
A Generalised Parallel Architecture 

for 


Image Based Algorithms 


G. J. Vaudin. G. R. Nudd. T. J. Atherton. S. C. Clippingdale, N. D. Francis. R. M. Howarth. 
D. J. Kerbyson. R. A. Packwood and D. Walton 

Department of Computer Science 

University of Warwick 


Coventry. UK 


1. Introduction 

Real time image generation and image understanding require levels of 
computing power, that are beyond that available from conventional sequential 
machines. Current commercially available systems aimed at this area make use 
of special purpose hardware to achieve the necessary throughput, but these 
systems can only achieve their performance for a restricted set of algorithms 
that are implemented in the hardware. A programmable general purpose 
parallel machine offers the possibility to achieve the required performance 
without restricting the choice of algorithm. 

Unfortunately it is by no means clear which parallel architecture should be 
used. Many general purpose parallel architectures have been proposed but 
none has proved universally applicable, their problem being that their 
performance tends to be highly dependent on the algorithms that are being 
used, and it is therefore difficult to claim any of them are truly general 
purpose. However parallel machines can still be highly effective in specific 
problem areas where the class of algorithm is known. 

Our aim has been to design a parallel machine that is optimised for image 
based algorithms in both graphics and image understanding. The architecture 
is not limited to a specific set of algorithms, but is instead optimised towards a 
class of algorithms which we believe are representative of image based 
algorithms. This has not been a paper study, but has resulted in us 
implementing such an architecture. We have achieved this by making use of 
industry standard components and integrating them into a system level 
architectural design. Also we have where possible used industry standard 
programming languages to program our machine. 

http://www.eg.org
http://diglib.eg.org


114 

2. Existing Parallel Architectures 

Various classifications exist for parallel machines. The most fundamental 
is Flynn's [5] which classifies machines by the number of instruction streams 
that they employ. Single instruction / multiple data (SIMD) machines have a 
single instruction stream which is common to all the processors in the system 
such that each instruction operates on many different data in parallel. Multiple 
instruction / multiple data (MIMD) machines have a separate instruction 
stream for each processor so that many different data may be acted on 
independently from one another. 

Program 
Memory 

Program & Program & 
Data Mem DataMem 

Sequencer 

Mem Mem Mem Mem 

a) SIMD b) MIMD 

Figure 1: SIMD and MIMD Architecures 

SIMD machines [1,2,3,4] excel at problems where large arrays of data are 
to be processed identically. They are also very good at communication 
intensive problems, provided that the communication is also identical for each 
processor. Since SIMD machines have only a single instruction stream they 
require only one program memory, and one instruction sequencer. This means 
that more of the machine can be given over to computational units and so 
makes them much more cost effective than MIMD architectures if the data is 
to processed identically. However SIMD machines become progressively more 
inefficient the more the processing begins to vary from one processor to 
another. Most SIMD architectures rely on being able to exclude certain 
processors from a particular piece of computation to implement different 



115 

processing on different processors. This leads to processors lying idle for 
some of the time, and the more the processing varies the more time processors 
spend idle. The limiting case being when each processor is executing a 
completely separate instruction stream at which point the performance 
degrades to that of a sequential machine. 

Conversely MIMD machines [13] excels at problems where each processor 
is completely independent of each other. Since it has instruction memory and 
instruction sequencing on every processor there is no overhead involved in 
every processor executing a different instruction. However because the 
processors have their own instruction streams there is no global 
synchronisation between processors, which means that communication between 
processors involves some form of rendezvous, which implies that one or other 
processor has to wait for the other. This leads to an increased communications 
overhead compared with the SIMD machines. Also it is characteristic of 
algorithms that run well on MIMD machines that because of the independent 
nature of the processing on each processor the communication tends to be less 
localised than with algorithms that run well on SIMD processors. This further 
increases the communications overhead, and makes MIMD machines less 
suitable for communication intensive problems. 

In addition to the MIMD/SIMD classification parallel machines can also be 
classified into coarse and fine grained. Coarse grained implies that the 
machine is made up from relatively large processors, usually with floating 
point hardware, whereas fine grain implies the use of much smaller processors 
many of which can be integrated onto a single chip. Coarse grained machines 
are generally good at general purpose "scientific" computations which make 
heavy use of floating point calculations, and which therefore benefit from 
having these calculations done in hardware. Fine grained machines are 
generally better at tasks which involve fairly simple integer arithmetic often 
involving variable word lengths. For these tasks the use of a large arithmetic 
unit would be very inefficient since most of it would lie idle, a better use of 
the available resources is to implement more of the simpler processors. 

