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In a systolic array, the maximum operating speed is determined by the most complex op­
eration performed. In a systolic army graphics engine, capable of generating high quality 
images, one has to perform complex operations at a very high speed. We propose to use 
pipelined functional units in systolic army graphics engines as they can perform complex 
operations at high speeds. Due to time-varying discontinuities of operations performed 
by systolic army graphics engines, introduction of pipelined functional units is a complex 
problem. In this paper we present a methodology which solves this problem by a graph­
theoretic approach. Furthermore, we characttTize the architectures which can be improved 
by pipelined functional units. 
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1 Introduction 

Raster graphics systems have become very popular over the past decade, due to the image 
quality achieved by" rendering the complete object instead of rendering the outline of the 
object as in vector graphics. Though raster graphics systems are capable of rendering 
high quality pictures, they need several orders of magnitudes higher processing power for 
image generation compared to vector graphics systems. As the display must be refreshed 
continually, almost all raster graphics systems decouple the image generation and display 
refresh process by an intermediate buffer called frame buffer. Though a typical frame 
buffer needs several Mbytes of memory, cheap memories made the frame buffer concept 
feasible. The frame buffer is organized as a pixel array for fast screen refresh. Although, 
the structure of the frame buffer is extremely suitable for screen refresh, its structure is not 
well suited for fast interaction [12]. In [12], it has been argued that the frame buffer must 
be replaced by a structured object list tuned for both fast interaction and screen refresh. 
In this case, pixel values have to be calculated in real-time. Some graphics systems can 
calculate the pixels from an object description [1],[2],13],[5],1:6], which could be adapted to 
operate with structured object lists. Systems like Pixel-planes [5], add pixel processing 
logic to each pixel memory location and systems like PROOF [6] use one processor-per­
object. Addition of pixel processing logic to each pixel results in a multi-fold increase in 
overall size of the system, since the size of the processing logic is several times the area of a 
memory cell. On the other hand, practical object processors can handle only very simple 
objects like triangles. Therefore, one needs a very large number of object processors to 
get a complex image. As these approaches produce very big systems, one can question 
the feasibility of replacing the conventional frame buffer by a structured object list. 

Fortunately, the overall system size of the multi-processor systems reported in [1]­
[3], is much smaller than systems based on processor-per-pixel or processor-per-object 
approaches. These multi-processor systems are based on a one-dimensional systolic array. 
They can generate the images at the display refresh speed without a frame buffer. In this 
paper we refer to these graphics engines as SAG (Systolic Array Graphics) engines. In 
SAG engines, pixel storage has been limited to a row of pixels, which has been distributed 
over the processor array. In general, a systolic array consists of an array of identical 
processor elements (PEs), and connections between PEs have been restricted only to 
near neighbors. Hence, systolic arrays are very attractive for VLSI implementation and 
furthermore, communication between PEs is fast and cheap. 

When all the PEs are finished with their computations, a global clock enables the 
communication between PEs. Therefore, throughput of the systolic array is determined 
by the delay of the most complex operation supported. Hence, we can expect a reduction 
in maximum operating speed when complex operations are added to an SAG engine to 
provide better image quality. The maximum operating speed of the SAG engines reported 
in [2],[3], have been limited to 40-50ns due to (16 bit fixed-point) addition, even though 
advance IC technologies like 1.2J1m CMOS have been used. A 50ns pixel clock cycle is 
enough for a 512x512 pixels display refreshed at a rate of 50Hz. A 1024xl024 pixels 
display refreshed at the same rate needs a 12ns pixel clock cycle. Computer graphics 
users have ever increasing desire for higher resolution displays, better image quality, and 
higher interaction speed. Therefore, SAG engines will not be feasible for tomorrow's 
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computer graphics, unless one has some means to speed up the operations performed in 
these graphics engine. 

In the past, speed of the les have been increased dramatically by scaling the device 
sizes. Early integrated circuits (circa 1965) had minimum feature sizes in the range of 
10 to 20pm. Today, sub-micron minimum feature sizes are used in the state-of-the-art 
Ie technology. When the parasitic wiring capacitance is neglected, scaling of minimum 
feature sizes by factor 8 reduces the delay by factor 8 2 (theoretically) [7]. But the feature 
sizes of current Ies are such that speed improvements due to scaling are lower than 
the above theoretical value due to wiring capacitances and other parasitic effects. The 
parasitic effects become more and more dominant when the minimum feature sizes become 
smaller and smaller. However, there is a fundamental physical limit on the transistor sizes, 
and according to [7] this is of 0.25 11m order. Based on the above facts (speed of scaled 
Ie technologies, speed requirements of higher resolution displays and speed of reported 
SAG engines) one can conclude that bare speed-up of scaled Ie technology is not enough 
for tomorrow's computer graphics hardware based on SAG engines. 

