
Viewing and Rendering Processor for a 

Volume Visualization System 


A. Kaufman, R. Bakalash and D. Cohen 

Department of Computer Science 

State University of New York 


Stony Brook, NY 11794-4400, USA 


Ahtrod 

The architecture and the hardware realization of the 3D Viewing and Rendering Pro­
cessor is presented. This processor is a component of the Cube architecture, 
developed primarily for volume visualiza.tion. The processor generates 2D shaded 
orthographic, parallel, and perspective projections of the volumetric image of n 3 vox­
els in O(n 210gn) time. This performance is attributed to a unique skewed memory 
organization, a special ray projection bus, an extended viewing architecture, and a 
new congradient shading technique. A reduced-resolution prototype has been real­
ized in hardware using printed circuit board technology and has been running in true 
real time. Currently, a VLSI version of the prototype is being tested. 

1. Introduction 

The Cube Architecture IS] is a versatile voxel-based architecture for three­
dimensional (3D) volumetric graphics. The 3D objects are stored in a large 3D Cubic 
Frame Buffer (CFB) of voxels. A voxel, which is a unit volume cell, has a numerical 
value that characterizes its density, color, texture, opacity ratio, and the like. Cube 
is a multiprocessor system with several processors accessing the CFB to input, mani­
pulate, view, and render the CFB images. The 3D Frame-Buffer Processor acts as a 
channel for inputting 3D scanned voxel images, which are the primary sources of 
CFB data. Once the images are in the CFB they can be manipulated and 
transformed by the processor, which operates as a fJoxblt engine [7] (i.e., an extended 
3D bitblt engine). It also acts as a monitor for 3D interaction. A geometric model is 
another source of CFB data. The 3D Geometrv Processor scan converts (voxelizes) 
3D geometric models into their 3D voxel representation within the CFB, possibly 
intermixed with the scanned data. The aD Viewing and Rendering Processor (Vpal 
generates 2D shaded orthographic, parallel, and perspective projections of the CFB 
image of n 3 voxels in a conventional 2D frame buffer in O(n 210gn ) time. This paper 
focuses on the VP3 and its hardware realization. 

http://www.eg.org
http://diglib.eg.org


172 

In order to manage the huge quantity of voxels and still perform in real time, the 
VP3 is assisted by parallelism and speed-up mechanisms. Particularly, two unique 
features have been incorporated within the a.rchitecture: a skewed parallel memory 
organization, which permits the retrieval and storage of voxel rays in arbitrary direc­
tions, and a ray projection process, which exploits a multiple-write bus to select the 
voxel closest to the observer along the ray. These two key constructs of the Cube 
architecture reduce the 3D problem involving voxels to a 2D problem involving rays 
of voxels. Other key constructs of the architecture include three 2D buffers to assist 
in generating arbitrary projections and a shading unit that is gradient.based and 
table-driven. 

2. Skewing Memory Schemes 

A CFB of n 3 voxels is divided into n memory banks, each with n 2 voxels, in such a 
way as to allow, in one memory cycle, simultaneous conflict.free access to a full ray 
of n voxels from the CFB, accessing only one voxel from each bank. The practical­
ity of the mapping from discrete 3D space onto the CFB memory banks depends pri­
marily upon whether the mapping can be described by a simple formula. Consider 
first the case of beams, that is, rays parallel to a primary axis, as in orthographic 
projections. A voxel with discrete space coordinates (x ,Y ,z) is mapped onto the k th 
bank (0 ~ x ,y ,z ,k < n) by the following simple skewing scheme 

k (x +y +z) mod n. (1) 

Since two coordinates are always constant along any beam parallel to a primary axis, 
the third coordinate guarantees that only one voxel from the beam resides in anyone 
of the banks. The internal mapping (i ,j ) within the bank is simply 

i=x, j=y. (2) 

With this mapping, conflict-free access to beams of voxels along anyone of the six 
orthographic directions is provided. These six directions are along the positive and 
negative directions of rows, columns, and axles, that is, parallel to the primary axes 
±x, ±y, and ±z. A whole beam of voxels is retrieved from the skewed storage 
space by a process of de-mapping the voxel beam back into 3D discrete space. A 
voxel within hank k is de-mapped onto the voxel beam (e.g., y =Yo' z =zo' i.e., 
parallel to +x axis) in 3D discrete space in position 

[k-(y +z)] mod n (3)D" 

along the beam. 