In general most SIMD machines tend to be fine grained, whereas most 
MIMD machines tend to be coarse grained. It would be very inefficient to 
implement a fine grained MIMD machine since the overhead of providing an 
instruction sequencer for each processor would begin to dominate the system. 
There is no such restrictions with SIMD machines so it is reasonable to build 
systems with large numbers of small processors. It has been argued that it is in 
general more efficient to use a large number of simple processors than a 
smaller number of more complex ones [14], but as I have already mentioned 
this is in fact only true for a restricted class of problems. There may therefore 
be applications for which a coarse grained SIMD machine would be ideal, but 
at this time most available SIMD machines are fine grained. 



116 

3. Image Based Algorithms 

To decide which of these architectures would be most suitable for the use 
in image based applications we need to look at the structure and composition 
of the problems and the kind of algorithms that are used in them. 

3.1 Image Understanding 

An image understanding system is required to take an image (typically 
consisting of an array of intensity values) as input and produce a high-level 
abstract description of the scene as output, in real time. To do this it would 
proceed in a number of stages, at each one refining the data into a more 
abstract form. 

Initially low-level or iconic-to-iconic processing would be performed, 
which processes the input image and produces a modified form of the image as 
output (this is the image processing part of the problem). The result of this 
stage of processing will be a segmented and labelled image, where the various 
areas of interest within the image would have been isolated and uniquely 
labelled. These areas may be edges, enclosed regions or other more specific 
features. 

The next level of processing consists of iconic-to-numeric processing 
where quantitative information about the isolated regions is extracted from the 
image. This information might include the centroid, area and variance of a 
particular region for example. The information required would depend on 
the type of feature being examined. 

Finally numeric-to-symbolic processing is performed which takes this 
extracted data and uses it to form hypotheses about the scene represented by 
the image. This would involve using a priori knowledge of the possible 
contents of the scene to identify the relevant features and then match them 
with hypothesised objects. The system can then perform reasoning based on 
the interrelationship of these hypothesised objects in order to produce a full 
description of the scene. 

One of the difficulties in building a machine to do this processing is that a 
wide variety of operations need to be performed, on widely differing 
representations of the data. An architecture which is good at one type of 
operation (eg. pixel-based iconic-lo-iconic) is likely to be unsuited to other 
types (eg. symbolic), 

For the pixel or iconic representation, and the corresponding class of 
operations such as thresholding, convolutions, and histogramming that one 
wishes to perform on this data a very high throughput is necessary to process 



117 

the large amount of data. About 10 million pixels need to be processed per 
second for real time applications, and the throughput is particularly large 
when one considers that even for a simple linear operation such as a 5x5 
convolution 25 multiplications and accumulates are required per pixel. For 
non-linear operations such as median filtering the throughput grows as N 2 , 

and of the order of 1,000 MOPS may be needed. 

To meet this throughput requirement requires a very high degree of 
parallelism, ideally one processor for every pixel in the image. However it 
should be noted that the operations are carried out globally on all pixels 
simultaneously and are therefore suitable for implementation on an SIMD 
machine. Also the operations tend to be numerically simple, with 8-bit integer 
multiply probably the most complex operation required. Thus an array of 
simple processors could be used which would be sufficiently small as to make 
such a massively parallel scheme feasible. Many such machines, mostly 
consisting of simple bit-serial broadcast SIMD array processors, have been 
built (CLIP, DAP, MPP [1,2,3,4] etc.) and have proved very able at this low 
level image processing type of problem. 

The iconic-to-numeric stage, is responsible for analysing the results 
produced by the iconic-to-iconic phase. It needs the ability to extract results 
from the pixel array, allowing for the fact that the results required may vary 
depending on the feature that is being processed, and to process these and pass 
them on to the symbolic layer. The data extracted will be more complex in 
nature than the simple intensity values of the iconic stage, but will be less 
numerous, and the processing performed on it will typically be more varied 
than is the case with iconic data, since the data itself is more varied. 

To reflect these needs a suitable processor would be a medium grain 
MIMD machine which would be able to influence the processing of the iconic 
data which it is to use as input. A conventional microprocessor would be a 
possible candidate for this purpose, with some additional hardware to allow it 
to communicate with and have some control over the iconic processors from 
which it receives its input. 