Pipelined functional units have been used in computer hardware to achieve higher 
throughputs. A systolic array built from pipelined functional units has been first reported 
in 1982 [11], which has been referred to as two-level pipelined systolic array. Hence, in 
this paper we propose to use pipelined functional units in SAG engines to increase the 
operating speeds. The introduction of pipelined functional units into an SAG engine is a 
complex problem, as functions performed by PEs in an SAG engine are subject to time­
varying discontinuities. (This is explained in detail in the last paragraph in Section 2.) 
But, as we can see in this paper, the complexity can be handled by a systematic approach. 

The primary goal of this paper is to make a framework to derive two-level pipelined 
SAG engines from a non (two-level) pipelined SAG engine. In the next section, we present 
a survey of working principles of SAG engines reported in literature. In Section 3, a formal 
approach is presented, which can be used to derive two-level pipelined SAG engines from 
a non (two-level) pipelined SAG engine. In Section 4, some issues on pipelinability are 
discussed. An architecture of a two-level pipelined SAG engine is presented in Section 5. 
Finally some conclusions are drawn in Section 6. 

Principles of SAG Engines 

The SAG engines are built from a one-dimensional identical processor array as shown in 
Figure 1. According to the directions of data movements, we can categorize the SAG 
engines into two groups which will be referred to as contra-flow and contra-flow free archi­
tectures. In contra-flow architectures, video information travels in the opposite direction 
to data and instruction flow. Video, data and instructions travel at the speed of one 
processor per cycle. The difference in contra-flow free architectures is that video infor­
mation is sent to the display through a global bus. The architectures presented in [1],[2] 
are contra-flow architectures whereas the architectures presented in [3],[4] are contra-flow 
free architectures. 
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Figure 1: Two Different SAG Engins: (a) Contra-flow, (b) Contra-flow free. 

In contra-flow architectures only half of the processors contain the instructions at any 
cycle. If processors at even locations contain the instructions on cycle N, then processors 
at odd locations idle on cycle N because only the processors containing instructions are 
active. As instructions travel one processor per cycle, the states are reversed on the 
next cycle. However, in contra-flow free architectures, all the processors are active at 
any cycle. Apart from these differences, contra-flow and contra-flow free architectures 
have the following common behavior: each processor array is fed by instructions, which 
contain the information of a span of pixels, along with some processor addresses indicating 
some important points in the span. Different functions are performed by sending different 
instructions. For example, constant shading or Gouraud shading is done by sending 
different instructions. When the instructions pass through each processor, the pixel values 
are calculated by the processors when are addressed by the address field and stored 
in a local pixel storage. Furthermore, when the processor is addressed by the instruction, 
some data associated with each instruction are also modified before the instruction is sent 
to the next processor. 

Due to real-time requirements, the processors in the array work in two modes: refreshing 
and non-refreshing, which is determined by the instruction on each processor. At any 
time only one processor can be in refreshing mode. vVhen a processor is in the refreshing 
mode, the content of the pixel storage is sent to the display. Non-refreshing processors 
do the manipulations on the data stream, if they are addressed by the address field of the 
incoming data. Furthermore, the non-refreshing processors on the right of the refreshing 
processor operate on the current pixel row, while the non-refreshing processors on the 
left of the refreshing processor operate on the next pixel row. As instructions travel one 
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processor per cycle, in each cycle the processor in refreshing mode switches back to non­
refreshing mode while its right neighbor becomes the next refreshing processor. Therefore, 
SAG engines process the pixel information in a pipelined fashion without any exclusive 
pipeline filling or draining. Table 1 shows the instructions supported by different SAG 
engines reported in literature. 