When scanning the CFB beam after beam for viewing, the internal order of the 
banks along the beams of voxels changes. Actually, the bank index, which is the dis­
tance of a voxel along a beam from the viewing position, is either incremented or 
decremented by 1 modulo n when moving to the next beam. This change is con­
trolled locally by the local address unit of the bank. The initial assignment of the 
bank indices depends only upon the viewing direction. Consequently, even the sim­
ple arithmetic involved in Equation 1 is avoided during the time-consuming viewing 
process. 



173 

Consider now the Collowing linear skewing scheme oC the CFB 

II: (ax +by +cz ) mod n f 0 ~ k ,z ,y ,z < n f -1 (4) 

where n f ::::::n, and a. b , c, and n f are selected in such a way as to guarantee 
conflict-Cree access to all the desired directions. Equation 4 allows Cor rays in 
nonorthographic directions to be retrieved Crom the CFB conflict Cree. For example, 
the linear skewing scheme 

k = (5z +2y +z) mod 517 O~k,x,y,z <517 (5) 

provides conflict-Cree access to 26 parallel directions, with i.rojection time complexity 
identical to that of the orthographic projections, i.e., D(n logn). The 26 projections 
are the six orthographic projections (along rows, columns, and axles), eight parallel 
projections along the major (principal) diagonals and antidiagonals, called corner 
projections, and 12 parallel projections along the minor diagonals and antidiagonals, 
called edge projections. 

3. Projections 

The ray projection mechanism of the VP3 exploits a special common bus, called the 
Voul Multiple- Write Bus (VMWB) [81. The projection logic is composed of n identi­
cal processing units. A full beam of n voxels fetched from the CFB along the view­
ing direction is placed into the processing logic, with each voxel in its associated pro­
cessing unit, for the selection of the nontransparent voxel closest to the assumed 
observer. All the units holding nontransparent voxels "race" for the bus by compar­
ing their depth index bit after bit, starting from the most significant bit, and the 
unit holding the voxel closest to the observer succeeds after log n steps. For every 
beam, the projection mechanism outputs two values associated with the closest voxel: 
its value (e.g., color) and its depth (e.g., distance). These two values are passed 
directly to the shading unit. 

The memory, addressing system, and projection units have an overall modular struc­
ture comprising a sequence of identical modules indexed II: 0,1, ... ,n -1. These 
modules are interconnected with a barrel shifter allowing fast memory-to-memory 
transfer of beams in O(log n ) time. Each module also includes a transparency unit, 
which is provided with transparency control parameters broadcast to all modules. 
Interval and depth control parameters are also broadcast and are compared with the 
locally computed depth measures (Equation 3) to generate depth sections or slices of 
the scene. 

Arbitrary parallel projections can be generated in Cube in D(n 2log n ) time, by first 
transforming (rotating) the scene and then viewing it through a principal ortho­
graphic direction. With this technique, however, the CFB image is distorted each 
time a rotation is performed. Another technique that has been developed in Cube is 
ray casting [1, 6, 9-111. It is suitable for both parallel and perspective viewing and 
has D(n ~ complexity. Cube provides 26-, 18-, or 6-connected rays to accommodate 
objects in the scene that may have 6-, 18-, or 26-connected tunnels. Cube explores 
also the reconstruction of arbitrary parallel and perspective projections of convex 
objects from at least three orthographic projections and their respective depth 
buffers. The performance complexity is comparable to that of the orthographic 



174 

projeetion, but may increase with the complexity of the scene. In addition, the CFB 
skewing storage schemes, discussed before, allow for rays in nonorthographlc parallel 
projections to be retrieved conflict free. They can also be exploited by perspective 
projections, conceivably through a multiple, but limited, number of fetches per ray. 

