels rendered

T7

The Cubi9000 can process and display from 3500 to 40000 Phong shaded pixels.

192

6.2.3 Octree

For octree applications another development based on a further board is now
considered. This board is based on two modules of 4 transputers each, and
connected via 7 links to a DPU equipped with the two transputers TO and T7
(note that linkO of TO is not available for such a purpose).

The architecture chosen is based on a cube with 8 transputers, one at each
vertex. The advantages of such an architecture is that it is similar to the octree
organization which makes the data dispatching algorithm easier to
implement, and there is a smaller number of connections between the
transputers within the cube thereby reducing the transfer time for data.

It will be observed that most operations needed involve modifications to the
octree dispatching because they alter the tree organization. Such operations
are the creation of the tree, creation of objects (prosthesis ...), segmentation
(detection of structures corresponding to an organ, tissue ...), rotation or
translation of the tree (modification of the reference).

The only difference between the logical architecture and the physical
architecture is the link between the transputer TO on the DPU and the
transputer TO on the other board. There is a logical link. from TO on the DPU
and TO from the other board, but physically this link. uses Tl (on the other
board).

The logical architecture is the following:

TO (on the DPUj

T7 (on the DPUj

193

7. The transputer and Occam3

7.1Introducti.on

This section presents an overview of the transputer family and a description of
the main concepts in Occam with their associated implementation on
transputers.

7!l. Overview oftbe transputer family

-

System _I I-­ Processor
Services n

t
e
r

Internal memory ~ n Hunk
a Interfaces
I

B
Application

u
Specific -
Interfaces

s

-
7.2.1 System Service

The main signals are the following:

- reset: this input signal resets the transputer. On the T414 and TBOO, this
signal also resets the configuration of the external memory interface
(code and data located on external memory are destroyed)

- analyse: this input signal resets the transputer prior to debugging. On
the T414 and TBOO, the configuration of the external memory interface,
code and data located on external dynamic RAM memory are not
changed.

- error: this output signal is an indication to the external world when an
error occurs at execution time. In the T414 and TBOO an additional error

30ccam and INMOS are trademarks of INMOS

http:7.1Introducti.on

194

flag is internally set for debugging facilities. Error checking possibilities
are, tor instance, array boundary overflow, and arithmetic overflow.

- boot: this input signal permits booting from a external ROM memory.
Another possibility is to boot via a link.

7.2.2 Internal Memory

The on-chip memory is 2 Kbytes in the T414 and 4 Kbytes in the T800. No
caching facilities are provided. The accesses to code and data located in this
memory are much faster than to those located in the external memory. The
programmer may force certain code and data to reside in a specific address
area, for instance in this internal memory.

7.2.3 Application Specific Interfaces

In order to allow the design of an interface with a minimum of external
components, the transputers may include a controller for SCSI disk, graphics
or memory. Timings and standard control signals are programmable by
software.

7.2.4 Internal Bus

This bus multiplexes 32 bit addresses and 32 bit data, in both the T414 and the
T800,

7.2.5 Processor

The T414 has an integral 32 bit integer Arithmetic and Logic Unit (ALU). The
T800 has a 32 bit integer ALU and a 64 bit IEEE floating point ALU. The 30 MHz
T800 offers 10 Mips and 1.5 Mflops.

7.2.6 Link Interfaces

A serial input line and a serial output line are associated with each link
interface. The T414 and the T800 provide 4 link interfaces. A link is a point to
point connection from a transputer family chip to a transputer family chip.
Within a network, transputers are connected via links.

Point to point connection links have many advantages over multiprocessor
buses:

- no contention for the communication mechanism,
- no capacitive load penalty as transputers are added to a system,
- no saturation of the communication bandwidth, and furthermore an
higher, total communication bandwidth in the system.

These advantages are independent of the number of transputers in the system.

On the T414 and T800, the link interfaces incorporates two separate DMA
devices, one for each direction. Thus communication and processing can take
place independently, with only the internal bus being shared.

Link adaptors are part of the transputer family, they allow transputer links to
be interfaced to a non-transputer sub-system. They convert data to and from a

195

link to an 8 bit parallel port, taking into account the specific communication
protocol of the links. Link adaptors may have two operating modes depending
on whether they work like two uni-directional parallel ports or single bi­
directional parallel port. The features and advantages of link adaptors are the
following: data reception is asynchronous, which implies that communication
is independent of the clock phase and transfers can take place in both directions
simultaneously (but with some speed penalty).

7.2.7 Peripheral Interfacing

Three methods may be considered:

- a transputer with 1,2,3 or 4 peripheral control transputers
- a transputer with 2 link adaptors
- a transputer with peripheral addresses space mapped in the memory
space.

