
Two-level Pipelining

of Systolic Array Graphics Engines*

J. A. K. S. Jayasinghe and O. E. Herrmann

Twente University

Laboratory for Network Theory

P.O. Box 217

7500 AE Enschede

The Netherlands

In a systolic array, the maximum operating speed is determined by the most complex op­
eration performed. In a systolic army graphics engine, capable of generating high quality
images, one has to perform complex operations at a very high speed. We propose to use
pipelined functional units in systolic army graphics engines as they can perform complex
operations at high speeds. Due to time-varying discontinuities of operations performed
by systolic army graphics engines, introduction of pipelined functional units is a complex
problem. In this paper we present a methodology which solves this problem by a graph­
theoretic approach. Furthermore, we characttTize the architectures which can be improved
by pipelined functional units.

Categories and Subject Descriptors:
B.7.1 [Integrated Circuits}: Types and Design Styles VLSI
C.l.1 [Single Data Stream Architectures}: Pipeline Processors
C.S [Special-purpose and Application Based Systems}: Real-time Systems
1.3.1 [Computer Graphics]: Hardware Architecture - Raster Display Devices
1.3.7 [Computer Graphics]: Three-dimensional Graphics and Realism Color, Shading,
Shadowing and Texture

Key Words f!!J Phrases: Raster Graphics, Computer Graphics, Real-time Scan-conversion,
Systolic Arrays, Two-level Pipelining.

"The work described in this paper is a part of a project for development of a graphics workstation. The
project is sponsored by the Dutch Research Foundation (STW), under contract CWI77.1249, carried out
by Twente University, Ellllchede, The Netherlands and Center for Mathematics and Computer Science,
Amsterdam, The Netherlands.

http://www.eg.org
http://diglib.eg.org

134

1 Introduction

Raster graphics systems have become very popular over the past decade, due to the image
quality achieved by" rendering the complete object instead of rendering the outline of the
object as in vector graphics. Though raster graphics systems are capable of rendering
high quality pictures, they need several orders of magnitudes higher processing power for
image generation compared to vector graphics systems. As the display must be refreshed
continually, almost all raster graphics systems decouple the image generation and display
refresh process by an intermediate buffer called frame buffer. Though a typical frame
buffer needs several Mbytes of memory, cheap memories made the frame buffer concept
feasible. The frame buffer is organized as a pixel array for fast screen refresh. Although,
the structure of the frame buffer is extremely suitable for screen refresh, its structure is not
well suited for fast interaction [12]. In [12], it has been argued that the frame buffer must
be replaced by a structured object list tuned for both fast interaction and screen refresh.
In this case, pixel values have to be calculated in real-time. Some graphics systems can
calculate the pixels from an object description [1],[2],13],[5],1:6], which could be adapted to
operate with structured object lists. Systems like Pixel-planes [5], add pixel processing
logic to each pixel memory location and systems like PROOF [6] use one processor-per­
object. Addition of pixel processing logic to each pixel results in a multi-fold increase in
overall size of the system, since the size of the processing logic is several times the area of a
memory cell. On the other hand, practical object processors can handle only very simple
objects like triangles. Therefore, one needs a very large number of object processors to
get a complex image. As these approaches produce very big systems, one can question
the feasibility of replacing the conventional frame buffer by a structured object list.

Fortunately, the overall system size of the multi-processor systems reported in [1]­
[3], is much smaller than systems based on processor-per-pixel or processor-per-object
approaches. These multi-processor systems are based on a one-dimensional systolic array.
They can generate the images at the display refresh speed without a frame buffer. In this
paper we refer to these graphics engines as SAG (Systolic Array Graphics) engines. In
SAG engines, pixel storage has been limited to a row of pixels, which has been distributed
over the processor array. In general, a systolic array consists of an array of identical
processor elements (PEs), and connections between PEs have been restricted only to
near neighbors. Hence, systolic arrays are very attractive for VLSI implementation and
furthermore, communication between PEs is fast and cheap.

When all the PEs are finished with their computations, a global clock enables the
communication between PEs. Therefore, throughput of the systolic array is determined
by the delay of the most complex operation supported. Hence, we can expect a reduction
in maximum operating speed when complex operations are added to an SAG engine to
provide better image quality. The maximum operating speed of the SAG engines reported
in [2],[3], have been limited to 40-50ns due to (16 bit fixed-point) addition, even though
advance IC technologies like 1.2J1m CMOS have been used. A 50ns pixel clock cycle is
enough for a 512x512 pixels display refreshed at a rate of 50Hz. A 1024xl024 pixels
display refreshed at the same rate needs a 12ns pixel clock cycle. Computer graphics
users have ever increasing desire for higher resolution displays, better image quality, and
higher interaction speed. Therefore, SAG engines will not be feasible for tomorrow's

135

2

computer graphics, unless one has some means to speed up the operations performed in
these graphics engine.