The functions performed by PEs in an SAG engine are subject to time-varying discon­
tinuities. For example when the Z-buffer algorithm is executed on an SAG engine, the 
Z value of the polygon closest to the eye so far encountered is stored in a register for a 
variable number of clock cycles. The number of clock cycles depends on conditions such 
as whether the next instruction has a pixel span which overlaps with the pixel location 
assigned for the processor, or whether the new pixel span is closer than the previous 
spans. As the instructions for the Z-buffer algorithm pass through each the Z value 
associated with each instruction is updated only by those processors that are assigned 
to a given pixel span, which introduces another form of functional discontinuity. Note 
that in a systolic array designed for convolution, matrix multiplication, etc., no functional 
discontinuities can be seen as all the PEs perform the same function. When pipelined 
functional units are introduced, one must make sure that no empty cycles, no exclusive 
pipeline filling or draining cycles are introduced to handle the functional discontinuities, 
because they reduce the number of advantages we have in an SAG engine. 

3 Designing Two-level Pipelined SAG Engines 

3.1 	 Related Work and Their Strengths and Weaknesses for 
Two-level Pipelining of SAG Engines 

Designing a two-level pipelined systolic array can be done in two ways: transforming 
a non (two-level) pipelined design systematically into a two-level pipelined design, or 
designing the two-level pipclined systolic array from scratch. The later approach has been 
demonstrated in literature [10] in applications such as computing inner products. To our 
opinion this approach is not well suited for SAG engines due to the complexity introduced 
by time-varying functional discontinuities. The former approach was first introduced by 
Kung et aL [81. In fact, in two-level pipelining, one tries to improve the clock period 
by introducing pipeline registers into critical paths. A technique called re-timing which 
could optimize the clock speed of a synchronous circuit was introduced by Leiserson et 
al.[9]. In re-timing, the clock speed is optimized by re-Iocating the registers in a given 
circuit while the logical behavior of the system is kept intact. Graph-theoretic approaches 
have been used for re-timing and two-level pipelining by Leiserson et aL and Kung et 
aL In these graph-theoretic approaches, combinational logic and communication links are 
denoted by the nodes and edges of a graph. The number of registers on a communication 
link is denoted by a "weight on the corresponding edge. The weights on nodes represent the 
propagation delay of the corresponding combinational logic, which has been omitted by 
Kung et aL In both approaches, registers introduce fixed latencies. In an SAG engine, the 
latencies introduced by registers are subject to time-varying discontinuities. Therefore, 
both approaches cannot be used to improve the clock speed of an SAG engine. 
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In Reference Instruction Description 

1 
REFRESH( ) Send the local pixel storage to the display 

and reset the processor. 

EVALO(X,DX,I) Store value I in processors X.X+l,...•X+DX . 
(Constant shading) 

REFRESH( ) Send the local pixel storage to the display 
and reset the processor. 

2,3 

EVALO(X,DX,I.Z,DX) 

Calculate the intensity and depth by 
zero and first order interpolation at 
processors X,X+l•..X+DX and store the 
calculated intensity and depth if stored 
depth is larger than calculated depth. 
(Constant shading and hidden surface removal 
by the Z-buffer algorithm, supported only in 3.) 

EVALl(X,DX,I,DI,Z,DX) 

Calculate the intensity and depth by 
first order interpolation at processors 
X,X+l,..X+DX and store the calculated 
intensity and depth if stored depth is larger 
than calculated depth. 
(Gouraud shading and hidden surface removal 
by the Z-buffer algorithm.) 

REFRESH( ) Send the local pixel storage to the display 
and reset the processor. 

EVALO(X,DX ,I) 
Accumulate value I in processors 
X,X+l,...,X+DX until next refresh. 
(Constant shading) 

EVAL I (X,DX,I,DI) 

Calculate the intensity by first order 
interpolation at processors X,X+l,...,X+DX 
and accumulate the calculated intensity until 
next refresh. (Gouraud shading) 

4 
EVAL2(X,DX,I,DI,DDI) 

Calculate the intensity by second order 
interpolation and accumulate the calculated 
intensity until next refresh. (for Phong Shading) 

SETI(X,DX,I) Change the intensity at processor locations 
X,X+DX,X+2DX,... to I during next interpolation. 

SETDI(X,DX,DI) 
Change the first derivative of the intensity 
at processor locations X,X+DX,X+2DX,... , to DI 
during next interpolation. 

SETDDI(X,DX,DDI) 
Change the second derivative of the intensity 
at processor locations X,X+DX,X+2DX,... to DDI 
during next interpolation. 

DIS(X,DX) Disable the accumulation between processor 
locations X and DX. 