Transputer

Peripheral Peripheral
Control Control
Transputer Transputer

Peripheral ~ ... Peripheral
Control Control
~ ...

Transputer Transputer

Transputer

Peripheral - ~ Peripheral
Control .. ~

Control
Transputer Transputer

a transputer associated with 4 peripheral control transputers

a transputer associated with 2 link adaptors

196

Transputer

Peripheral
chip

Peripheral
chip

External Bus of the transputer

a transputer with peripheral addresses space mapped in the memory space
(the peripheral is controlled by memory accesses issued as a result of a port
inputs and port output, cf next paragraph Concepts in Occam)

7.3 Concepts in Occam

Occam is a programming language for the transputers, it is a high level
language giving a maximum program efficiency and is able to exploit the
special features of the transputers. Occam and the transputer were designed
together. Occam can be used as an harness to link modules written in
standard languages (C, Fortran, Pascal...). This harness includes all
information concerning the configuration.

Occam provides a framework for designing concurrent systems using
transputers.

7.3.1 Processes

The software building block in Occam is called process. A system is an
interconnected set of processes communicating via point to point channels. A
hierarchically structured system is a set of processes designed themselves as a
set of (sub)processes. Each process is an independent unit of design, completely
specified by the messages it sends and receives. A process starts, performs a
number of actions and then terminates. An action may be a set of any number
of sequential or parallel processes. Procedures and functions are processes.

When two processes of different priority are concurrent, the process with the
larger priority must stop (because it is waiting for a communication for
instance) or complete, before than the other may run.

Concurrent processes with low priority are periodically timesliced (generally
the running period is some hundreds of microseconds).

7.3.2 Channels

Channels are the logical medium used by parallel processes in order to
communicate values, no variables are shared between such parallel processes.
For each communication a channel, a transmitter process and a receiver
process must be defined; the communication occurs only when the both
processes are ready.

197

When two processes communicating via a channel are implemented on the
same transputer, only data moves within the memory are performed.

When the channel is implemented on a transputer link, a protocol is used
during the communication, its features and advantages are the following:

- a byte acknowledge, which provides reliable communication between a
slow and a fast transputer and word length independency
- an anticipated acknowledge, which implies a continuous data flow
- a standard communication frequency of 10 Mhz for all the transputer
family (nevertheless other frequencies exist: 5 Mhz, 20 Mhz ..)
- no clock phase dependency, which imply that communications may
happen between two independently clocked systems.

Communication via channels is synchronized automatically, no additional
explicit programming is necessary. Furthermore the structure of a program
which communicates between two processes is independent of whether the
processes are executed on the same transputer or on two different transputers.

Communication via any channel may occur concurrently with communication
via other channels and with program execution.

If the program is written in a language other than Occam, then a run-time
system is provided which provides input/output to Occam channels (and which
conforms to the link protocol if links are used).

Peripheral access may use ports, which are extensions of the channel
mechanism, for a block of information consecutively stored in memory.
Nevertheless there is no synchronization mechanism associated with a port
input and output. So a value read by a port input may depend upon the time at
which the input was executed, and inputting at an invalid time would produce
unusable data.

7.4 Implementation ofthe Occam on the transputer

The transputer and Occam were designed together. Hardware features are
provided to support the special features of Occam. Whatever the number and
kind of transputers used, the Occam level interface remains the standard
interface.

A transputer link interface may be used to implement two channels, one for
each direction. A program running on a transputer is called a process. All
transputers incorporate a timer providing a clock which can be used by any
number of concurrent processes for internal measurement or for real time
scheduling. The hardware interface between a dedicated sub-system and a
transputer based system has to use one or more links. During the development
stage, the sub-system could easily be simulated by an Occam implementation of
the associated process.

A system can be built with a single transputer independently of the number of
processes, or with a network consisting of a large number of transputers
without any topological restrictions, excepting that the T414 and T800
transputers have only four link interfaces. In both cases the identical source

198

program can be used. So that an Occam program may run on a single
transputer when the cost must be optimised or on a network of transputers for
performance optimisation.

co

P1

C1

Optimisation for cost:

A program on a single
transputer with 3 processes
P1, P2 and P3, 4 links to
the external world, and
3 internal channels between
the processes (data moves

C3 within the memory)

The transputer shares its
time between the 3 processes

co
Optimisation for
performance:-----------1

P2 P3

A program on 3 transputers
with 1 transputer for each
process, 4 links to the
external world, and
3 links for communication

C3 between the transputers.C1

Each transputer executes a
1 single process
1- __

C2