In the past, speed of the les have been increased dramatically by scaling the device
sizes. Early integrated circuits (circa 1965) had minimum feature sizes in the range of
10 to 20pm. Today, sub-micron minimum feature sizes are used in the state-of-the-art
Ie technology. When the parasitic wiring capacitance is neglected, scaling of minimum
feature sizes by factor 8 reduces the delay by factor 8 2 (theoretically) [7]. But the feature
sizes of current Ies are such that speed improvements due to scaling are lower than
the above theoretical value due to wiring capacitances and other parasitic effects. The
parasitic effects become more and more dominant when the minimum feature sizes become
smaller and smaller. However, there is a fundamental physical limit on the transistor sizes,
and according to [7] this is of 0.25 11m order. Based on the above facts (speed of scaled
Ie technologies, speed requirements of higher resolution displays and speed of reported
SAG engines) one can conclude that bare speed-up of scaled Ie technology is not enough
for tomorrow's computer graphics hardware based on SAG engines.

Pipelined functional units have been used in computer hardware to achieve higher
throughputs. A systolic array built from pipelined functional units has been first reported
in 1982 [11], which has been referred to as two-level pipelined systolic array. Hence, in
this paper we propose to use pipelined functional units in SAG engines to increase the
operating speeds. The introduction of pipelined functional units into an SAG engine is a
complex problem, as functions performed by PEs in an SAG engine are subject to time­
varying discontinuities. (This is explained in detail in the last paragraph in Section 2.)
But, as we can see in this paper, the complexity can be handled by a systematic approach.

The primary goal of this paper is to make a framework to derive two-level pipelined
SAG engines from a non (two-level) pipelined SAG engine. In the next section, we present
a survey of working principles of SAG engines reported in literature. In Section 3, a formal
approach is presented, which can be used to derive two-level pipelined SAG engines from
a non (two-level) pipelined SAG engine. In Section 4, some issues on pipelinability are
discussed. An architecture of a two-level pipelined SAG engine is presented in Section 5.
Finally some conclusions are drawn in Section 6.

Principles of SAG Engines

The SAG engines are built from a one-dimensional identical processor array as shown in
Figure 1. According to the directions of data movements, we can categorize the SAG
engines into two groups which will be referred to as contra-flow and contra-flow free archi­
tectures. In contra-flow architectures, video information travels in the opposite direction
to data and instruction flow. Video, data and instructions travel at the speed of one
processor per cycle. The difference in contra-flow free architectures is that video infor­
mation is sent to the display through a global bus. The architectures presented in [1],[2]
are contra-flow architectures whereas the architectures presented in [3],[4] are contra-flow
free architectures.

136

(b)

Figure 1: Two Different SAG Engins: (a) Contra-flow, (b) Contra-flow free.

In contra-flow architectures only half of the processors contain the instructions at any
cycle. If processors at even locations contain the instructions on cycle N, then processors
at odd locations idle on cycle N because only the processors containing instructions are
active. As instructions travel one processor per cycle, the states are reversed on the
next cycle. However, in contra-flow free architectures, all the processors are active at
any cycle. Apart from these differences, contra-flow and contra-flow free architectures
have the following common behavior: each processor array is fed by instructions, which
contain the information of a span of pixels, along with some processor addresses indicating
some important points in the span. Different functions are performed by sending different
instructions. For example, constant shading or Gouraud shading is done by sending
different instructions. When the instructions pass through each processor, the pixel values
are calculated by the processors when are addressed by the address field and stored
in a local pixel storage. Furthermore, when the processor is addressed by the instruction,
some data associated with each instruction are also modified before the instruction is sent
to the next processor.