NOP( ) Do nothing 

Table 1: Instructions Supported in Different SAG Engines. 
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3.2 ANew Methodology 

In this section, we a new graph-theoretic approach which can be used to convert a 
systolic array (built from non-pipelined functional units) with time-varying functional dis­
continuities into a two-level pipelined version. In fact this approach can be used not only 
for SAG engines but also for any systolic array with or without functional discontinuities. 

In our methodology, the original systolic array is represented at bit-level by a finite, 
vertex-weighted, edge-weighted, directed graph G = {V, V',E, dv , dVI,W}, (from now on, 
for simplicity we say graph.) where V, V' and E denote the nodes and edges of the 
graph. The labels dv,dvl and w denote the weights on the nodes and edges respec­
tively. The graph G which is constructed by replicating the graph of aPE, G PE 
{VPE, V;E' EpE , dvPE , dVPE ' WPE} and connecting vertices according to communication be­
tween PEs as the entire array is built from identical PEs. 

In order to construct the graph the bit-level functional units are represented by 
vertices VPE and bit-level storage by vertices VPE, The communication between nodes are 
denoted by the edges and for each edge e E EpE, wPE(e) denotes the earliest communi­
cation time slot for all legal combinations of instructions. The edges which communicate 
in the ith(i = 0,1,2, ... ) time slot are weighted by i. Each vertex v E VPE is weighted 
by the numerical propagation delay of the functional unit d(v). Each vertex v' E V;E is 
multiply weighted by d(v~_b) for each input edge a and output edge b connected to node 
v', when there is a direct information fiow 1

• The quantity d(V~_b) indicates the minimum 
latency (which is under control of instructions) between information flow from edge a to 
b through the storage node. If there is no direct information fiow from edge a to b then 
d( v:~b) is undefined. 

The maximum clock speed of the circuit is determined by the propagation delays of the 
critical paths. A critical path in our graph G can be identified as a directed path activated 
in the same time slot such that the sum of the node weights on that path is maximum 
over the entire graph. (If a critical path goes through a storage node, the critical path is 
terminated at the storage node whenever the vertex weight corresponding to that path is 
non-zero, as the vertex weights of storage nodes denote the latency whereas the weights of 
other nodes denote the propagation delay.) In order to improve the clock speed the graph 
is re-timed. In re-timing, pipeline registers are added to critical paths to meet the given 
speed requirements, and then some more additional pipeline registers are added to some 
other edges and/or latencies at some storage vertices are such that the following 
theorem is satisfied. 

Two-level Pipelining Theorem: If a two-level pipelined is obtained by adding 
pipeline registers to some edges and/or changing the latencies of storage nodes, the logical 
behavior of the system will be kept intact if the differences in latencies through all pairs 
of paths between any two nodes are equal in the original and re-timed graphs. 

1In Figure 5 the information flow from edge a. to ai+l is direct whereas the information flow from 
edge ai to d. is indirect. There is no information flow from edge ai to bi+l 
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Proof: Let m, n be two nodes and PI, pz be two paths from m to n. Let path PI be 
activated on ipI!! i pb , ... , ip1Nl time slots (il'II < iI'12'" < iplNJ and pz be activated on 
il'21' i1'22! ... , ip2N2 time slots (iI'2] < ip22 '" < i p2m )' If we introduce a latency of k cycles in 
path PI, by introducing pipeline stages and/or changing storage latencies, node m gets the 
data from node n through path PI in time slot iplN] +k. In the origimi.l graph node m gets 
the data from node n through paths PI and pz in time slots i plN, and ip2N2 respectively. 
In order to keep the logical behavior of the graph intact we must get data through path 
pz in time slot ip2N2 + k. Now, we can see the difference in latency through path PI and 
pz is equal to (il'lNl il'2m) cycles in both original and re-timed graphs. This argument 
can be applied to all paths between any node pair to prove the theorem. 0 

It can be proven that the application of the two-level pipelining theorem produces 
lEI IVI + 1 linearly independent equations, where lEI, IVI are the number of edges and 
vertices in the graph [13]. These equations contain lEI + 1V~11 unknowns where 1V;11 
is the number of non-zero weights in the storage nodes. As-we have more unknow-ns 
than equations, the re-timing problem can be solved by linear programming, for example 
minimizing the total register count as Leiserson proposed [9]. 