The symbolic processing requirements are more varied in nature. By this 
stage any direct relationship with the image data is gone, and the processing 
deals with more abstract notions of shape and relationship. These structures 
will be be much more complex than in previous stages but will be 
correspondingly less numerous. For this purpose a powerful general purpose 
MIMD parallel machine would appear to provide the appropriate choice. 



118 

The conclusion to be drawn from this is that no one architecture will be 
suitable for all stages in the image understanding problem. The ideal image 
understanding architecture would consist of a variety of different processors 
arranged in such a way as to allow data to flow between the different sections. 

3.2 Computer Graphics 

Computer graphics can be regarded as the reverse process to image 
understanding, instead of starting with an image and producing a model, one 
starts with a model and produce an image which represents that model. Like 
image understanding, computer graphics systems proceed in a number of 
stages, in this case moving from an abstract representation of a scene towards 
a concrete pixel array representation. 

The first step in processing consists of viewing transformations, where the 
model is transformed into the coordinate system of the viewer. This may 
involve different transformations for different objects in the scene, if the 
relationship between the various objects is not fixed. Working out these 
relationships may be a complex problem in itself if, for example, the different 
object were aircraft in a flight simulator. Then the illumination of the objects 
is calculated based on their positions with respect to the light sources. Most 
systems will perform some clipping at this stage, where objects out of view 
are removed from further calculations. 

Next the objects are decomposed into their constituent parts, usually planar 
polygonal patches, and these are then projected onto the two dimensional 
screen coordinate system. Further clipping is carried out to remove parts of 
objects which fall outside the boundaries of the screen, and surfaces which are 
obscured by other objects may be removed. Finally the pixels which 
represent the 2D polygonal patches are evaluated, and each set to the 
appropriate intensity level. This stage may attempt anti-aliasing, and 
smoothing and may also be responsible for hidden surface elimination. 

The first stage in the process involves a large number of floating point 
operations to be performed on the objects, which have no fixed 
interrelationship, and may have different representations and thus may require 
different processing. These operations can in general be performed entirely 
independently of each other, so that inter processor communications is not 
generally a problem. An MIMD array of floating point processors would 
appear to provide an appropriate solution to this stage. 

Once the data has been converted to screen polygons the processing 
becomes arithmetically simpler, usually involving integer arithmetic only. and 
also tied more closely to the physical layout of the screen memory. This kind 



119 

of problem is amenable to solution by an SIMD array of integer only 
processors. However there will typically be a many to one relationship 
between polygons and the pixels which make up the polygons, which implies 
that there will be fewer polygon processors than pixel processor, which in 
tum implies that a more coarse grained processor is used. 

The final pixel tiling involves a very large number of simple operations to 
be performed identically over the pixels forming a given polygon, and so a 
large SIMD array of simple processors would be appropriate. 

Similarly to image understanding it can be argued that no one of the 
available architectures is ideally suited to all the stages in the graphics process. 
What is required is a machine which consists of a variety of different 
processors arranged in such a way that data can be efficiently transferred 
between them. 

We have designed and constructed such an architecture which provides 
four distinct "layers" of processors. These processors can communicate both 
within one layer or between adjacent layers. In this way data can be passed 
from one stage to the next. In the following sections we will describe in detail 
the design and implementation of this architecture, and then go on to describe 
the programming of it. 

4. Warwick Pyramid Machine 

The Warwick Pyramid Machine [6], has been developed to address the 
needs of a specific class of image based problems, namely image 
understanding and computer graphics. It consists of four distinct layers of 
processors, each optimised for one stage in the problem. Since data flows both 
within each layer and between adjacent layers, it is convenient to regard the 
layers as being stacked one above the other. Also as each layer contains fewer 
processors (but more powerful ones) than the layer below it, we regard the 
machine as being a pyramid of processors. 

At the base of the pyramid is the iconic layer, which is a fine grained 
Multi-SIMD machine. This consists of an array of independently controlled 
SIMD machines called clusters. Each cluster contains its own controller which 
provides it with its instruction stream. These controllers are each associated 
with a symbolic processor which processes the results from the cluster and 
also determines the instructions generated by the controller. The symbolic 
layer is an array of coarse grained MIMD processors. The symbolic layer is 
connected to a conventional host machine which is used to interact with the 
pyramid. 