Due to real-time requirements, the processors in the array work in two modes: refreshing
and non-refreshing, which is determined by the instruction on each processor. At any
time only one processor can be in refreshing mode. vVhen a processor is in the refreshing
mode, the content of the pixel storage is sent to the display. Non-refreshing processors
do the manipulations on the data stream, if they are addressed by the address field of the
incoming data. Furthermore, the non-refreshing processors on the right of the refreshing
processor operate on the current pixel row, while the non-refreshing processors on the
left of the refreshing processor operate on the next pixel row. As instructions travel one

137

processor per cycle, in each cycle the processor in refreshing mode switches back to non­
refreshing mode while its right neighbor becomes the next refreshing processor. Therefore,
SAG engines process the pixel information in a pipelined fashion without any exclusive
pipeline filling or draining. Table 1 shows the instructions supported by different SAG
engines reported in literature.

The functions performed by PEs in an SAG engine are subject to time-varying discon­
tinuities. For example when the Z-buffer algorithm is executed on an SAG engine, the
Z value of the polygon closest to the eye so far encountered is stored in a register for a
variable number of clock cycles. The number of clock cycles depends on conditions such
as whether the next instruction has a pixel span which overlaps with the pixel location
assigned for the processor, or whether the new pixel span is closer than the previous
spans. As the instructions for the Z-buffer algorithm pass through each the Z value
associated with each instruction is updated only by those processors that are assigned
to a given pixel span, which introduces another form of functional discontinuity. Note
that in a systolic array designed for convolution, matrix multiplication, etc., no functional
discontinuities can be seen as all the PEs perform the same function. When pipelined
functional units are introduced, one must make sure that no empty cycles, no exclusive
pipeline filling or draining cycles are introduced to handle the functional discontinuities,
because they reduce the number of advantages we have in an SAG engine.

3 Designing Two-level Pipelined SAG Engines

3.1 	 Related Work and Their Strengths and Weaknesses for
Two-level Pipelining of SAG Engines

Designing a two-level pipelined systolic array can be done in two ways: transforming
a non (two-level) pipelined design systematically into a two-level pipelined design, or
designing the two-level pipclined systolic array from scratch. The later approach has been
demonstrated in literature [10] in applications such as computing inner products. To our
opinion this approach is not well suited for SAG engines due to the complexity introduced
by time-varying functional discontinuities. The former approach was first introduced by
Kung et aL [81. In fact, in two-level pipelining, one tries to improve the clock period
by introducing pipeline registers into critical paths. A technique called re-timing which
could optimize the clock speed of a synchronous circuit was introduced by Leiserson et
al.[9]. In re-timing, the clock speed is optimized by re-Iocating the registers in a given
circuit while the logical behavior of the system is kept intact. Graph-theoretic approaches
have been used for re-timing and two-level pipelining by Leiserson et aL and Kung et
aL In these graph-theoretic approaches, combinational logic and communication links are
denoted by the nodes and edges of a graph. The number of registers on a communication
link is denoted by a "weight on the corresponding edge. The weights on nodes represent the
propagation delay of the corresponding combinational logic, which has been omitted by
Kung et aL In both approaches, registers introduce fixed latencies. In an SAG engine, the
latencies introduced by registers are subject to time-varying discontinuities. Therefore,
both approaches cannot be used to improve the clock speed of an SAG engine.

138

In Reference Instruction Description

1
REFRESH() Send the local pixel storage to the display

and reset the processor.

EVALO(X,DX,I) Store value I in processors X.X+l,...•X+DX .
(Constant shading)

REFRESH() Send the local pixel storage to the display
and reset the processor.

2,3

EVALO(X,DX,I.Z,DX)

Calculate the intensity and depth by
zero and first order interpolation at
processors X,X+l•..X+DX and store the
calculated intensity and depth if stored
depth is larger than calculated depth.
(Constant shading and hidden surface removal
by the Z-buffer algorithm, supported only in 3.)

EVALl(X,DX,I,DI,Z,DX)

Calculate the intensity and depth by
first order interpolation at processors
X,X+l,..X+DX and store the calculated
intensity and depth if stored depth is larger
than calculated depth.
(Gouraud shading and hidden surface removal
by the Z-buffer algorithm.)

REFRESH() Send the local pixel storage to the display
and reset the processor.

EVALO(X,DX ,I)
Accumulate value I in processors
X,X+l,...,X+DX until next refresh.
(Constant shading)

EVAL I (X,DX,I,DI)

Calculate the intensity by first order
interpolation at processors X,X+l,...,X+DX
and accumulate the calculated intensity until
next refresh. (Gouraud shading)

4
EVAL2(X,DX,I,DI,DDI)

Calculate the intensity by second order
interpolation and accumulate the calculated
intensity until next refresh. (for Phong Shading)

SETI(X,DX,I) Change the intensity at processor locations
X,X+DX,X+2DX,... to I during next interpolation.