3.2.1 An Example 

Figure 2(a) shows a systolic array finite impulse response (FIR) filter2 whose output is 
given by Yi Xi_k. In this filter input Xi and output Yi travel to the left and right 
respectively at a speed of one processor per cycle. As Yi travels, it collects the partial sums 
and hence the complete sum is formed at the rightmost PE. For the proper operation, 
the input Xi must supplied at every other cycle. Hence, output Yi is also produced at 
every other cycle. Figure 2(b) shows the graph of the systolic FIR filter when a carry 
ripple adder is used for addition. For simplicity, we have assumed that calculations are 
performed by 2 bit binary numbers. The nodes v~, v~ (v;, v~) represent the delay D which 
stores Xi in PEl (PE2). Similarly, nodes V~t' V~2 (v~, v~) represent the delay D which stores 
Yi in PEl (PE2). The adder in PEl (PE2) is represented by nodes Vg, VtO (vs, V6)' 

Let us assume that ki,j denotes the number of pipeline registers placed on edge (vi, vi) 3 

and ki denotes the non-zero latency at storage node v; for a two-level pipelined design. 
Let us place a single pipeline register in each edge (Vg, VIO), (Vs, V6) as these edges belong 
to the critical paths, i.e. kg,tO kS,6 = 1. Note that these edges represent the carry 
propagation in the adders. Application of the two-level pipelining theorem generates 5 
linearly independent equations as follows. 

fact this systolic array has no functional discontinuities. But we use this example for simplicity. 
3Here v; stands for Vi or v}, as nodes in the example are numbered such that Vi and vi exists only for 

i::/= j. 
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(a) 

Note: All edge 

weights are zero 


(b) 

Figure 2: A Systolic FIR Filter (a) Non (two-level) Pipelined Implementation, (b) Graph 
for (a). 

kin•1 + kl + k1,3 + k3 + k3,5 + kS,6 k4,6 - k4 - k2,4 - k2 - kin ,2 = 0 

k1,3 + k3 + k3,5 + k5 ,7 + k7 + k7,9 - k1,9 = 2 

k2,4 + k4 + k4 ,6 + ka,8 + k8 + kS,10 - k2,10 = 2 
k5 ,6 + k6 ,8 + ks + k8 ,10 k9 ,10 k 7,9 k7 - k 5,7 = 0 

k9,10 + klO,12 + k12 + k12 ,o11.t k11 ,011.t - k11 - k9,11 = 0 

These equations have been obtained by taking the difference of latency through two 
paths between node pairs (Vim V6), (Vb V9), (V2' VlO), (Vs, VlO) and (V9, Vo11.t) respectively. 
Any other equation obtained by other paths can be expressed as a linear combination 
of the above 5 equations. Now, 

ki = 1, for i 1,2,3,4,7,8,11,12 
k. 	_{ 1 for (i,j) (Vin,V2), (V11, t'VOtlt), (V9,VlO), (VS,V6) 

'.:1 - 0 otherwise 

is a feasible solution. This means we have to place pipeline registers to the carry path 
of each adder and edges (V;",V2),(1'11,1'o"t) and keep the latencies of the storage nodes 
unchanged to get a two-level pipelined design for the systolic FIR filter. This pipelined 
design can be operated twice as fast as the original design, In general, such a pipelined 
design can be made to operate m times faster than the original design when an m bit 
adder is used. The area overhead will be insignificant compared to speed improvements 
as the pipeline registers need very small silicon area, 

A Study on Pipelinability 

In this section, we study the pipelinability of SAG reported in literature [1], [2], 
[3], [4]. Due to regularity of the graph, only part of the graph will be drawn for the 

4 
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Figure 3: A Partial Graph for Contra-flow Architecture. 

discussions in the next sub-sections. Furthermore, we simply omit unnecessary vertex 
weights. 

4.1 Contra-flow vs. Contra-flow Free Architectures 

First, let us study the contra-flow architecture given in [1] where the pixel stream travels 
in opposite direction to instruction and data streams. The relevant partial graph is de­
picted in Figure 3, where nodes Vn, '1112, V~1' vb are nodes in the 18t PE and '1121, '1122, v~l' V~2 
are nodes in the 2nd PE. Let '1111, V~l' '1121, V~1 and v~2' '1112, v~2' Vn be on the instruction 
and pixel streams respectively. Nodes Vin and Vont represent the instruction source and 
display respectively. Let us consider the latencies between nodes Vll and '1112' Laten­
cies through paths '1111'1112 and vllvilV21V22V~2V12 are 0 and 2 cycles respectively. Now 
let us assume kt, kh k2 and k2 pipeline registers are placed between (vn, viI)' ('1121, v;d, 
(VI2,V~2) and (V22,V~2) to get a regular design4 • Now latencies through paths '1111'1112 and 
Vn V~1 V21V22V~2V12 are 0 and k1 + k2 + 2 cycles respectively. Therefore in order to satisfy 
the two-level pipelining theorem, kl + k2 + 2 = 2. When kl ;::: 1 we get an unrealizable 
design. Hence we conclude that an SAG engine having a contra flow architecture is not 
two-level pipelinable5• 