120 

Host (Sun) 

MIMD array (8 x 8) 

Controller array (8 x 8) 

SIMD array (128 x 128) 

Figure 2: The Warwick Pyramid Machine 

4.1 Host Machine 

At the apex of the pyramid is the host computer, which performs no 
computations of its own but provides the user interface for the pyramid below 
it. The host machine provides mass stomge and is responsible for downloading 
programs into each processor. It also provides a familiar user environment, 
such as editors and debuggers for developing programs to be run on the lower 
levels, displaying intermediate results, and so on. A graphics workstation such 
as a SUN is appropriate for the host, since it combines a powerful 
development environment with a suitable gmphics capability to display results. 

We have been using a SUN 3/280 server and SUN 3/60 workstation as the 
host machine for our prototype machine The SUN 3/280 contains a Transputer 
based interface card which communicates via a fibre optic cable to the 
symbolic Transputer layer. 

4.2 Symbolic Processing Layer 

The symbolic layer provides the top level of processing, dealing with 
abstract model data, and is an MIMD array of coarse grained processors. The 
processor we use for this is the INMOS Transputer, which is specifically 
designed with MIMD multiprocessing in mind. It includes hardware support 
for inter-processor communications in the form of four DMA driven serial 
links which can communicate at up to 20Mbits per seconds each without 
processor intervention. It also provides micro-coded support for multi-tasking 



121 

which allows very fast context switching, and transparently handles interaction 
with the on board DMA controlled links. 

The Transputer supports a model of concurrency known as 
Communicating Sequential Processes or CSP defined by Hoare [7]. This 
models breaks problems up into a set of independent sequential processes 
which communicate and synchronise only by means of channels. The channel 
is a unidirectional data stream which causes a rendezvous for every data item 
passed through it. Thus if a process writes to channel it is suspended until 
another process reads the channeL Conversely if a process reads from a 
channel it will be suspended until data has been written into the channel by 
another process. 

North Link 

t 
West Link East Link 

T414 ... 

256 Kbytes 

, 
South Link 

Figure 3: Symbolic Processor Array 

The Transputer has instructions which directly implement these channel 
semantics. regardless of whether the channel is between two processes on a 
single Transputer or over a link between two processes on two different 
Transputers. Using this mechanism it is possible to write programs that are 
independent of the number of Transputers in the system provided that there 
are at least as many processes in the system as there are processors. 

The Transputer is available both with and without hardware floating point 
support. Ideally we would like to have used the T800 floating point 
Transputer, but because of financial constraints our prototype hardware uses 
T414 non-floating point device. Our symbolic processing layer consists of an 
8 x 8 array of N-S-E-W connected T414 Transputers each with 256Kbytes of 
RAM. We also have a Transputer based frame-buffer used for displaying 
processed images. This layer has been designed and constructed by us, and has 
proved a useful vehicle for software development, as well as providing the 
first stage in our prototype pyramid machine. 



122 

Each Transputer will communicate with the Cluster Controller below it by 
means of shared memory. In our prototype hardware this is 2Kbytes of dual 
port static RAM which can be accessed both by the Transputer and the cluster 
controller. This memory is used by the symbolic processor to send commands 
to the cluster controller, as well as being used for the bidirectional 
transmission of data between the symbolic processor and cluster controller. 

4.3 Controller Array 

The controller array is an 8 x 8 array of cluster controllers . Each cluster 
controller is responsible for generating the instruction stream for one cluster, 
which consists of the cluster controller and a 16 x 16 region of the iconic 
layer. Each cluster is equivalent to a conventional SIMD machine, and it is this 
that gives the machine its Multi-SIMD capabilities. The cluster controller is 
also responsible communicating data to and from the iconic layer. 

The controller consists of a micro-instruction sequencer which fetches one 
micro-instruction at a time and broadcasts it to all of the processing elements 
(PE's) within the cluster. Each instruction specifies the operation that the PE's 
ALU is to perform, and also the source and destination of its operands. These 
can be either internal registers or locations in iconic layer memory. Since all 
the PE's operate on the same location in memory at the same time it can be 
thought of as acting on a plane of data. 

The operation for the PE ALU is specified in the cluster controller 
micro-instruction, but the source and destination for the operands are 
generated dynamically which allows the same PE ALU operation to be 
performed on several different locations in memory. This is particularly 
useful for implementing multi-bit operations.To allow this the cluster 
controller includes a scaler ALU for address calculations. This ALU is also 
used to generate the conditions needed to control the flow of the 
micro-instruction sequencer. 