SETDI(X,DX,DI)
Change the first derivative of the intensity
at processor locations X,X+DX,X+2DX,... , to DI
during next interpolation.

SETDDI(X,DX,DDI)
Change the second derivative of the intensity
at processor locations X,X+DX,X+2DX,... to DDI
during next interpolation.

DIS(X,DX) Disable the accumulation between processor
locations X and DX.

NOP() Do nothing

Table 1: Instructions Supported in Different SAG Engines.

139

3.2 ANew Methodology

In this section, we a new graph-theoretic approach which can be used to convert a
systolic array (built from non-pipelined functional units) with time-varying functional dis­
continuities into a two-level pipelined version. In fact this approach can be used not only
for SAG engines but also for any systolic array with or without functional discontinuities.

In our methodology, the original systolic array is represented at bit-level by a finite,
vertex-weighted, edge-weighted, directed graph G = {V, V',E, dv , dVI,W}, (from now on,
for simplicity we say graph.) where V, V' and E denote the nodes and edges of the
graph. The labels dv,dvl and w denote the weights on the nodes and edges respec­
tively. The graph G which is constructed by replicating the graph of aPE, G PE
{VPE, V;E' EpE , dvPE , dVPE ' WPE} and connecting vertices according to communication be­
tween PEs as the entire array is built from identical PEs.

In order to construct the graph the bit-level functional units are represented by
vertices VPE and bit-level storage by vertices VPE, The communication between nodes are
denoted by the edges and for each edge e E EpE, wPE(e) denotes the earliest communi­
cation time slot for all legal combinations of instructions. The edges which communicate
in the ith(i = 0,1,2, ...) time slot are weighted by i. Each vertex v E VPE is weighted
by the numerical propagation delay of the functional unit d(v). Each vertex v' E V;E is
multiply weighted by d(v~_b) for each input edge a and output edge b connected to node
v', when there is a direct information fiow 1

• The quantity d(V~_b) indicates the minimum
latency (which is under control of instructions) between information flow from edge a to
b through the storage node. If there is no direct information fiow from edge a to b then
d(v:~b) is undefined.

The maximum clock speed of the circuit is determined by the propagation delays of the
critical paths. A critical path in our graph G can be identified as a directed path activated
in the same time slot such that the sum of the node weights on that path is maximum
over the entire graph. (If a critical path goes through a storage node, the critical path is
terminated at the storage node whenever the vertex weight corresponding to that path is
non-zero, as the vertex weights of storage nodes denote the latency whereas the weights of
other nodes denote the propagation delay.) In order to improve the clock speed the graph
is re-timed. In re-timing, pipeline registers are added to critical paths to meet the given
speed requirements, and then some more additional pipeline registers are added to some
other edges and/or latencies at some storage vertices are such that the following
theorem is satisfied.

Two-level Pipelining Theorem: If a two-level pipelined is obtained by adding
pipeline registers to some edges and/or changing the latencies of storage nodes, the logical
behavior of the system will be kept intact if the differences in latencies through all pairs
of paths between any two nodes are equal in the original and re-timed graphs.

1In Figure 5 the information flow from edge a. to ai+l is direct whereas the information flow from
edge ai to d. is indirect. There is no information flow from edge ai to bi+l

140

Proof: Let m, n be two nodes and PI, pz be two paths from m to n. Let path PI be
activated on ipI!! i pb , ... , ip1Nl time slots (il'II < iI'12'" < iplNJ and pz be activated on
il'21' i1'22! ... , ip2N2 time slots (iI'2] < ip22 '" < i p2m)' If we introduce a latency of k cycles in
path PI, by introducing pipeline stages and/or changing storage latencies, node m gets the
data from node n through path PI in time slot iplN] +k. In the origimi.l graph node m gets
the data from node n through paths PI and pz in time slots i plN, and ip2N2 respectively.
In order to keep the logical behavior of the graph intact we must get data through path
pz in time slot ip2N2 + k. Now, we can see the difference in latency through path PI and
pz is equal to (il'lNl il'2m) cycles in both original and re-timed graphs. This argument
can be applied to all paths between any node pair to prove the theorem. 0

It can be proven that the application of the two-level pipelining theorem produces
lEI IVI + 1 linearly independent equations, where lEI, IVI are the number of edges and
vertices in the graph [13]. These equations contain lEI + 1V~11 unknowns where 1V;11
is the number of non-zero weights in the storage nodes. As-we have more unknow-ns
than equations, the re-timing problem can be solved by linear programming, for example
minimizing the total register count as Leiserson proposed [9].