Now let us turn our attention to the contra-flow free architecture presented in [3). 
The partial graph is depicted in Figure 4, where nodes Vu, V12, V~1 are nodes in the 18t 

PE and V21,V22,V~1 are nodes in the 2nd PE. Let Vl1,Vil,V2bV~1 and V12,V22 be on the 
instruction and pixel streams respectively. Nodes Vin and Vaut represent the instruction 
source and display respectively_ Let us consider the latencies between nodes Vn and V22­

Latencies through paths '1111'1112'1122 and VllV~IV21V22 are 0 and 1 cycles respectively. Now 
let us assume kb kl, k2 and k2 pipeline registers are placed between (vn, V~1)' ('1121, V~l)' 
('1112, '1122) and ('1122, Va"'l) to get a regular design. Now latencies through paths VllVI2V22 and 
Vn V~1 '11:21 V22 are k2 and kl + 1 cycles respectively. Now, in order to satisfy the two-level 
pipelining theorem we must have kl - k2 + 1 = 1. As the condition k1 kz + 1 1 can 
be satisfied, we can conclude that the direction of the information flow in the contra-flow 
free architecture does not impose any constrains for two-level pipelining. But we can 

the next section, the necessity for pipeline registers in the instruction streams will become clear. 
5Note that the systolic FIR filter in our example also has a contra flow architecture, but we were able 

to design a two-level pipelined systolic FIR filter. 
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Figure 4: A Partial Graph for Contra-flow Free Architecture. 

--i....~--tH.... V12 

--i......---t-H.... Vn 

ai b; 

V'i1(i= I,Z, ...m) 

--i........=---~... Vm2 

Figure 5: A Partial Graph for a PE Capable of Hidden Surface Removal. 

not guarantee that contra-flow free architectures as two-level pipelinable, because in this 
study we have neglected the internal details of a PE to a great extent. Hence, we classify 
the contra-flow free SAG engines as potential designs for two-level pipelining. 

4.2 Different Instruction Sets 

In this sub-section let us study the impact of different instruction sets. First, let us 
consider the instruction set proposed in [31. This instruction set is capable of Gouraud 
shading with hidden surface removal by the Z-buffer algorithm. Let VOl, V02, ••• , Vm2 be 
nodes on a PE, see Figure 5, such that nodes Vn, V22, .•. , Vm2 make the comparison between 
the current Z value and stored Z value for hidden surface removal. Nodes V~l' V~l> ... , V:"l 

store the Z value to be used with the next instruction according to the results of the 
comparison. Nodes VOll V02, V03 are on the instruction stream such that V02 and V03 generate 
the write and read signals for the depth storage. The graph has been drawn by assuming 
that the depth is calculated by m bit fixed-point numbers and the instructions for hidden 
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surface removal are issued at least n cycles apart as done in [3]. Note that, in this 
graph there are several loops passing through the critical path. (We have assumed that 
the critical path lies on the comparison circuit). Application of the two-level pipelining 
theorem reveals that pipeline registers can be inserted into the critical path if we reduce the 
latencies of the nodes V~l' V~l' ••• , V;"l' The reductions in storage latencies are necessary 
due to directed loops such as v~lV21 V22"'Vm2V03. As the nodes v~l' v~l' .•• , V;"l represent 
storage logic in the design6

, the comparator unit can only be pipelined into maximum 
depth of n -1. In general m :;P n (m = 32, n = 4 for the design in [3]) and hence the speed 
improvement is limited. When n = 1, the comparator can not be two-level pipelined. 

The instruction set presented in [4] has been proven to be two-level pipelinable to any 
depth. Due to the complexity of the graph the proof is omited and in the next section we 
will present a two-level pipelined architecture. 