To achieve maximum performance from the iconic layer it is necessary to 
provide one micro-instruction on every clock cycle. This proves very hard to 
achieve since for each micro-instruction several scaler operations may be 
required to calculate the operand addresses. However we have managed to 
approach this level of performance by allowing the address calculations to 
proceed in parallel with the execution of iconic layer PE instructions. 

The cluster controller is also responsible for communication of data 
between the symbolic layer and the iconic layer. Information is passed 
between the conttoller and the symbolic processors using the dual ported 

http:operations.To


123 

memory, and between the iconic layer and the controller via a set of hardware 
registers that will be described later. 

A functional diagram of the cluster controller element is shown in Fig. 4. 
It consists of a micro-programmable 16 bit processor consisting of an AMD 
29116 ALU and an AMD 29331 Sequencer, with 16K x 68 bit micro-code 
store and 2K 16 bit dual ported data memory. These are connected together 
via a single 16 bit data path. The dual ported memory is shared between the 
cluster controller and the symbolic processor and is used for communication 
between the two. At boot time the host processor loads the cluster controller 
micro-code store with a standard set of micro-routines, which can later be 
called up through a software protocol using the dual ported memory. 

Data Address 

DATA BUS 
Address 

SIMD 
Instruction 

SIMD 
Array 

Figure 4: Cluster Controller 

The cluster controller's micro-code word is divided into four fields one 
each for the ALU, sequencer, data path and the iconic processor array. Thus 
on each cycle the cluster controller can control all four elements in paralleL In 
this way it is possible to overlap address calculations performed by the 16 bit 
ALU and pixel instructions performed by the iconic layer, and so maintain the 
maximum possible iconic level instruction throughput. 

The cluster controllers are capable of Multi-SIMD operation with each 
cluster operating independently from each other. However it is also possible to 



124 

operate several clusters as a single entity if the iconic processors in adjacent 
clusters must be synchronised in order that communication across the cluster 
boundaries performs as expected. This synchronisation is performed by the 
cluster controller level, using inter-cluster controller communication links to 
rendezvous synchronised instructions. 

4.4 Iconic Layer 

The iconic layer performs the low level pixel processing, such as intensity 
interpolation, hidden surface elimination, convolutions etc. and consists of an 
SIMD array of bit-serial processors. The total array size is 128x 128 
processors, but this is broken up into an 8x8 array of 16x 16 regions, each one 
controlled by its own controller. Each 16x16 region and its controller form 
one cluster. All the processors in one cluster execute the same instruction 
stream, the only exception being that some processors may elect to remain idle 
instead of executing a certain instruction. The processors are arranged in a 
N-S-E-W connected square array and can communicate synchronously over 
this network. 

To neighbouring processors 

s 
~ ~ 

~ 

Figure 5: DAP Based SIMD Array 

The processors used for this layer are the AMT Distributed Array 
Processors. The AMT DAP chip integrates 64 bit serial processors onto a. 
single chip. Each processing element consists of a one bit ALU, four one bit 
registers, and some private external memory. The ALU provides a variety of 
one bit arithmetic and logical operations with add with carry being the most 
complex. Since the instruction stream is provided externally there are no 
control instructions in the DAP instruction set. Most instructions are 



125 

arithmetic or logic operations, with a small number of communication 
instructions. Each processor can perform operations on registers and 
operations which require only a single memory reference in a single clock 
cycle. Operations which require two memory references take two cycles. 

ill addition to the processing array each chip incorporates an edge register, 
which can be used to access a whole row or column of processors in one go. 
This edge register is mapped into the register space of the cluster controller, 
and can be used under software control to transfer data to and from the DAP 
processing elements. Our design also features a mechanism for counting the 
number of processing elements that respond to a certain key, to allow us to 
implement associative algorithms efficiently. 

ill our prototype machine each 16 x 16 cluster is implemented using four 
DAP chips. Each processing element has 32Kbits of fast static memory making 
a total of IMbyte of memory per cluster. 

4.5 Multiple-SIMD Design 

A particularly important aspect of our architecture is its Multi-SIMD 
organisation, where the SIMD array is divided into independently controllable 
clusters. Other machines have been suggested that combine MIMD and SIMD 
parallelism [9] but they suffer from two major flaws which the Multi-SIMD 
approach overcomes. 