3.2.1 An Example

Figure 2(a) shows a systolic array finite impulse response (FIR) filter2 whose output is
given by Yi Xi_k. In this filter input Xi and output Yi travel to the left and right
respectively at a speed of one processor per cycle. As Yi travels, it collects the partial sums
and hence the complete sum is formed at the rightmost PE. For the proper operation,
the input Xi must supplied at every other cycle. Hence, output Yi is also produced at
every other cycle. Figure 2(b) shows the graph of the systolic FIR filter when a carry
ripple adder is used for addition. For simplicity, we have assumed that calculations are
performed by 2 bit binary numbers. The nodes v~, v~ (v;, v~) represent the delay D which
stores Xi in PEl (PE2). Similarly, nodes V~t' V~2 (v~, v~) represent the delay D which stores
Yi in PEl (PE2). The adder in PEl (PE2) is represented by nodes Vg, VtO (vs, V6)'

Let us assume that ki,j denotes the number of pipeline registers placed on edge (vi, vi) 3

and ki denotes the non-zero latency at storage node v; for a two-level pipelined design.
Let us place a single pipeline register in each edge (Vg, VIO), (Vs, V6) as these edges belong
to the critical paths, i.e. kg,tO kS,6 = 1. Note that these edges represent the carry
propagation in the adders. Application of the two-level pipelining theorem generates 5
linearly independent equations as follows.

fact this systolic array has no functional discontinuities. But we use this example for simplicity.
3Here v; stands for Vi or v}, as nodes in the example are numbered such that Vi and vi exists only for

i::/= j.

141

o

(a)

Note: All edge

weights are zero

(b)

Figure 2: A Systolic FIR Filter (a) Non (two-level) Pipelined Implementation, (b) Graph
for (a).

kin•1 + kl + k1,3 + k3 + k3,5 + kS,6 k4,6 - k4 - k2,4 - k2 - kin ,2 = 0

k1,3 + k3 + k3,5 + k5 ,7 + k7 + k7,9 - k1,9 = 2

k2,4 + k4 + k4 ,6 + ka,8 + k8 + kS,10 - k2,10 = 2
k5 ,6 + k6 ,8 + ks + k8 ,10 k9 ,10 k 7,9 k7 - k 5,7 = 0

k9,10 + klO,12 + k12 + k12 ,o11.t k11 ,011.t - k11 - k9,11 = 0

These equations have been obtained by taking the difference of latency through two
paths between node pairs (Vim V6), (Vb V9), (V2' VlO), (Vs, VlO) and (V9, Vo11.t) respectively.
Any other equation obtained by other paths can be expressed as a linear combination
of the above 5 equations. Now,

ki = 1, for i 1,2,3,4,7,8,11,12
k. 	_{ 1 for (i,j) (Vin,V2), (V11, t'VOtlt), (V9,VlO), (VS,V6)

'.:1 - 0 otherwise

is a feasible solution. This means we have to place pipeline registers to the carry path
of each adder and edges (V;",V2),(1'11,1'o"t) and keep the latencies of the storage nodes
unchanged to get a two-level pipelined design for the systolic FIR filter. This pipelined
design can be operated twice as fast as the original design, In general, such a pipelined
design can be made to operate m times faster than the original design when an m bit
adder is used. The area overhead will be insignificant compared to speed improvements
as the pipeline registers need very small silicon area,

A Study on Pipelinability

In this section, we study the pipelinability of SAG reported in literature [1], [2],
[3], [4]. Due to regularity of the graph, only part of the graph will be drawn for the

4

142

Figure 3: A Partial Graph for Contra-flow Architecture.

discussions in the next sub-sections. Furthermore, we simply omit unnecessary vertex
weights.