An extended viewing architecture, which uses three additional 2D buffers, has been 
designed to accommodate arbitrary parallel and perspective projections. Since there 
is no direct way to fetch arbitrary discrete rays from the CFB conflict free, instead, a 
whole projection ray plane is fetched first. The plane is fetched as n beams (parallel 
to a primary axis) in O(n ) cycles, and stored in a 2D temporary buffer. This buffer 
is then rearranged in 26-connected discrete ray representations that correspond to the 
projection rays, using a O(logn ) complexity barrel shifter twice. Each projection ray 
is then fed into the VMWB for the selection of the first opaque voxel along that ray 
in O(logn) time. The total time for an arbitrary projection is O(n 2 logn), allowing 
real-time arbitrary projection. This is the same order of magnitude as that of the 
orthographic projection using the original Cube architecture. 

4. Shading 

The congradient shading technique [3J has been developed for the Cube architecture 
emphasizing real-time performance. It capitalizes on the advantages of both gradient 
shading [5] and contextual shading [2] by defining the surface orientation of a voxel 
as one of a finite set of local gradients and, consequently, can employ a fast table­
driven mechanism. The quality of the shaded images generated by the congradient 
shading technique can be favorably compared to other conventional techniques. The 
location of the light source can be arbitrarily changed, which provides a kind of 
motion parallax. 

Unlike other voxel-based systems [4, 6, 9, 11] that perform the shading in a separate 
post processor, the shading unit in Cube is an integral part of the projection process, 
and each projected pixel is pipelined through the memory access, the projection unit, 
and the shading unit. The Cube congradient shading consists of only two stages, and 
uses a single 2D array, e.g., a frame buffer. The projection stage generates an array 
of congradient values each of which holds the concatenated values of the color and 
the local gradient. The production time of a congradient value is interleaved with 
the projection time of the next pixel. Since the congradient calculation time for each 
pixel is much less than its projection time, no additional time is accrued for the shad­
ing. The next stage is the actual display which is done with a standard hardware 
where the congradient values are used as indices to the look-up table, which 
translates a congradient value to its shaded color based upon the light source param­
eters. & a result, this two-tier shading unit is faster than the alternative techniques, 
and is simpler for hardware realization. 

Two congradient shading approaches have been implemented: unidirectional shading, 
in which the gradient is computed only from the depth of the horizontal neighbors, 
and bidirectional shading, in which both horizontal and vertical neighbors are 
employed. In both approaches the architecture is very simple and is suitable for 
hardware realization [3J. 



175 

6. Implementations 

A software simulation of Cube has been running successfully on color Sun-S, Sun-4, 
Silicon Graghics IRIS, and HP Turbo SRX workstations, using various resolutions, 
such as 128 , 2563

, and 5123
• A reduced-resolution hardware prototype of 163 voxels, 

8-bit each, has been realized in hardware and has been integrated under an mM-AT 
with a VGA graphics display controller. The hardware realization consists of 16 
modules, each of which is implemented as a custom-built printed-circuit board con­
taining a CFB module with its mapping and de-mapping addressing mechanisms, its 
projection processing unit, VMWB unit, translucency control, depth sectioning, etc. 
Each printed-circuit board includes a module of CFB memory of size 256 (162

) bytes. 
There are 24 ICs on each board; all of them are CMOS components. The interface 
board, which is built out of 40 TTL ICs, controls the whole assembly of modules 
using the common bus. 

Depth Clipping VMWB Transpareney Addressing Unit Memory 

Figure 1: Layout of the VLSI design of the Cube chip 



176 

The prototype has been operating successfully in true real time. Measured perfor­
mance figures on the prototype are 290 J1.sec for an arbitrary 3D rotation, 50 J1.sec for 
an orthographic projection, 330 J1.sec for an arbitrary parallel projection using rota­
tion followed by orthographic viewing, and 160 J1.sec for arbitrary parallel or perspec­
tive projection using the extended viewing architecture. Estimated performance 
times for a 5123 CFB resolution, using the same printed-circuit technology, are 511 
msec for rotation, 62 msec for orthographic projection, and up to 573 msec for arbi­
trary projection. Using the VLSI technology will enhance the Cube speeds even 
further. 