Controller Multiple Controllers 

SIMD Architecture Multiple-SIMD Architecture 
128 x 128 SIMD (Many Clusters each of 16 X 16) 

Figure 6: SIMD vs. Multi-SIMD 

For a combined MIMD/SIMD machine to work effectively it must be able 
to pass data between its two halves quickly, which implies a high bandwidth 
connection. ill a conventional SIMD machine the single controller becomes a 
bottleneck for communication and limits the bandwidth. ill our design multiple 
controllers allow a far greater vertical bandwidth than would otherwise be 



126 

possible. This approach also scales more readily since the number of 
controllers increases as the size of the array increases. 

The other main advantage of a Multi-SIMD design is increased local 
autonomy. In a conventional SIMD machine if the processing is concentrated 
in a small area of the image the rest of the array has to lie idle. If the 128 x 
128 array of processors were rendering a polygon, which probably only 
covers in the order of 100 pixels then only 1 % of the array would be active, 
or put another way the array would be operating at only 1 % efficiency. With 
a Multi-SIMD design it is possible for each cluster to work on a different area 
of the image independently of all the others. Thus, taking the previous 
example, since the area of one cluster is of a similar order to the polygon, we 
might expect each cluster to be able to work on a different polygon. giving a 
factor of 64 (the number of dusters) improvement in performance. In 
practice of course this will not be fully realised but nonetheless a significant 
improvement is to be expected. 

4.6 Current Status 

We have built and tested a prototype machine. This consists of a full 8 x 8 
array of T414 Transputers each with 256Kbytes of memory on multi-layer 
printed circuit boards. Connected to this is a single cluster. The cluster 
consists of a cluster controller which is a single wire wrapped board, and a 16 
x 16 array of DAP processing elements implemented as four DAP chips with 
1 Mbyte of fast external memory, implemented as two multi-layer printed 
circuit boards. The Transputer array runs at 20MHz while the cluster runs at 
lOMHz. 

5. Programming 

The pyramid architecture consists of three different processor types 
(Transputers, bit-slice, DAP PE's), each of would normally be programmed 
its own language. Ultimately it is hoped that a user will see only one language, 
namely Parallel C++, but at the moment two main languages are used, Parallel 
C and cluster assembly language.We will now describe these languages and 
then go on to discuss our future plans to integrate them. 

5.1 Transputer Parallel C 

This is a commercial product and so we will touch on it only briefly. It 
provides an ANSI C compiler and a set of function calls to implement the 
OCCAM style of concurrency, namely communicating sequential processes or 
CSP. This includes the ability to create processes and to communicate over 
channels. Processes and channels can be created dynamically and the language 
allows recursioJ). 

http:language.We


127 

Parallel C is used to program the symbolic processors. Typically the 
programs on the symbolic processor will coordinate the operation of their 
associated cluster. We have written a library which provides an interface to a 
set of routines written in cluster assembly language which run on the cluster 
controller. These routines perform a variety of functions from low level 
operations sucb as multi-bit arithmetic to higher level functions such as scan 
converting of a polygon. The C functions invoke a remote-procedure call 
mechanism which makes use the dual-ported memory to write into the cluster 
controller's instruction queue. The cluster controller takes instructions from 
this queue and executes the appropriate micro-code routine. Once it has 
completed this is writes the results into dual-ported memory and generates an 
event on the symbolic processor. The Transputer's scheduler receives the 
event and can then restart the process. This mechanism allows the symbolic 
processor to do other computations while the cluster controller is busy. 

5.2 Cluster Assembly Language 

The cluster assembly language provides a low level interface to the devices 
which make up the cluster, namely the scaler ALU, the micro-instruction 
sequencer, the data path and the DAP array. The cluster assembly language is 
effectively two assembly languages in one, namely AMD 29116/29336 bit-slice 
assembler and DAP assembler. Where possible the same mnemonics have been 
used in the assembler as used by the manufactures of the devices. This does 
lead to a somewhat irregular syntax, but it means that the manufacturers 
documentation still makes sense in the context of our machine. 

The cluster controller design allows each micro-instruction to fully specify 
the operations of all fOUT functional units, and the cluster assembly language 
reflects this by using four fields in each instruction, one for each functional 
unit, so that each line of assembly language corresponds to one 68-bit 
micro-instruction. 

The use of a wide instruction word, with its inherent parallelism provides 
a worthwhile performance increase, but it does make programming the 
machine quite difficult. It is up to the programmer to work out which 
instructions can safely be carried out in parallel, and since they are all highly 
interdependent this is no easy task. We intend to automate this process in the 
future by providing a high level language compiler for the cluster controller 
but for the time being it is strictly a real programmers machine ! 