4.1 Contra-flow vs. Contra-flow Free Architectures

First, let us study the contra-flow architecture given in [1] where the pixel stream travels
in opposite direction to instruction and data streams. The relevant partial graph is de­
picted in Figure 3, where nodes Vn, '1112, V~1' vb are nodes in the 18t PE and '1121, '1122, v~l' V~2
are nodes in the 2nd PE. Let '1111, V~l' '1121, V~1 and v~2' '1112, v~2' Vn be on the instruction
and pixel streams respectively. Nodes Vin and Vont represent the instruction source and
display respectively. Let us consider the latencies between nodes Vll and '1112' Laten­
cies through paths '1111'1112 and vllvilV21V22V~2V12 are 0 and 2 cycles respectively. Now
let us assume kt, kh k2 and k2 pipeline registers are placed between (vn, viI)' ('1121, v;d,
(VI2,V~2) and (V22,V~2) to get a regular design4 • Now latencies through paths '1111'1112 and
Vn V~1 V21V22V~2V12 are 0 and k1 + k2 + 2 cycles respectively. Therefore in order to satisfy
the two-level pipelining theorem, kl + k2 + 2 = 2. When kl ;::: 1 we get an unrealizable
design. Hence we conclude that an SAG engine having a contra flow architecture is not
two-level pipelinable5•

Now let us turn our attention to the contra-flow free architecture presented in [3).
The partial graph is depicted in Figure 4, where nodes Vu, V12, V~1 are nodes in the 18t

PE and V21,V22,V~1 are nodes in the 2nd PE. Let Vl1,Vil,V2bV~1 and V12,V22 be on the
instruction and pixel streams respectively. Nodes Vin and Vaut represent the instruction
source and display respectively_ Let us consider the latencies between nodes Vn and V22­

Latencies through paths '1111'1112'1122 and VllV~IV21V22 are 0 and 1 cycles respectively. Now
let us assume kb kl, k2 and k2 pipeline registers are placed between (vn, V~1)' ('1121, V~l)'
('1112, '1122) and ('1122, Va"'l) to get a regular design. Now latencies through paths VllVI2V22 and
Vn V~1 '11:21 V22 are k2 and kl + 1 cycles respectively. Now, in order to satisfy the two-level
pipelining theorem we must have kl - k2 + 1 = 1. As the condition k1 kz + 1 1 can
be satisfied, we can conclude that the direction of the information flow in the contra-flow
free architecture does not impose any constrains for two-level pipelining. But we can

the next section, the necessity for pipeline registers in the instruction streams will become clear.
5Note that the systolic FIR filter in our example also has a contra flow architecture, but we were able

to design a two-level pipelined systolic FIR filter.

143

-..-~
Vout

Figure 4: A Partial Graph for Contra-flow Free Architecture.

--i....~--tH.... V12

--i......---t-H.... Vn

ai b;

V'i1(i= I,Z, ...m)

--i........=---~... Vm2

Figure 5: A Partial Graph for a PE Capable of Hidden Surface Removal.

not guarantee that contra-flow free architectures as two-level pipelinable, because in this
study we have neglected the internal details of a PE to a great extent. Hence, we classify
the contra-flow free SAG engines as potential designs for two-level pipelining.

4.2 Different Instruction Sets

In this sub-section let us study the impact of different instruction sets. First, let us
consider the instruction set proposed in [31. This instruction set is capable of Gouraud
shading with hidden surface removal by the Z-buffer algorithm. Let VOl, V02, ••• , Vm2 be
nodes on a PE, see Figure 5, such that nodes Vn, V22, .•. , Vm2 make the comparison between
the current Z value and stored Z value for hidden surface removal. Nodes V~l' V~l> ... , V:"l

store the Z value to be used with the next instruction according to the results of the
comparison. Nodes VOll V02, V03 are on the instruction stream such that V02 and V03 generate
the write and read signals for the depth storage. The graph has been drawn by assuming
that the depth is calculated by m bit fixed-point numbers and the instructions for hidden

144

5

surface removal are issued at least n cycles apart as done in [3]. Note that, in this
graph there are several loops passing through the critical path. (We have assumed that
the critical path lies on the comparison circuit). Application of the two-level pipelining
theorem reveals that pipeline registers can be inserted into the critical path if we reduce the
latencies of the nodes V~l' V~l' ••• , V;"l' The reductions in storage latencies are necessary
due to directed loops such as v~lV21 V22"'Vm2V03. As the nodes v~l' v~l' .•• , V;"l represent
storage logic in the design6

, the comparator unit can only be pipelined into maximum
depth of n -1. In general m :;P n (m = 32, n = 4 for the design in [3]) and hence the speed
improvement is limited. When n = 1, the comparator can not be two-level pipelined.

The instruction set presented in [4] has been proven to be two-level pipelinable to any
depth. Due to the complexity of the graph the proof is omited and in the next section we
will present a two-level pipelined architecture.