A Two-level Pipelined SAG Engine 

First let us study a non two-level pipelined SAG engine capable of executing the instruc­
tion set given in [4] (see Table 1). Figure 6 shows a non-pipelined architecture of aPE 
which can execute the above instruction set. The registers A,B and C are used to store 
intensity, its first derivative and its second derivative for interpolations. The register 
P holds the accumulated intensity (i.e. local pixel storage), which is sent to the out­
put driver and then cleared by the 'REF' instruction. The 'SETI', 'SETDI', 'SETDDI' 
and 'DIS' instructions disable the registers from being over-written by the next 'EVAL*' 
instruction. The multiplexers at the right side are used to handle some functional dis­
continuities. For example, when the PE is (not) within X and X+DX, interpolation is 
(not) performed. Hence, the right multiplexer on the data stream selects the correct data 
to the output according to the location of the PE. Furthermore, at some PE locations 
the state of the instruction is changed. For example, at PE locations X and X+DX the 
'EVAL*' instructions are activated and converted into a 'NOP' instruction respectively. 
This is achieved by the multiplexer on the instruction stream. The discontinuities of the 
operations performed by each PE depend on the value of X, DX and instruction type. 
Therefore, the control signals for the multiplexers are generated in conjunction with the 
carry signals (Cx in Figure 6) from the adder and the instruction in the processor. 

The target architecture in Figure 6 can be converted into two-level pipelined design as 
outlined below. First the graph of the architecture is constructed. Then the critical paths 
are identified. In our target architecture, the critical paths pass through the carry ripple 
path in the adder. The places where the pipeline registers must be placed in the critical 
paths are then decided to meet the given speed requirements. Then locations of other 
pipeline registers are determined by solving the linearly independent equations obtained 
by the application 'of the two-level pipelining theorem. The graph of the architecture is 
not given due to its complexity and hence more details of the steps we outlined above are 

6The storage nodes must store data at least for one cycle, otherwise we convert the synchronous design 
into an asynchronous design. 
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Figure 6: Architecture of a Non (two-level) Pipelined SAG Engine for the Instruction Set 
in [4J. 

also omited. A two-level pipelined architecture derived by this approach is depicted in 
Figure 7. Though the architecture in Figure 7 is pipelined to depth 2, it can be pipelined 
to the bit-level. 

Some explanations are given in this paragraph to understand the operation of the 
pipelined engine. As the critical paths of this circuit lie through the adder, 2 pipeline 
registers have been placed on the carry path. As control signals for the multiplexers on 
the right side are generated in conjunction with the carry signals from the adder, the 
(data) inputs to these multiplexers are delayed by pipeline registers, which can be seen 
in Figure 7. As the carry signal from the low order bits to higher order bits travels in 
different time slots, the input data to the adder must also be delayed and hence pipeline 
registers are placed on the control signals of registers A,B,C,D and multiplexer in the 
middle. Furthermore, the latency of the carry introduces latency in the adder output. 
Due to this reason, pipeline registers are introduced on the right hand multiplexer control 
signals. Pipeline registers on the pixel stream and on the control signals of the output 
driver are also placed due to similar reasons. 
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Figure 7: A Two-level Pipelined Architecture. 

Conclusions 

The operating speed of the systolic array is determined by the most complex operation 
performed. Hence the maximum operating speed of an SAG engine tends to reduce as 
more complex operations are introduced to improve the image quality. Furthermore, high 
resolution displays also demand high speed operation. In order to improve the speed of 
SAG engines, the use of pipelined functional units were proposed. Even though pipelined 
functional units need more hardware for pipeline registers, we think two-level pipelining 
of SAG engines will be very attractive for tomorrow's computer graphics hardware due to 
the following major reasons. First, SAG engines generate the pixels in real-time from an 
object representation and hence one can improve the interaction speed by replacing the 
conventional frame buffer by a structured object list as proposed in [12]. The SAG engine 
based systems are more compact than systems based on processor-per-pixel or processor­
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per-object providing the same functionality, image quality and interaction speed. As the 
scaling of minimum feature sizes and wafer scale integration increase the device count 
dramatically, one has very feasible means to provide the additional hardware for two-level 
pipelining of SAG engines. 

A graph-theoretic methodology was presented to transform SAG engines built from 
non-pipelined functional units into two-level pipelined designs. In an SAG engine, the 
number of PEs could be large (256 '" 4000) and hence the number of nodes and edges 
in the graph could be very large (10,000 '" 100,000). Hence, the execution time of the 
re-timing procedure on a computer will also be very large. Currently we are looking into 
fast implementations of re-timing by exploiting the regularities in the graph. 
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