5.3 Parallel C++ 

We would ideally like to completely integrate the programming of our 
machine by providing a single language which can express both SIMD and 
MIMD models of concurrency. It is our hope that C++ will allow us to 



128 

achieve this. Object oriented programming, which breaks programs into self 
contained units of data and program, has already been used effectively as a 
parallel programming technique for MIMD machines [10], and it is our 
feeling that it could be used equally well to implement the.model of SIMD 
parallelism used in DAP FORTRAN. We intend to use the object oriented 
facilities in C++ to generate a suitable class library which will include both 
MIMD and SIMD objects, and thus provide the integrated programming 
environment we need. 

6. Polygonal Mesh Rendering 

Having described the architecture and its programming we will now look 
at mapping a specific graphics application onto it, namely the standard 
polygon mesh rendering pipeline. 

A polygonal mesh rendering systems takes a model, defined by planar 
polygonal patches, and processes it in stages to produce an image of the model. 
The implementation has two main objectives. The first is to map each stage in 
the process onto the processor which can most efficiently implement it. To do 
this we need to look at the type of calculations that each stage performs, and 
also the structure of the communication at each stage. In addition to this we 
would like to use algorithms at each stage that are arbitrarily scalable. This 
means that as the number of processors increase so does the throughput of 
each stage. 

The rendering is carried out in a number of separate stages, which can be 
arranged in a pipeline, and indeed this is generally how dedicated hardware 
implementations are arranged [12]. The early stages of the pipeline, which 
consist of database control, 3D transformations, clipping and shading 
calculations, are mapped onto the symbolic processor, since they involve 
complex operations, usually floating point, performed on relatively few data 
items. The later stages which consist of scan conversion, hidden surface 
elimination and intensity interpolation, are mapped onto the low level clusters, 
since they involve much simpler integer calculation which can be applied to all 
the pixels in each polygon simultaneously. 

Previous attempts at mapping the rendering pipeline onto arrays of MIMD 
processors have involved using one processor for each stage in the pipe, 
emulating the approach used by custom hardware [8], This approach has three 
disadvantages, first it does not scale readily, which is one of our primary 
aims, since the number of pipeline stages is fixed to the number of stages in 
the rendering process. Secondly this approach involves the polygon data being 
transmitted between each stage in the pipeline, which can be done in a 
hardware pipeline with no overhead, but in an MIMD machine where 



129 

communications are a significant overhead this is a problem. Thirdly the 
pattern of communication implies that the processors be arranged as a 
pipeline, which does not correspond to our architecture. 

I 
I Hidden

Scan-Transfonnationl Clipping SurfaceModel -410 ~ ~ ~ conversionProjection RemovalI 
t 
t 

Simple data and Complex data and algorithms 
algorithmsImplemented on Transputer 

Implemented on 
DAP array 

Figure 7: Polygon Rendereing Pipeline 

The approach we have taken is to use a static 'processor farm'. This 
involves distributing the polygon data base evenly amongst the available 
Transputers, such that each processor has an equal number of polygons. The 
viewing parameters and lighting details are then broadcast to the processors, 
which calculate all the transformations· and shading for their set of polygons. 
The polygons are then clipped to cluster boundaries, which may involve 
polygons which span more than one cluster being broken into several pieces. 
These clipped polygon are then sent to the symbolic processor associated with 
the clusters which contains them. This processor then passes them onto the 
cluster controller for rendering. We have found that this technique provides 
nearly linear speed up with number of processors, and can be extended 
indefinitely, up to one processor per polygon. It is also topology independent. 

This method relies on being able to send polygon data from one 
processor to any other in the array, so that clipped polygons can be sent to the 
appropriate symbolic processor for rendering. To allow this we have 
implemented a message based router, which can route addressed packets from 
one processor to any other. The existence of this router has other advantages, 
in that it allows any node to print data on the host machine, which is extremely 
useful for debugging purposes. 

Once the clipped polygons arrive at the appropriate cluster controller they 
must then be scan converted. Clearly we wish to render all the pixels in each 
polygon in paraliel, and so the conventional incremental algorithms are not 



130 

suitable. Instead we use an algorithm developed by Fuchs [11] for his Pixel 
Planes machine. 