The modular structure of the Cube architecture is well suited for VLSI implementa­
tion. Currently a VLSI implementation is being pursued in which each board is 
fabricated as a single chip. Figure 1 depicts the layout of the VLSI chip design. The 
memory occupies the majority of the silicon area. The local addressing unit is the 
mapping and de-mapping circuitry of the skewed memory. The clipping unit is 
responsible for hither and yon clipping and slicing along the viewing direction. The 
transparency unit allows only those voxel values defined as opaque to be considered 
for the current operation. The VMWB is the unit that competes over the output bus 
for the selection of the nontransparent voxel closest to the observer. The various 
units of the Cube chip can be programmed by means of parameters which are broad­
cast by the central control unit. 

The VLSI Cube chip has been designed on a Magic System, using SUN workstations, 
and fabricated with the MOSIS prototyping service. The Cube chip employs 2.0J1. 
double metal CMOS/Bulk technology in a 40 DIP package. Figure 2 is a picture of 
the fabricated Cube chip. The whole IC assembly of 16 Cube chips occupies only 
part of a single board, which is shared with the interface unit. 

The next prototype, which is under development, is a large real-time prototype for 
2563 resolution. The memory module will be separated from the logic and will be 
implemented using off-the-shelf memory chips. In order to reduce the fabrication 
cost and foster compaction of the hardware, two or more of the logic modules will be 
grouped together on one custom-built VLSI chip. This prototype will consist of 256 
units of memory and logic chip each, assembled on several boards. The overall size 
will be about the same as the first 163 printed circuit prototype. 

AelmofDledgmenfs: 

We are grateful to S. Sherman and Z. Xu for their contributions to the design and 
building of the Cube prototypes. This work was supported by the National Science 
Foundation under grant MIP 88-05130. 



177 

Figure 2: The fabricated Cube chip 

6. References 

1. 	 Atherton, P. R., "A Method of Interactive Visualization of CAD Surface 
Models on a Color Video Display", Computer Graphics, 15, 3 (August 1981), 
279-287. 

2. 	 Chen, L. S., Herman, G. T., Reynolds, R. A. and Udupa, J. K., "Surface 
Shading in the Cuberille Environment", IEEE Computer Graphics 8 
Applications, 5, 12 (December 1985), 33-43. 

3. 	 Cohen, D., Kaufman, A., Bakalash, R. and Bergman, S., "Real-Time Discrete 
Shading", The Visual Computer, 6, 1 (February 1990), 16-27. 

4. 	 Goldwasser, S. M., "A Generalized Object Display Processor Architecture", 
IEEE Computer Graphics 8 Applications, 4:, 10 (October 1984), 43-55. 

5. 	 Gordon, D. and Reynolds, R. A., "Image Space Shading of 3-Dimensional 
Objects", Computer Vision, Graphics and Image Processing, 29, (1985), 361­
376. 



178 

6. 	 Jackel, D. and. Strasser, W., "Reconstructing Solids from Tomographic Scans­
The PARCUM n System", in Advances in Computer Graphics Hardware II, A. 
A. M. Kuijk and W. Strasser, (eds.), Springer-Verlag, Berlin, 1988, 209-227. 

7. 	 Kaufman, A., "The vozblt Engine: A Voxel Frame Buffer Processor", in 
Advances in Graphics Hardware III, A. A. M. Kuijk and W. Strasser, (eds.), 
Springer-Verlag, Berlin, 1989. 

8. 	 Kaufman, A. and Bakalash, R., "Memory and Processing Architecture for 3-D 
Voxel-Based Imagery", IEEE Computer Graphics 8 Applications, 8, 6 
(November 1988), 10-23. 

9. 	 Ohashi, T., Uchiki, T. and Tokoro, M., "A Three-Dimensional Shaded Display 
Method for Voxel-Based Representation", Proceedings EUROGRAPHICS '85, 
Nice, France, September 1985, 221-232. 

10. 	 Tuy, H. K. and Tuy, L. T., "Direct 2-D Display of 3-D Objects", IEEE 
Computer Graphics 8 Applications, 4, 10 (November 1984), 29-33. 

11. 	 Uchiki, T. and Tokoro, M., "SCOPE: Solid and Colored Object Projection 
Environment", Transaction 0/ the Institute 0/ Electronics and Communication 
Engineers 0/ Japan, S8-D, 4 (April 1985), 741-748. 