A Two-level Pipelined SAG Engine

First let us study a non two-level pipelined SAG engine capable of executing the instruc­
tion set given in [4] (see Table 1). Figure 6 shows a non-pipelined architecture of aPE
which can execute the above instruction set. The registers A,B and C are used to store
intensity, its first derivative and its second derivative for interpolations. The register
P holds the accumulated intensity (i.e. local pixel storage), which is sent to the out­
put driver and then cleared by the 'REF' instruction. The 'SETI', 'SETDI', 'SETDDI'
and 'DIS' instructions disable the registers from being over-written by the next 'EVAL*'
instruction. The multiplexers at the right side are used to handle some functional dis­
continuities. For example, when the PE is (not) within X and X+DX, interpolation is
(not) performed. Hence, the right multiplexer on the data stream selects the correct data
to the output according to the location of the PE. Furthermore, at some PE locations
the state of the instruction is changed. For example, at PE locations X and X+DX the
'EVAL*' instructions are activated and converted into a 'NOP' instruction respectively.
This is achieved by the multiplexer on the instruction stream. The discontinuities of the
operations performed by each PE depend on the value of X, DX and instruction type.
Therefore, the control signals for the multiplexers are generated in conjunction with the
carry signals (Cx in Figure 6) from the adder and the instruction in the processor.

The target architecture in Figure 6 can be converted into two-level pipelined design as
outlined below. First the graph of the architecture is constructed. Then the critical paths
are identified. In our target architecture, the critical paths pass through the carry ripple
path in the adder. The places where the pipeline registers must be placed in the critical
paths are then decided to meet the given speed requirements. Then locations of other
pipeline registers are determined by solving the linearly independent equations obtained
by the application 'of the two-level pipelining theorem. The graph of the architecture is
not given due to its complexity and hence more details of the steps we outlined above are

6The storage nodes must store data at least for one cycle, otherwise we convert the synchronous design
into an asynchronous design.

145

36

ABC p
+

Data In B

~UI----+-+--f--+---""""--I---+-I--+-+--'1II't
F 3636

ex

Control

Ins. In B 12
U
F

12 12

Video 8

M
U
x

Data Out

12

A,B,C : 36 Bit Internal Registers MUX : Multiplexer
p : 24 Bit Pixel Storage BUF : Buffer

Figure 6: Architecture of a Non (two-level) Pipelined SAG Engine for the Instruction Set
in [4J.

also omited. A two-level pipelined architecture derived by this approach is depicted in
Figure 7. Though the architecture in Figure 7 is pipelined to depth 2, it can be pipelined
to the bit-level.

Some explanations are given in this paragraph to understand the operation of the
pipelined engine. As the critical paths of this circuit lie through the adder, 2 pipeline
registers have been placed on the carry path. As control signals for the multiplexers on
the right side are generated in conjunction with the carry signals from the adder, the
(data) inputs to these multiplexers are delayed by pipeline registers, which can be seen
in Figure 7. As the carry signal from the low order bits to higher order bits travels in
different time slots, the input data to the adder must also be delayed and hence pipeline
registers are placed on the control signals of registers A,B,C,D and multiplexer in the
middle. Furthermore, the latency of the carry introduces latency in the adder output.
Due to this reason, pipeline registers are introduced on the right hand multiplexer control
signals. Pipeline registers on the pixel stream and on the control signals of the output
driver are also placed due to similar reasons.

146

6

r-- 4 ..-- ...-- r-- .---­

Data In B F~ ML­ M~
¢;::> ~ ABC 12 ~ r­ '" 12 P ~ ~
12

Video

'- ­

4 4.
12

~

"-r-­
r-­

0 4

....

t~

12

_

4 4 L.. ~'-- 0 ' ­

Data In

12

Video

~
U
F

L
ABC

j i

t~ t~ It

F"'::"'"

12
12

M L­
U r-
X '"
. ­ '-r-

It

12 P

II

~

0 4

M k>-DataOu
U
X
.- 12

t.
4 .----

Dataln B

¢;> ~ ABC

4 L.. ~ '- ­

F~M
12 ~ I---­ '" 12 P

0 " ­
M~
~ ~

21 '- ­ lAA 12T ~ T
12

'-;Ideo I I I I I 1.. lgl 4 I
4 r

+
~

-: _~Itrol

A,B,C : 36 Bit Internal Registers MUX : Multiplexer
P : 24 Bit Pixel Storage BUF : Buffer

00 ; Output Driver : Pipeline Register •

Figure 7: A Two-level Pipelined Architecture.