The algorithm proceeds in a number of stages, taking one edge of the 
polygon to be rendered at a time. For each edge the pixel processors in the 
patch calculate the equation Ax + By + C, where x and yare the coordinates 
of the processor within the patch, and A, Band C are the coefficients of the 
line Ax + By + C = 0 which corresponds to the edge. The coefficients are 
calculated such that pixels outside the polygon return a consistent positive or 
negative result, so that all the pixels which do not faU inside the polygon can 
be eliminated. If this process is repeated for all the edges, those pixel which 
have not been eliminated must be inside the polygon. 

-4x +By+ C,... 
- ~l-'e 

-4x + Blf+ C 
J ::'::0 

Figure 8: Interior Point Determination 

Once the pixels within the polygon have been determined, the next step is 
to determine the distance of each pixel from the viewer, so that hidden surface 
elimination can be performed. To do this the processors evaluate the same Ax 
+ By + C equation, but this time the coefficients are of the plane Ax + By + C 
=z, where z is the depth of the polygon from the view at the point x,y. Each 
processor then compares this value with any previously stored values for 
polygons already plotted in that pixel, and determines whether the new value 
is closer to the viewer than previous values. Finally all those pixels which are 
inside the polygon and closer to the viewer than previous polygons are set to 
the colour value for that polygon. This value may itself be calculated using a 
linear equation to achieve Gourard shading. 



131 

6.1 Performance 

The Transputer array is expected to be able to process 400,000 triangles 
per second, assuming that T800 Transputers are used. A single cluster can 
render approximately 20,000 triangles per second. A full sized SIMD array 
could process up to 1.2 million triangles per second, but this assumes that all 
clusters are fully active the whole time which is optimistic. However we would 
hope that it would able to render at the a rate similar to that produced by the 
Transputer Array, giving a total system performance of 400,000 triangles per 
second. 

7. Conclusions 

We believe that a programmable parallel machine can provide the level of 
performance normally only available with custom hardware while not 
restricting the user to one specific set of algorithms. However this relies on 
achieving a good match between hardware and software, which can only be 
achieved by targeting the machine at particular problem area where all the 
algorithms share a similar problem structure. We have designed a machine 
which is oriented towards image based problems, such as image understanding 
and computer graphics. These problems are generally difficult to map onto 
existing parallel architectures because they contain many data structures which 
map most effectively on to widely different machines. Our architecture 
overcomes this by incorporating both coarse grained MIMD and fine grained 
SIMD processors. 

Acknowledgements 

This work is supported in part by contract NOoo14-87-G-0241 from the U.S. 
Innovative Science & Technology Office (addministered by Dr K.Bromley, 
Office of Naval Research). 

References 

1. K.E.Batcher. "Design of the Massively Parallel Processor", IEEE Trans. 
C-29, pp 836-840,1980 

2. M.J.B.Duff, T.J.Fountain (Editors), "Cellular Logic Image Processing", 
Academic Press, New York, 1986 

3. D.J.Hunt, "AMT DAP - a processor array in a workstation environment", 
Computer Systems Science and Engineering, 4 (2), pp107-114, April 1989 

4. TJ.Fountain, "A Review of SIMD Architectures", in Image Processing 
System Architectures, ed J.Kitler. 



132 

5. MJ.Flynn, "Very High Speed Computing Systems", Proc IEEE, V54 No. 
12, 1966. 

6. G.R.Nudd et aI," WPM: A Multiple -SIMD Architecture for Image 
Processing", lEE Conference on Image Processing and Applications, 
Warwick, July 1989. 

7. C.A.R.Hoare, "Communicating Sequential Processes", Prentice Hall, 1985. 

8. T.A.Theoharis, "Exploiting parallelism in the Graphics Pipeline", 
Technical Monograph PRG-54, University of Oxford. 

9. I.Page, "DisArray: A 16x16 RasterOp Processor", Eurographics '83. 

10. W.Bronnenberg, "POOL and DOOM", PARLE '89, Lectures Notes in 
Computer Science, Springer-Verlag 

11. H.Puchs, "PIXEL-PLANES: A VLSI-oriented design for a raster graphics 
engine", VLSI Design VII, no.3. 

12. J.Clark, "The Geometry Engine: a VLSI geometry system for graphics". 
Computer Graphics (SIGGRAPH '82 Proceedings), vol 16, no3, pp127-133. 

13. E.P.Gehringer, "A Survey of Commercial Paralle1 Processors", Computer 
Architecture News, Vo116,. no4, 1988. 

14. W.D.Hillis, "The Connection Machine", MIT Press, 1985. 