Conclusions

The operating speed of the systolic array is determined by the most complex operation
performed. Hence the maximum operating speed of an SAG engine tends to reduce as
more complex operations are introduced to improve the image quality. Furthermore, high
resolution displays also demand high speed operation. In order to improve the speed of
SAG engines, the use of pipelined functional units were proposed. Even though pipelined
functional units need more hardware for pipeline registers, we think two-level pipelining
of SAG engines will be very attractive for tomorrow's computer graphics hardware due to
the following major reasons. First, SAG engines generate the pixels in real-time from an
object representation and hence one can improve the interaction speed by replacing the
conventional frame buffer by a structured object list as proposed in [12]. The SAG engine
based systems are more compact than systems based on processor-per-pixel or processor­

147

per-object providing the same functionality, image quality and interaction speed. As the
scaling of minimum feature sizes and wafer scale integration increase the device count
dramatically, one has very feasible means to provide the additional hardware for two-level
pipelining of SAG engines.

A graph-theoretic methodology was presented to transform SAG engines built from
non-pipelined functional units into two-level pipelined designs. In an SAG engine, the
number of PEs could be large (256 '" 4000) and hence the number of nodes and edges
in the graph could be very large (10,000 '" 100,000). Hence, the execution time of the
re-timing procedure on a computer will also be very large. Currently we are looking into
fast implementations of re-timing by exploiting the regularities in the graph.

Acknowledgments

Thanks to A.A.M. Kuijk and E. Blake at Interactive Systems Group, CWI, Amsterdam
for helpful discussions. Thanks also to F. Moelart EI-Hadidy, G. Karagiannis and S.
Gerez at Laboratory of Network Theory, Twente University, Enschede for proof reading
and helpful discussions.

References

[1] 	 Nader Gharachorloo and Christopher Pottle, SUPER BUFFER; A Systolic VLSI
Graphics Engine Jar Real Time Raster Image Generation, Proceedings of 1985
Chapel Hill Conference on VLSI, Computer Science Press, 1985, pp. 285-305.

[2] 	 Nader Gharachorloo, Sat ish Gupta, Erdem Hokenek, Peruvemba Balasubrama­
nian, Bill Bogholtz, Christian Mathieu and Christos Zoulas, Subnanosecond Pixel
Rendering with Million Transistor Chips, Proceedings of SIGGRAPH 88, August
1988, pp. 41-49.

[3] 	 Teiji Nishizawa, Takeru Ohgi, Kazuyasu Nagatomi, Hiroshi Kamiyama and
Kiyashi Maenobu, A Hidden SurJace Processor for 3-Dimension Graphics, ISSCC
88, February 1988, pp. 166-167.

[4] 	 J.A.K.S. Jayasinghe, A.A.M. Kuijk and L. Spaanenburg, A Display Controller for
a Structured Frame Store System, in Advances in Computer Graphics Hardware
III, Springer-Verlag, 1989.

[5] 	 H. Fuchs and J. Poulton Pixel-planes; A VLSI Oriented Design for a Raster
Graphics Engine, VLSI Design, VoL 3, No.3, 1981, pp. 20-28.

[6) 	 Bengt-Olaf Schneider, PROOF: An architecture for rendering in Object Space,
in Advances in Computer Graphics Hardware III, Springer-Verlag, 1989.

[7) 	 D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated Cir­
cuits, McGraw-Hill, Inc. 1983.

148

[8] 	 H.T. Kung and M.S. Lam, Fault-Tolerance and Two-level Pipelining in VLSI
Systolic Arrays, 1984 Conference on Advance Research in VLSI, M.LT., 1984,
pp. 74-83.

[9] 	 C. E. Leiserson and J.R Saxe, Optimizing Synchronous Systems, Journal of VLSI
and Computer Systems, VoLl, No.1, 1983, pp. 41-68.

[10] 	 S.Y. Kung, VLSI Array Processors, Prentice Hall, 1988.

[11] 	 H.T. Kung, L.M. Ruane and D.W.L. Yen, Two-level Pipelined Systolic Array
for Multi-dimensional Convolution, Image and Vision Computing, VoLl, No.1,
February 1983, pp. 30-36.

[12] 	 P.J.W. ten Hagen, A.A.M. Kuijk and T. Triekens, Display Architecture for VLSI­
based Graphics Workstation, in Advances in Computer Graphics Hardware I,
Springer-Verlag, 1987.

[1.3] 	 J.A.K.S. Jaysinghe, Speed Optimization of VLSljWSI Array Processors, Internal
report under preparation.

